
 

Chapter 5   

Modeling Dependence Dynamics of Air Pollution: Time Series 

Analysis Using a Copula Based GARCH Type Model 

Previous chapter exhibits a full map of volatility spillovers between local and 

regional/national air pollution indices.  Among 42 sample groups, Guangzhou 

group and Shenzhen group exhibit a similar, unique feather that is different from 

other 40 groups.  Further research the dependence structure is important. 

This chapter is developed from the original paper ‘Modeling Dependence 

Dynamics of Air Pollution: time series analysis using a copula based GARCH type 

model’ by He et al.  (2013) presented at the 6
th

 Conference of the Thailand 

Econometric Society, published in “Uncertainty Analysis in Econometrics with 

Applications”, Springer-Verlag (2013), pp.215-226.  Van-Nam Huynh et al. (Eds.) 

Abstract 

 

This paper investigates the dependence structure between the Air Pollution 

Index (API) of Shenzhen and corresponding regional, national levels based on 

copula based GARCH models.  In particular, time varying normal copula and time 

varying SJC copula are compared and employed to model the dependence structure.  

Comparison with the results of DCC-GARCH model is made.  We find that there 
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exists significant asymmetric upper and lower tail dependence between Shenzhen and 

regional, national levels;  tail dependence captures the change in dependence better;  

dependence structure change across time.  Our findings have implications for 

environmental management. 
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5.1  Introduction  

Air pollution in china is attracting the focus of not only the Chinese government 

and people but also researchers worldwide.  There are disputes about the reliability 

of the Air Pollution Index (API) the government released and the pollutant detected 

and included to get the API.  Despite the disputes, since the composite and method 

of computing the integrated air pollution APIs are unchanged during our observation, 

exploring spatial dependence dynamic through examine the conditional dependences 

of urban API and regional, national levels are feasible and meaningful. 

Some previous studies examined spatial contagion of air pollution.  But they 

mostly focus on some pollutants and dust (Yongxin Zhang et al. 2010;  Tracey 

Holloway et al. 2008;  Lee et al. 2010;  Chung-Ming Liu et al. 2006;  F. Cousin et 

al. 2005), studies concerning API, an integrated index are not noticed.  And for 

geographical scale, most previous studies examined contagion between regions within 

one county, or between countries (Feng Xiao et al.  2006;  Guor-Cheng Fang et al.  

2010;  Paul J.  Miller et al.  1998;  Suhejla Hoti et al.  2005), spatial contagion 

between city, regional and national API is yet to be carried out. 

In our previous studies, based on the DCC-GARCH model (Engle, 2002) which 

is an econometric model widely used by many researchers in time varying 

correlations finance research, we investigated the dynamic correlation of Air Pollution 

Indices (APIs) between 42 Chinese sample cities and their corresponding regional and 
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national levels for a duration of 10 years.  Some meaningful findings were drawn 

which were shared by most sample cities, for example, the correlations of local APIs 

between regional and national levels are time varying;  most cities exhibit positive 

conditional correlations with both regional and national APIs, and the conditional 

correlations of most cities with regional and national APIs are only slightly different 

and are mostly stable.  Interesting thing is that, the behavior of Shenzhen and Zhuhai, 

two cities with the shortest distance among the subjected cities, exhibit unique 

characteristic between each other: a decrease of dynamic correlation with both 

regional and national levels after spring 2001, and then increase again after autumn 

2004.  It is not surprising that Shenzhen and Zhuhai behave similarly.  Since they 

are so close to each other geometrically, with 56.4 kilometers of direct distance, and 

according to our integrating method of city related regional and national APIs, they 

are expected to have similar regional and national APIs.  To further explore the 

dynamic spatial contagion feature of theses too cities, we focus on Shenzhen in this 

study.  Shenzhen lies in Pearl River Delta, one of the three key regions required to 

carry out inter-region cooperation to cut and improve air quality.  The reason why we 

choose Shenzhen is that Shenzhen has higher population density, higher GDP per 

capita (18 thousand USD for Shenzhen while 14 thousand for Zhuhai in 2011), and 

experiences higher API.   

DCC-GARCH model, as a conventional linear-based correlation method is 
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somewhat restrictive due to its requirements of normality for the joint distribution and 

of linear relationships among variables.  More flexible copula-based models have 

become a common practice to cope with dependence between random variables.  

Moreover, methods have emerged for dealing with non-normality and dependence 

dynamics with asymmetry over time using copula-based GARCH models (Patton 

2006;  Jondeau and Rockinger 2006).  Most studies focused on the financial market.  

But this method has not been used in the API dependence study.   

To assess the changing dependence structures over time, following our previous 

research, this paper attempts to investigate time varying air pollution dependence 

between Shenzhen and its corresponding regional, national levels.  Comparison 

between the DCC-GARCH model based result and copula based result will be made. 

This study contribute to the existing literature not only by focusing on the 

dependence structure of urban and regional, national air pollution, but also by trying 

to apply the copula based GARCH type models to air pollution co-movement study. 

The rest of the paper is set up in the following manner.  Section 2 presents the 

econometric model.  Section 3 contains the description of the data.  The empirical 

results are in Section 4, followed by conclusion in the last section. 

5.2  Model 

5.2.1  DCC-GARCH model 

Time varying correlations are often estimated with multivariate 
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generalized autoregressive conditional heteroskedasticity (MGARCH) models.  DCC 

models proposed by Engle which can be estimated very simply with univariate or two 

step methods based on the likelihood function, is an important one.  In this paper, we 

employed the DCC model, after Engle (2002) to examine the existence of volatility in 

each series and the dynamic correlations between urban APIs, regional APIs and 

national APIs. 

Let us consider the APIs 𝑌𝑡  =  (𝑌1𝑡 , . . . , 𝑌𝑘𝑡 )′, for t = 1,..., T.   The 

following mean equation was estimated for each series given as: 

 Yit = μi + аYit−1 + εit 

εit ~ N(0, Ht )             (5.1) 

where Yit  is API in series i at time t, i is either city, regional or national API, εit is 

the error term for the API i at time t.  All estimated series exhibited evidence of 

ARCH effects.  DCC (Engle 2002) parameterization of conditional covariance 

metrics is given as: 

Ht ≡ DtRtDt               (5.2) 

where Dt is the k × k diagonal matrix of time varying standard deviations from 

univariate GARCH models with √hit  on the i th diagonal, and Rt  is the time 

varying correlation matrix.   

The elements of Dt is √hit.  For simplicity, hit can be expressed for 

the univariate form as: 



126 

 

hit = ωi + ∑ aiprit−p
2 + ∑ βiqhit−q

Qi
q=1

pi
p=1         (5.3) 

for i =1; 2,······k with the usual GARCH restrictions for non-negativity and 

stationarity being imposed, such as non-negativity of variances and ∑ 𝑎𝑖𝑝 +
𝑝𝑖
𝑝=1

∑ 𝛽𝑖𝑞
𝑄𝑖
𝑞=1 < 1. 

The proposed dynamic correlation structure is: 

Qt = (1- ∑ θ1m − ∑ θ2n)Q̅N
n=1

M
m=1 + ∑ θ1m

M
m=1 (εt−mεt−m

，
) +

∑ θ2nQt−n
N
n=1  

Rt = Qt
∗−1QtQt

∗−1             (5.4) 

where Q̅ is the unconditional covariance of the standardized residuals resulting from 

the first stage GARCH estimation, and 

Qt
∗ = [

√q11 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ √qkk

]         (5.5) 

so that 𝑄𝑡
∗ is a diagonal matrix composed of the square root of the diagonal elements 

of 𝑄𝑡.  The typical element of Rtwill be of the form ρijt =
qijt

√qiiqjj
 . 

To investigate the seasonal effect of mean and variance, and the effect 

on the dynamic correlation between local APIs, regional APIs and national APIs, we 

set three seasonal dummy in both mean and variance equations, so that equation (5.1) 

now becomes: 

Yit = μi + S2D2 + S3D3 + S4D4 + аYit−1 + εit       (5.6) 

Equation (5.3) becomes: 
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hit = ωi + S′2D2 + S′3D3 + S′4D4 + ∑ aiprit−p
2 + ∑ βiqhit−q

Qi
q=1

pi
p=1  (5.7) 

so that D is seasonal effect vector where 𝐷2, 𝐷3, 𝐷4 equals 1 when t is in summer, 

autumn, or winter respectively, other equations same.  Spring includes March, April 

and May;  summer includes June, July and August;  autumn includes September, 

October and November;  winter includes December, January and February. 

5.2.2  Copula concept  

Copulas are functions that join or couple multivariate distribution 

functions to their uniform one-dimensional marginal distribution functions (Roger B.  

Nelsen, 2006).  Sklar(1959) showed that a joint distribution can be factored into the 

margins and a dependence function called a copula.  For bivariate case, let X and Y 

be two continuous random variables with margins F(x) and G(y) and with a joint 

distribution function H(x, y), Sklar's theorem states that the standard representation for 

the joint distribution H is: 

H(x, y) = C(F(x), G(x))           (5.8) 

where C(u,v), u=F (x) and v=G(y) is the copula that captures the dependence structure 

between X and Y.  If the margins are continuous, then C is uniquely determined, 

otherwise, the copula C is uniquely determined on Ran(F) x Ran(G).  Thus, copulas 

can be used to link margins to a multivariate distribution function, which, in turn, can 

be decomposed into its univariate marginal distributions and a copula capturing the 

dependence structure between the two variables.  In terms of construction, the copula 
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is a multivariate distribution function, with uniform (0, 1) margins that relate the 

quantiles of the distributions rather than the original variables.  It is therefore 

unaffected by a monotonically increasing transformation of the variables. 

Patton (2006) extended Sklar's theorem for conditional distributions.  

By extending Sklar's theorem, the conditional copula function can be written as: 

H (x, y|w) = C(F(x|w), G(y|w)|w)        (5.9) 

where W is the conditioning variable, 𝐹(𝑥|𝑤) is the conditional distribution of 

X|W=w, 𝐺(𝑦|𝑤) is the conditional distribution of Y|W=w and 𝐻(𝑥, 𝑦|𝑤)is the joint 

conditional distribution of (X, Y)|W=w. 

Given the condition that F and G are differentiable, H and C are twice 

differentiable, the unconditional and conditional joint densities are given by: 

 f(x, y) = f(x) ∙ g(y) ∙ c(u, v) 

 f(x, y) = f(x) ∙ g(y) ∙ c(u, v|w)         (5.10) 

About the models for the marginal distributions, APIs series in this 

study exhibit volatility clustering feature.  To capture the most important features of 

air pollution index, such as fat tails or leverage effects, and seasonality of the first and 

the second moments, the marginal models of the APIs are estimated by three most 

widely used models and then choose one outperform other two: 

Mean equations are specified as an ARIMA(p, d, q) process as:  

(1 − ∑ θi
p
i Li)(1 − L)dyt=(1 + ∑ Φi

q
i Li)εt       (5.11) 
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where p, d, and q are integers greater than or equal to zero and refer to the order of the 

autoregressive, integrated, and moving average parts of the model respectively.   

In this paper, volatility models to be estimated are associated with a 

stationary AR (1) conditional means given by: 

Yt = μ + θYt−1 + εt      |θ| < 1        (5.12) 

where, Yt is Air Pollution Index, εt is shock to API. 

GARCH 

Generalised autoregressive conditional heterocedasticity (GARCH) 

model (Bollerslev, 1986) is as the follow: 

  εt = ηt√ht     

ht = ω + αεt−1
2 + βht−1           (5.13) 

where ht is conditional volatility, conditional on the information of period t-1;  ηt 

is standardized shock to API.  Notice that GARCH model is lack of asymmetric and 

leverage.   

GJR-GARCH 

The threshold GARCH (TGARCH) (Glosten, Jaganathan, & Runkle, 1993) 

is a simple extension of the GARCH scheme with extra term(s) added to account for 

possible asymmetries: 

εt = ηt√ht       

ht = ω + αεt−1
2 + γΙ(εt−1) + βht−1        (5.14) 
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where  ω >0, α ≥ 0, α + γ ≥ 1  and β ≥ 0 are sufficient conditions to 

ensure that the conditional variance  ht>0.  Ι(εt−1) is an indicator function, taking 

the values of 1 if εt−1 <0(good news in this study) and 0 if εt−1>0.  The impact of 

bad news and good news on the conditional variance in this model is different, if 

γ > 0, the positive innovations have a higher impact than negative ones.  The GJR is 

asymmetric as long as γ is significant different from zero.   

EGARCH 

The EGARCH (p, q) model of Nelson(1991) can also accommodate 

asymmetry and specifies the conditional variance in a different way: 

εt = ηt√ht     

loght = ω + α|εt−1| + γεt−1 + βloght−1       (5.15) 

EGARCH models the logarithm of conditional volatility, thereby removing 

the need for constraints on the parameters to ensure a positive conditional variance 

(Long more& Robinson, 2004).  |εt−1| and εt−1 capture the size and sign effects of 

standardized shocks respectively.  The presence of leverage effects can be tested by 

the hypothesis that γ<0 and γ<α < −γ.  The model permits asymmetries via γ and 

if γ< 0, negative shocks lead to an increase in volatility.  Good news generate less 

volatility than bad news.  The model is asymmetric as long as γ ≠ 0. 

To capture the seasonal effect in our data, we include seasonal dummy D in 

both mean equations and variance equations so that D is seasonal effect vector where 



131 

 

𝐷2, 𝐷3, 𝐷4 equal 1 when t is in summer, autumn, or winter respectively, other things 

equal. 

5.2.3  Copula models 

Copula methods have advantages over linear correlation in that the 

copula-based GARCH models allow for better flexibility in joint distributions than 

bivariate normal or Student-t distributions.   

In this study, we are interesting in the time varying dependence of air 

pollution, especially time varying dependence of the propensity of air pollution to 

improve or deteriorate.  So we focus on the conditional Symmetrized Joe-Clayton 

copula and conditional Gaussian copula of Patton (2006).   

The conditional Gaussian copula function is the density of the joint 

standard uniform variables (ut, vt), as the random variables are bivariate normal with 

a time-varying correlation, ρt .  Moreover, let xt = ϕ−1(ut)  and yt = ϕ−1(vt) , 

where ϕ−1(·) denotes the inverse of the cumulative density function of the standard 

normal distribution.  The density of the time-varying Gaussian copula is then: 

ct
Gau(ut, vt|ρt) =

1

√1−ρt
exp {

2ρtxtyt−xt
2−yt

2

2(1−ρt
2)

+
xt

2+yt
2

2
}    (5.16) 

Tail dependence captures the behavior of random variables during 

extreme events.  In our study, it measures the propensity of Shenzhen air pollution to 

improve or deteriorate simultaneously with regional and national air pollution.  The 

Gumbel, Clayton and SJC copulas efficiently capture the tail dependences arising 
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from the extreme observations caused by the asymmetry.   

The density of the time-varying Clayton copula is: 

ct
clay(ut, vt|θt) = (θt + 1)(ut

−θt + vt
−θt − 1)

−
2θt−1

θt ut
−θt−1

vt
−θt−1

 (5.17) 

where θt ∈ [0, ∞) is the degree of dependence between ut and vt, θt = 0 implies 

no dependence and θt → ∞  a fully dependent relationship.  The lower-tail 

dependence measured by the Clayton copula is λt
L = 2

−
1

θt 

The SJC copula is Patton's (2006a) modification of the Joe–Clayton (JC) 

copula.  It is more general because the symmetry property of the JC copula is only a 

special case.  The density of the JC copula is: 

CJC(u, v|TU, TL) = 1 − (1 − {[1 − (1 − u)k]
−γ

+ [1 − (1 − v)k]
−γ

− 1}
−

1

γ)

1

k

 

 (5.18) 

where k = 1 log2(2 − TU)⁄ , γ= −1 log2(TL)⁄ , TU ∈ (0,1) and TL ∈ (0,1) are the 

measures of the upper and lower-tail dependencies respectively.  The density of the 

generalized SJC copula is: 

CSJC(u, v|TU, TL) = 0.5[CJC(u, v|TU, TL) + CJC(1 − u, 1 − v|TU, TV) + u + v −

1] (5.19) 

The SJC copula is symmetric when TU = TL and asymmetric otherwise. 

The dependent process of the time varying Gaussian copula has the 

following form: 
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ρt = ⋀1 (ω + β⋀1
−1(ρt−1) + α

1

m
∑ ϕ−1

m

i=1

(U1,t−1)ϕ−1(U2,t−i)) 

⋀1(x) =
1−exp(−x)

1+exp(−x)
             (5.20) 

where ⋀1(·) is a transformation function which holds the correlation parameter 𝜌𝑡 

in the interval (-1,1), 𝜙(·) is the standard normal cdf and m is an arbitrary window 

length. 

The upper and lower-tail dependences of the conditional SJC copula is 

as: 

TU = ∏ (βU
SJCTt−1

U + ωU
SJC + γU

SJC 1

10
∑|ut−1 − vt−1|

10

i=1

) 

TL = ∏ (βL
SJCTt−1

L + ωL
SJC + γL

SJC 1

10
∑ |ut−1 − vt−1|10

i=1 )    (5.21) 

where ∏ is the logistic transformation to keep TU and TL within the (0, 1) interval. 

5.3  Data description 

The data series for this study comprises of 3 series of daily average Air 

Pollution Index (APIs) during the period from June 5th, 2000 to March 04th, 2010: 

API of Shenzhen;  API of region to which Shenzhen longs and national API with 

3560 observations each series.  Data on Shenzhen API comes from the data base of 

Ministry of Environmental Protection of the People’s Republic of China 

(http://www.zhb.gov.cn//) (MEPPRC).   

The data of regional and national levels are integrated from APIs of the other 

cities within the region and nation respectively, by calculating inverse distance 

http://www.zhb.gov.cn/
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weighted average of city APIs for all other cities in the region and in the nation.  

Figure 5-1 exhibits the plot of APIs for Shenzhen and corresponding regional, 

national levels.  Obvious volatility clustering feature can be noticed in all the three 

series.  JB test shows that normality hypothesis is significantly rejected.  Both the 

ADF unit root tests and PP test show that all the series are statistically significant.  

Rejecting the hypothesis that there exists unit root. 

5.4  Results  

Table 5-1 reports the estimation result of the two-step DCC model based on the 

univariate GJR-GARCH (1, 1) for each series, with the error skewed-t distribution 

assumption in all cases (We estimated with normal and student-t distribution 

assumption, skewed-t distribution outperform the other two).  θ1  and  θ2 , are 

statistically significant at 1% level, indicating that the assumption of constant 

conditional correlation for all shocks to APIs is not supported empirically.  Both the 

condition mean and variance of spring are significantly lower than summer, but are 

higher than that of winter.  The autumn is special, higher in mean but lower in 

variance compare with spring. 

Table 5-2 reports the model specification for marginal distributions.  Based on 

the log-likelihood value and Akaike, Schwarz information criteria, AR(1)-EGARCH 

model for Shenzhen and AR(1)-GJR-GARCH model for regional and national series 

outperform other models, with the error skewed-t distribution assumption in all cases.  
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So an AR-skewed-t-EGARCH model was employed for the marginal distributions of 

Shenzhen API and an AR-skewed-t-GARCH model employed for regional and 

national APIs.  ARCH effect tests of residual did notreject the null hypothesis of no 

serial correlation in the squared standardized residuals at 1% level, suggesting that the 

models listed capture the time varying volatility in the data very well. 

Table 5-3 reports the univariate estimation result for each series chosen in 

previous step.  Except several seasonal dummies, other estimates are significant at 1% 

level.  The asymmetric effects in three series are all significant.  The parameter γ of 

the conditional volatility equation in GJR-GARCH model is negative and highly 

significant, implying that negative shocks (good news) exert smaller impact on 

regional and national air pollution volatility than positive shocks (bad news) of the 

same magnitude.  Similarly, γ in EGARCH model in Shenzhen API is positive and 

highly significant, implying that positive shock (bad news) exert bigger impact on 

Shenzhen air pollution. 

From table 5-4, we notice that the log-likelihood of time varying normal copula 

is higher than that of time varying SJC copula for both Shenzhen-regional estimation 

and Shenzhen-national estimation.  But we hope to examine whether the feature of 

linear dependence also exists in tail dependence, so we focus on time varying 

conditional SJC copula, and compare the dependence behaviors implied by DCC, 

time varying normal copula and time varying SJC copula. 
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Figure 5-2 presents the plot of time varying dependence implied by 

DCC-GARCH model.  We notice decline of dependence both between Shenzhen and 

regional, Shenzhen and national air pollution from the end May, 2001 and reach a 

bottom in October 2004 and then gradually increase to a high level, over 0.7.   

In figure 5-3, we present plots of conditional dependence based on the time 

varying normal copula.  Compare with figure 2, the time varying dependence 

implied by time varying normal copula exhibits a lower dependence during June 2001 

to November 2004, but is not that significant as in figure 2. 

Figure 5-4 is the plot of conditional tail dependence implied by the time varying 

SJC copula model.  The dynamics of conditional upper and lower tail dependence 

were confirmed.  Further, we notice that both upper and lower tail dependence 

exhibit a decline of dependence in late spring 2001, and then increase again autumn 

2004, which is in conform to what we notice from the dependence implied by 

DCC-GARCH.  This feature is not such clear for the dependence from the time 

varying normal copula. 

Figure 5-5 confirms that for both Shenzhen-regional dependence and 

Shenzhen-national dependence, lower tail dependence is higher than upper tail 

dependence most of time, especially during the period with relative low dependence, 

indicating the existence of asymmetry in tail dependence.  Upper (lower) tail 

dependence measures the dependence between APIs of Shenzhen and regional (or 
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national) on days when the air pollution deteriorate (improve). 

5.5  Conclusions  

In this study, we examine time varying dependence between air pollution of 

Shenzhen and corresponding regional, national levels by modeling the conditional 

dependence structure via copula time varying SJC copula.  The Engle DCC and time 

varying normal copula are estimated as comparison. 

Univariate estimations reveal that in all three seasons, seasonal effect exists in 

both mean and variance equations, with lower mean and variance in summer and 

higher that in winter.  The asymmetric effects are all significant, bad news exert 

bigger impact on air pollution of Shenzhen, regional and national levels. 

The change in dependence during the time period from end May 2001 to 

October 2004 we found in DCC model also takes place in dependence implied by 

time varying normal copula and time varying SJC copula.  This feature is not very 

obvious in time varying normal copula, but it is very clear in both upper and lower tail 

dependence implied by time varying SJC copula.  This may imply that the change 

come mostly from extreme value.  Further, the existence of asymmetry is confirmed.  

We notice that lower tails are higher than upper tails in both Shenzhen-regional and 

Shenzhen-national relationships, indicating Shenzhen will benefit from the improved 

regional and national air quality;  the decline of regional and national air quality will 

affect the contemporaneous air quality of Shenzhen, but with lower impact.  
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Asymmetry increase after October 2004 and increasing with the level of dependence, 

suggesting the change of dependence structure over time.  DCC, time varying copula 

and time varying SJC copula all reveal that the conditional dependence between 

Shenzhen and national is slightly higher than that of Shenzhen and regional.   

These results have strong policy implications.  When capturing the regional 

and inter-region relationship, seasonal variation should be taken into consideration.  

Spring and Winter exhibit higher volatility, which means higher uncertainty;  

regional or single city settlement in air pollution control is important but not enough, 

inter-region cooperation and national decision are important;  The cooperation 

mechanism should be able to respond the time varying nature of conditional 

correlation;  regional heterogeneity should be considered in cooperation policy 

decision, cooperation among regions with higher correlation and similar correlation 

feature is better.
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Table 5-2 Model Specification for the Marginal Distributions 

Shenzhen 

 

AR(1)-G

arch(1,1) 

Skew T 

AR(1)- 

Garch(1,

1)- T 

AR(1)-E

garch 

Skew T 

AR(1) 

Egarch(1,1) 

T 

AR(1)-J

GR(1,1) 

Skew T 

AR(1)- 

JGR(1,1) 

T 

Log-likelihood -14359.15  -14374.31  -14301.84  -14326.90  -14312.31  -14338.17  

Akaike 8.07  8.08  8.04  8.06  8.05  8.06  

Schwarz 8.10  8.10  8.07  8.08  8.07  8.09  

ARCH 1-2 

test 
0.43[0.64] 0.88[0.41] 0.46[0.63]   1.57[0.20] 1.16[0.31] 

ARCH 1-5 

test 
1.20[0.30] 2.18[0.05] 0.38[0.86]   1.24[0.28] 1.14[0.33] 

ARCH 

1-10 test 
1.40[0.17] 1.63[0.08] 1.03[0.40]   1.23[0.26] 1.21[0.27] 

Regional 

Log-likelih

ood 
-12937.2 -12951.75  

- - 
-12907.44 -12930.25  

Akaike 7.28  7.28  7.26  7.27  

Schwarz 7.30  7.30  7.28  7.29  

ARCH 1-2 

test 
0.12[0.88] 0.089[0.9] 0.47[0.620] 0.47[0.621] 

ARCH 1-5 

test 
0.26[0.93] 0.28[0.92] 0.37[0.865] 0.34[0.888] 

ARCH 

1-10 test 
1.42[0.16] 1.38[0.17] 1.81[0.053] 1.73[0.068] 

National 

Log-likelih

ood 
-12700.72  -12712.35 -12664.63  

- 
-12670.05  -12688.92  

Akaike 7.14  7.15  7.12  7.13  7.14  

Schwarz 7.17  7.17  7.15  7.15  7.16  

ARCH 1-2 test 0.06[0.93] 0.04[0.95] 0.10[0.90] 0.35[0.70] 0.35[0.70] 

ARCH 1-5 test 0.27[0.92] 0.30[0.91] 0.33[0.89] 0.35[0.87] 0.31[0.90] 

ARCH1-10 test 1.35[0.19] 1.34[0.20] 1.45[0.15] 1.82[0.05] 1.76[0.06] 

Note:   - no convergence  
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Table 5-3 Results for the Marginal Distributions 

Parameters Shenzhen Regional  National 

Cst(M) 49.46
***

(1.18) 50.79
***

 (1.20) 52.96
***

(1.37) 

d2(M) -11.72
***

(1.35) -11.55
***

(1.36) -11.58
***

(1.69) 

d3(M) 2.028(1.69) 1.72(1.70) 7.97
***

(2.10) 

d4(M) 10.61
***

(1.61) 10.10
***

(1.67) 11.60
***

(2.07) 

AR(1) 0.73
***

(0.01) 0.75
***

(0.01) 0.69
***

(0.01) 

Cst(V) 57.51
***

(9.07) 48.51
***

(7.94) 5.35
***

(0.08) 

d2(V) -30.38
***

(6.23) -26.08
***

(5.37) -0.48
***

(0.11) 

d3(V) -6.77(5.53) -6.86(4.63) -0.02(0.10) 

d4(V) 8.92(6.25) 7.79(5.31) 0.48
***

(0.09) 

ARCH(Alpha1) 0.43
***

(0.06) 0.42
***

(0.06) 0.13(0.19) 

GARCH(Beta1) 0.27
***

(0.09) 0.30
***

 (0.09) 0.56
***

 (0.14) 

GJR(Gamma) 
 

-0.40
***

(0.06) -0.39
***

 (0.06) 

EGARCH(Gamma) 0.40
***

 (0.03) 
 

 

Notes: Standard errors for the estimators are included in parentheses.  ***indicate significant at the 1% 

level. 
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Table 5-4 Copula Estimation Results 

 Shenzhen-Regional Shenzhen-National 

Time-varying normal copula 

Constant 0.0244 (0.16054) 0.0205 (0.23302) 

α 0.2681 (0.00208) 0.2638 (0.04716) 

β 1.9531 (0.20404) 1.9756 (0.31045) 

LL 

AIC 

BIC 

-595.0485 

1220.63 

1273.20 

-624.5461 

1281.1339 

1338.3642 

Time-varying SJC copula 

Constant
U
 1.2044 (0.00368) 1.1301 (0.00043) 

α
U
 -11.1693 (0.00254) -11.2216 (0.00103) 

β
U
 0.3192 (0.00016) 0.4682 (0.00019) 

Constant
L
 -1.6446 (0.00013) -1.7493 (0.17075) 

α
L
 -1.4649 (0.00007) -1.0727 (0.21451) 

β
L
 3.7598 (0.00012) 3.8549 (0.00031) 

LL 

AIC 

BIC 

-657.3164 

1348.3557 

1408.6636 

-697.9039 

1431.613 

1495.6345 

Note: AIC: Akaike Information Criteria; BIC: Bayesian Information Criteria; LL-copula 

log-likelihood.Standard error are in parenthesis. 

  



143 

 

Figure 5-1 Dynamic Correlation Estimated from DCC-GARCH Model. 

 

Figure 5-2 Dynamic Correlation Estimated from DCC-GARCH Model. 

Note: Red line displays the implied time paths of the conditional dependence between Shenzhen API and 

national API, blue line between Shenzhen API and regional API. 

 

Figure 5-3 Conditional Dependence Implied by Time Varying Normal Copula. 

Note: Red line displays the implied time paths of the conditional dependence between Shenzhen and regional, 

blue line between Shenzhen and national. 

Conditional dependence in lower tail implied by time varying SJC copula 
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Conditional dependence in upper tail implied by time varying SJC copula 

 

Figure 5-4 Conditional Dependence Implied by Time Varying SJC Copula 

Note: Red lines represents the dependence between Shenzhen and regional APIs, while blue lines display 

dependence between Shenzhen and national APIs. 
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Conditional dependence between Shenzhen and regional API 

 

Conditional dependence between Shenzhen and national API 

 

Figure 5-5 Conditional Dependence Estimate from the Copula Models 

Note: Blue lines display the time paths of conditional dependence estimated from time varying normal copula.  

Red lines and blue lines display the lower tail and upper tail dependence implied by time varying SJC copula 

model respectively. 
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