
 
 

 

Chapter 3 

 

Sales forecast with limited observations 
 

 

3.1 Introduction 

  

 Sales forecast of innovative agro-industrial product with limited information is 

a challenge for both scholars and practitioners. Traditional econometrics usually uses 

more than 30 observations to construct a time trend. However, practitioners cannot 

wait for 30 months to have the complete information for such a forecast. In this 

chapter, we propose a method to use limited information from only 3 observations of 

the sales values for the forecasting. The forecasts are adjusted according to the 

product life cycle theory, which suggests an S-shape evolution of sales over time that 

can be modeled using the logistic function, as suggested by Stoneman (2010). The 

results of the study will enhance practitioners in agro-industry to accurately forecast 

the sales of their new products. 

 

3.2 Conceptual  framework and literature review 

  

 This section will present the product life cycle theory. It will then describe the 

sales forecasting following the theory and explain the Bass model and the intuition 

behind it. Finally, the Logistic function will be introduced. 

 

 3.2.1 Product Life Cycle Theory 

 

 Raymond Vernon developed the product life cycle theory in the 1960s. This 

theory is used to compare and analyze various stages of products and industries. The 

introduction stage is the beginning of the sales of a product in the market. The product 

is not known well to consumers. The product needs to be introduced into the market 

through various channels such as advertising, etc. This process has high costs and low 

sales causing slow growth. In the growth stage, total sales rise significantly. The 

overall business grows rapidly. However, in this stage, it begins to face with new 

competition. In the maturity stage, the product captures enough market shares and 

gets stable in the market. Competitors will continue to enter the market. Firms should 
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focus on reducing costs of production and marketing. Competitors are likely to 

implement marketing strategies to increase their sales. The firms should look for 

opportunities to develop new products and services to the market. The decline stage is 

the final stage in the life cycle of product. At this stage, the sales and profits decline 

until the business is no longer profitable. Firms that may consider shutting down the 

business should find an innovative way of presenting a new product to beat out the 

competition. The product life cycle is shown in Figure 3.1 

 

 

  
 
                               
 
 
 
 
 
        Introduction     Growth      Maturity    Decline 
 
                  Figure 3.1: Stages of product life cycle 

           Source : Raymond Vernon (1960) 

 

 

 3.2.2  Sales forecasting  

 

 Meade and Islam (2006) mentioned that modeling and forecasting are very 

important in research about innovation diffusion. They reviewed the development of 

models since 1970 and the improvement of models in terms of accuracy in predicting 

or understanding the forecasting problem. They suggested that future forecasting of 

new product diffusion should be challenged by limited data. 

 Moreover, in forecasting, there are several functional forms or models to use. 

The Bass model introduced by Bass (1969) is the most famous one. However, the 

modern literature such as Stoneman (2010) suggests that the Logistic function may be 
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an alternative functional form for the forecasts. In this chapter, we will attempt to find 

out which functional form is better for forecasting sales of feta cheese from buffalo 

milk. 

 

 3.2.3 Bass model 

 

    Bass (1969) and Srinivasan and Mason (1986) introduced a functional form to 

forecast sales of new products as follows:  

             

                                        
             ) ))
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                                      (3.1) 

    

 where   VT =  Sales of innovative agro-industrial product; 

                        M  =  Maximum sales of innovative agro-industrial product;  

                 p     =  Coefficient of innovation; 

   q  =  Coefficient of imitation; 

    T  =  Time. 

 

To interpret the coefficient of innovation, p, and the coefficient of imitation, q, 

Meade and Islam (2006) explained that individuals are driven by the need to introduce 

new things in their daily life and imitate other people in the society. The diffusion of a 

new product at time t is determined by p+qF(t), where F(t) is the proportion of 

adopters at time t. There is no pure innovation or imitation, therefore both p and q are 

positive. The combination of p and q controls the scale of sales whereas the ratio q 

over p controls the shape of the growth. It should be noted that the ratio q over p must 

be greater than 1 to ensure that the sales present as S-curve. Higher value of the ratio 

correspond to faster growth of the sales. 

 Meade and Islam (2006) also point out some interesting aspects of the ratio q 

over p as follows: 

1) The ratio is positively correlated with collectivism, as people in collectivist 

societies tend to imitate one another easier than do people in more individualistic 

societies. 
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2) The ratio is positively correlated with the hierarchical nature of the culture, as 

people in the same class tend to use the product at the same time. 

3)  The ratio is also positively correlated with the domination of male in the society. 

The reason is unclear, but it may be linked to the discipline of the society, which 

encourages people to use the same products in a uniform manner. 

 

 Rogers (2003) explained the dynamism of the diffusion of a new product into 

two processes. First, people use the new product because of mass media. Second, they 

adopt the product by interpersonal communication. He interpreted the coefficient of 

innovation, p, as an indicator of the first process and the coefficient of imitation, q, as 

an indicator of the second process. This interpretation is somehow different from that 

of Meade and Islam (2006), as Rogers linksthe coefficient of innovation to a channel 

of adoption and not merely to the need to innovate. 

 In the diffusion process, Rogers (2003) believed that the effect of interpersonal 

communication is greater than that of the media. In the following figure, the adoption 

of the new product due to interpersonal communication starts at a higher point. 

Moreover, it rises overtime until it reaches its peak and then drops due to the decline 

of popularity of the product. However, the adoption which is influenced by mass 

media decreases over time after the product fades out of the media.  

 

Figure  3.2: Influence of mass media and interpersonal communication on the 

adoption of a new product 
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The total effects of both sources are presented in Figure 3.3. The total sales 

reach a peak when the effect from interpersonal communication rises and the effect 

from mass media still persists.  

 

 

Figure 3.3: Total effects of mass media and interpersonal communication  

      on the adoption of a new product 

 

  Overall sales will grow fast at the beginning and then slower overtime until they 

reach the maximum values at the end. It should be noticed that the growth curve may 

not present a clear S-curve (Figure 3.4). 

 

 

         Figure 3.4: Overall sales of a new product over time 
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 3.2.4 Logistic function  

 For real numbers a, b, and c, the function 

 

                                                                                       
 

is a logistic function. If  a>0, a logistic function increases when b>0 and decreases 

when b< 0. The coefficient  is called the limiting value or the upper limit of the 

function because the graph of a logistic function will have a horizontal asymptote at 

 y = c. 

 

              

 

 

 

 

 

 

 

 

 

    

 Figure 3.5: S-shaped of the logistic function 

 

 

The S-shape in the graph of a Logistic function shows that the initial 

exponential growth is followed by a period in which growth slows and then levels off. 

The graph approaches but never reaches the maximum upper limit.  

Stoneman (2010)  suggested to use the logistic function for forecasting sales of new 

products as follows:  
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            )
                                        (3.2)     

       where      VT  =  Sales of innovative agro-industrial product; 

            M  =  Maximum sales of innovative agro-industrial product; 

               =  Growth parameter; 

           A  =  Shift parameter; 

            T =  Time. 

 

3.3 Methodology 

 

 The estimation of  parameters in the Logistic function can be performed in the 

four following ways: 

 

Method 1:  Least squares using quadratic interpolation algorithm 

  

 The parameter estimation includes the following steps. 

 

 Step 1:  Set three initial values of parameter M. Transform the data by the 

Logistic transformation into a linear function.  

 

             (
    

      
)    (

 

 
)                                (3.3)

                         

Then, estimate parameter   using Ordinary Least Squares (OLS) 

 Step 2:  Take parameter M and   to forecast sales by this formula. 

 

   
 

            )
 

 The value of A is calculated by the following formula to fix the y-intercept at 

the first data of the series (Vo): 

 

        
 

  
                     (3.4) 

 Step 3:  Calculate the Sum Squared Error  (SSE). 

    ∑   ∑ (     ̂ )
 
                                               (3.5) 
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 Step 4:  Calculate the SSE at the three points using the three initial M values. 

 Step 5:  Search for a new M value by Quadratic Interpolation   

Step 6:  Include the new M with other two previous M values which are 

located nearest to the new M. Then, estimate parameter   and 

calculate the SSE again. 

 Step 7:  Repeat steps 5 and 6 for 10,000 iterations. 

 Step 8:  Summarize the values of parameter M and  . 

 

It should be remarked that the estimation of   using OLS with logistic 

transformation may suffer from the heteroscedasticity problem (Judge et al, 1986). 

This study will address this problem using the Estimated Generalized Least Squares 

(EGLS  which was also suggested by Judge et al (1986). 

 

Method 2:  Least squares using Quasi-Newton algorithm 

 The parameter estimation includes the following steps. 

 Step 1:  Repeat steps 1 to 4 of method 1 (Least squares using quadratic  

  interpolation algorithm). This will yield the values of M,   and SSE. 

  Each  parameter will contain three values. 

Step 2:  Calculate the slope between the values of M,   and SSE. Two slopes 

will be available for each parameter. 

Step 3:  Set the initial value of H (Ho) to the identity matrix with size of 2 2. 

Step 4:  Calculate a new H using the following formula: 

 

                                                                 
   

   
 

       

     
                                              (3.6) 

 where    v  =  Difference of the parameter; 

               u  =  Difference of the slope of the parameter. 
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Step 5:  Calculate the increment of the parameter as follows: 

                                                                        (3.7) 

    where  d  =  The increment of the parameter; 

    g  =  Initial slope of the parameter. 

 Step 6:  Calculate a new parameter by adding the increment to the previous 

  parameter. 

Step 7:  Create two nearby values for parameter M. Repeat the process for 

parameter  .  

 Step 8:  Calculate the SSE from the new parameter M and  . 

 Step 9:  Repeat steps 4 to 8 for 10,000 iterations. 

 Step10: Summarize the values of parameter M and  . 

 

 

Method 3:  Maximum likelihood using quadratic interpolation algorithm 

 

 This method is similar to the least squares method using quadratic 

interpolation, except that. the objective function is now the likelihood function 

defined as follows: 
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       where       | ) =   Probability of occurrence of a sales value at a  time; 

                                 =   Variance; 

     VT  =   Sales value; 

      FT  =   Forecasted sales value. 
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It should be noted that, in this study, the normal distribution is assumed for the 

likelihood function. This is because when the new product is launched to the market, 

researchers have only limited information on its sales. No one really knows the true 

distribution of the sales at time T. However, for the calculation of the likelihood 

function, a distribution has to be assumed. The normal distribution is a simple model 

with a symmetry property. So, readers of this thesis should keep in mind that the 

predictions are based on the normality assumption. Moreover, the study has to assume 

that the variance     )  is constant over time. This is due to the limited information on 

the sales of the innovative product too. 

 

Method 4:  Maximum likelihood using the Quasi-Newton Algorithm 

 This method is quite similar to method 3 (Maximum likelihood using 

quadratic interpolation algorithm). The objective function is the same, but the Quasi-

Newton algorithm is used in place of the quadratic interpolation algorithm. 

It should be noted that all the observations included in the study are 

deseasonalized data.  This is to avoid the fluctuation of the seasonal effect of the 

sales. Moreover, it makes the smoothing of the model easier. In practice, after the 

forecasts are obtained, practitioners can add the seasonal effect to the forecasted 

volume to adjust for the sales in different seasons. 

 It also should be remarked that the study will use the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion ( BIC ) to measure goodness 

of fit of the models. The in-sample data will be used for the calculation. Both criteria 

will be used in order to evaluate the consistency between them; this will allow usto 

double-check whether the results are consistent. However, to assess the accuracy of 

the prediction, we will use the Mean Absolute Percentage Error ( MAPE ). This 

indicator is more convenient to let analysts see which  percentage of the forecasts 

miss the targets. It will be based on the out-sample data for the calculation. 
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3.4  Analysis 

 The study will conduct 6 major analyses as follows: 

Analysis 1:  Comparison between OLS and EGLS 

        This analysis will compare OLS and EGLS to estimate parameter   of the 

Logistic function after transformation into a linear model. The initiative is from the 

suggestion of Judge et al (1986) that OLS estimation may suffer from 

heteroscedasticity in the estimation of the logistic transformed  function while EGLS 

may reduce this problem. 

Analysis 2:  Comparison between fixed and floating y-intercept 

         In the estimation of the model, it may be better to fix the y-intercept to be 

the first observation to improve the accuracy of the forecast. This analysis will 

compare the fixed y-intercept method with the traditional floating y-intercept in terms 

of out-of-sample MAPE. 

Analysis 3:  Sufficient observations for the sales forecast 

        This analysis will estimate the logistic function using different numbers of 

observations. It will then compare the Mean Absolute Percentage Error (MAPE) from 

the out-of-sample test to find the best model that uses the smallest number of 

observations. It will determine how many observations are needed to make the sales 

forecast accurate. 

Analysis 4:  Comparison between functional forms: Bass Model vs Logistic function 

        This analysis will compare two different functional forms: the classical 

Bass model and the Logistic function. It will use MAPE as a measure of accuracy. 

The t-test will be used to compare the average MAPE between models. MAPE will be 

estimated from the out-of-sample tests when the number of observations is varied for 

each model. 

Analysis 5: Comparison between global and local forecasts: Cumulative observations 

         vs. Rolling windows 

            This analysis will estimate the models by adding a number of observations to 

the previous set of observations, which is called the process of cumulative 

observations. This process includes the cumulative knowledge from the past. As an 

alternative approach, we will also estimate the model by using the rolling windows 
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method, which deletes the oldest data after adding the newest ones. The analysis will 

compare both approaches in terms of MAPE. 

Analysis 6: Comparison between estimation algorithms: Quasi-Newton, Gauss-

Newton and Newton-Raphson  

            This analysis will compare estimation algorithms, namely, Quasi-Newton 

versus Gauss-Newton and Quasi-Newton versus Newton-Raphson. Gauss-Newton is 

well-known for its use in the non-linear least squares and Newton-Raphson is also 

widely used to find the maximum likelihood. However, Quasi-Newton can be used in 

place of both least squares and maximum likelihood. Therefore, it is interesting to 

compare these approaches in terms of forecasting accuracy. 

It should be noted that this study focuses on only one product, the feta cheese 

from buffalo milk. It does not include other competitive products, i.e., feta cheese of 

other brands or other kinds of cheese. Therefore, it is a univariate analysis.  It would 

be interesting to include competitors to make the study cover multivariate analysis. 

However, this is beyond the scope of this study and it is left for further research. 

Moreover, it should also be noted that all parameters in the model are assumed 

to be constant over time, i.e., time-invariant. 

 

3.5 Data  

 

The data are obtained from the Royal Project Foundation. They are monthly 

sales of feta cheese. The data cover the period during January 2010 to August 2012. 

Totally, the model has 32 observations.  

. 

3.6 Results 

 

The results will be presented in six parts. First, the results from the 

comparison between OLS and EGLS will be reported. Second, the study will display 

the output of the comparison between the methods of fixed and floating y-intercept. 

Next, it will illustrate the results of the comparison between the Bass and Logistic 

models. Forth, the minimum number of observations needed for the accurate 

prediction of sales will be estimated. Fifth, we will figure out whether the method of 

rolling windows or cumulative observations provides a better forecast. Finally, the 
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performances of the Quasi-Newton, Gauss-Newton and Newton-Raphson algorithms 

will be compared. 

 

Analysis 1 : Comparison between OLS and EGLS  

 This section will show the results of the comparison between OLS and EGLS. 

Table 3.1 displays the results from the estimation of the Logistic function using OLS 

and quadratic interpolation. For comparison, the results presented in Table 5.2 use the 

EGLS estimation method.  All calculations have been performed using Matlab. 

  The related indicators which appear in the tables are as follows: 

 Mstar    =  Peak sales estimate;  

 Beta      =  Growth  parameter; 

 SSE      =  Sum Squared Error computed with in-sample observations; 

            MAPE  =  Mean Absolute Percentage Error measured by the out-of-sample 

        test; 

 AIC      =   Akaike Information Criterion; 

 BIC      =   Bayesian Information Criterion. 

 

 It should be noted that the number of observations begins at 3 to ensure that 

the estimated curve is non-linear. The total number of observations is 32.  The last 

row of the table does not present the MAPE because there is no observation left 

outside the model. 
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Table 3.1:  Estimation results for the Logistic function using OLS and quadratic 

interpolation 

 

No. of obs Mstar Beta SSE (Million) MAPE AIC BIC 

3 1,801,249 0.2028 828 46.77 20.10 19.80 

4 1,479,900 0.1343 965 46.49 19.80 19.65 

5 1,481,169 0.1248 987 48.10 19.50 19.42 

6 1,803,815 0.0980 1,110 49.09 19.37 19.33 

7 1,154,894 0.0420 2,057 43.42 19.78 19.78 

8 1,154,819 0.0477 2,013 45.38 19.59 19.60 

9 1,170,708 0.0657 2,130 47.97 19.50 19.53 

10 1,154,446 0.0486 2,501 45.96 19.54 19.57 

11 1,152,311 0.0414 2,732 45.29 19.51 19.55 

12 1,152,992 0.0432 2,703 47.69 19.40 19.44 

13 1,151,351 0.0365 2,988 46.62 19.41 19.45 

14 1,147,465 0.0492 5,261 49.36 19.89 19.93 

15 1,156,423 0.0527 6,002 50.58 19.94 19.99 

16 1,156,741 0.0520 6,247 51.80 19.91 19.96 

17 1,153,404 0.0503 6,400 53.22 19.86 19.91 

18 1,471,196 0.0431 6,379 53.38 19.80 19.85 

19 1,474,993 0.0468 8,795 54.26 20.06 20.11 

20 1,159,226 0.0496 11,191 54.90 20.24 20.29 

21 1,481,511 0.0480 11,634 55.94 20.23 20.28 

22 1,173,916 0.0501 14,895 56.08 20.42 20.47 

23 1,253,215 0.0507 17,641 55.86 20.54 20.59 

24 1,188,729 0.0502 19,173 56.12 20.58 20.63 

25 1,100,433 0.0523 27,163 54.44 20.89 20.94 

26 1,805,585 0.0484 26,768 57.26 20.83 20.88 

27 1,807,158 0.0477 28,475 57.46 20.85 20.90 

28 1,814,071 0.0475 31,563 56.29 20.91 20.96 

29 2,227,125 0.0468 34,114 54.64 20.95 21.00 

30 1,837,872 0.0474 40,498 47.21 21.09 21.14 

31 3,407,578 0.0455 41,516 39.35 21.08 21.13 

32 4,157,133 0.0434 41,343 - 21.04 21.09 

 

 Tables 3.1 and 3.2 show the estimated parameters Mstar and Beta as well as 

the related SSE, MAPE, AIC and BIC criteria when estimating the Logistic function 

using, respectively,  the OLS and EGLS methods with quadratic interpolation. 
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Table 3.2: Estimation results for the Logistic Model using EGLS and quadratic 

interpolation 

 

No. of obs Mstar beta SSE (Million) MAPE AIC BIC 

3 - - - - - - 

4 - - - - - - 

5 - - - - - - 

6 - - - - - - 

7 - - - - - - 

8 - - - - - - 

9 972,781 - - - - - 

10 750,814 - - - - - 

11 - - - - - - 

12 425,039 - - - - - 

13 998,975 - - - - - 

14 700,842 - - - - - 

15 260,452 0.0384 5,423 48.67 19.84 19.89 

16 299,801 - - - - - 

17 558,969 0.1215 7,733 59.29 20.05 20.10 

18 253,201 0.1329 7,795 63.92 20.00 20.05 

19 480,827 0.0535 8,888 56.31 20.07 20.12 

20 395,604 0.0581 11,551 57.22 20.27 20.32 

21 344,415 0.0607 12,325 59.14 20.29 20.34 

22 508,918 0.0599 15,663 58.37 20.47 20.52 

23 987,656 0.0578 18,347 57.43 20.58 20.63 

24 524,175 0.0538 19,619 57.18 20.61 20.65 

25 942,445 0.0504 26,892 54.03 20.88 20.92 

26 412,361 0.0325 23,772 50.88 20.71 20.76 

27 384,275 0.0518 29,439 58.89 20.88 20.93 

28 876,712 0.0470 31,554 56.34 20.91 20.96 

29 130,547 0.0890 41,955 61.92 21.16 21.21 

30 1,116,843 0.0564 42,685 49.69 21.14 21.19 

31 804,151 0.0529 43,634 42.06 21.13 21.18 

32 404,811 0.0486 43,377 - 21.09 21.14 

  

 It should be noted that the EGLS method does not work well and does not 

yield reliable estimation results with less than 17 observations. This is possibly caused 

by ratios V/M and 1-V/M that are too different. The ratio V/M with less than 17 

observations may be very small and the ratio 1-V/M, therefore, is too large. This large 

difference may make the odd-ratio close to zero, causing log-odds to approach minus 

infinity. 
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 For accuracy, the comparison should use the same number of observations, so 

that both methods produce proper results. To this end, observations 1-14 as well as 

observation 17 were deleted in both OLS and EGLS results. 

Table 3.3: Data for the comparison between OLS and EGLS 

Number of 

observations 

OLS 

Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

15 1,156,423 0.0527 6,002 50.58 19.94 19.99 

18 1,471,196 0.0431 6,379 53.38 19.80 19.85 

19 1,474,993 0.0468 8,795 54.26 20.06 20.11 

20 1,159,226 0.0496 11,191 54.90 20.24 20.29 

21 1,481,511 0.0480 11,634 55.94 20.23 20.28 

22 1,173,916 0.0501 14,895 56.08 20.42 20.47 

23 1,253,215 0.0507 17,641 55.86 20.54 20.59 

24 1,188,729 0.0502 19,173 56.12 20.58 20.63 

25 1,100,433 0.0523 27,163 54.44 20.89 20.94 

26 1,805,585 0.0484 26,768 57.26 20.83 20.88 

27 1,807,158 0.0477 28,475 57.46 20.85 20.90 

28 1,814,071 0.0475 31,563 56.29 20.91 20.96 

29 2,227,125 0.0468 34,114 54.64 20.95 21.00 

30 1,837,872 0.0474 40,498 47.21 21.09 21.14 

31 3,407,578 0.0455 41,516 39.35 21.08 21.13 

32 4,157,133 0.0434 41,343 - 21.04 21.09 

 

Number of 

observations 

EGLS 

Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

15 260,452 0.0384 5,423 48.67 19.84 19.89 

18 253,201 0.1329 7,795 63.92 20.00 20.05 

19 480,827 0.0535 8,888 56.31 20.07 20.12 

20 395,604 0.0581 11,551 57.22 20.27 20.32 

21 344,415 0.0607 12,325 59.14 20.29 20.34 

22 508,918 0.0599 15,663 58.37 20.47 20.52 

23 987,656 0.0578 18,347 57.43 20.58 20.63 

24 524,175 0.0538 19,619 57.18 20.61 20.65 

25 942,445 0.0504 26,892 54.03 20.88 20.92 

26 412,361 0.0325 23,772 50.88 20.71 20.76 

27 384,275 0.0518 29,439 58.89 20.88 20.93 

28 876,712 0.0470 31,554 56.34 20.91 20.96 

29 130,547 0.0890 41,955 61.92 21.16 21.21 

30 1,116,843 0.0564 42,685 49.69 21.14 21.19 

31 804,151 0.0529 43,634 42.06 21.13 21.18 

32 404,811 0.0486 43,377 - 21.09 21.14 
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Table 3.4: Descriptive statistics of MAPE, AIC and BIC from OLS and EGLS 

 

  Mean N Std. Deviation Std. Error 

Mean 

Pair 1 OLSMAPE 53.5847 15 4.75 1.23 

 EGLSMAPE 55.4700 15 5.61 1.45 

Pair 2 OLSAIC 20.5906 16 .428 .10706 

 EGLSAIC 20.6269 16 .434 .10841 

Pair 3 OLSBIC 20.6406 16 .428 .10706 

 EGLABIC 20.6756 16 .433 .10832 

Source: Calculation using SPSS version 11.0. 

 

 Table 3.4 shows that MAPE of OLS is smaller than that of EGLS. It also 

shows that AIC and BIC of OLS are slightly smaller than those of EGLS. 

 

Table 3.5: Comparison of MAPE, AIC and BIC between OLS and EGLS using the 

 t-test 

 

Source: Calculation using SPSS version 11.0. 

 

 Table 3.5 reveals that OLS is better than EGLS as it yields a smaller MAPE. 

This result is statistically significant at the confidence level of 90%. However, OLS 

and EGLS do not produce significantly different AIC and BIC. 

 It should be noted that the t-test is valid in this case because of the normality 

assumption that was made earlier. Therefore, with this assumed normal distribution, 

the use of the t-test is acceptable. 

 

 

 

 

  

Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
OLSMAPE  

EGLSMAPE 
-1.885 3.775 .975 -3.976 .205 -1.93 14 .074 

Pair 2 
OLSAIC  

EGLSAIC 
-.036 .084 .021 -.081 .009 -1.73 15 .104 

Pair 3 
OLSBIC  

EGLABIC 
-.035 .084 .021 -.080 .010 -1.66 15 .118 
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Analysis 2: Comparison between fixed and floating y-intercept  

 In this analysis, the study will compare the performance of the Logistic 

function using fixed and floating y-intercept. The main estimation method is OLS 

with quadratic interpolation. The results are shown in Tables 3.6 to 3.9. 

 

Table 3.6: Estimation results for the Logistic function using OLS and quadratic 

interpolation  and  fixed y-intercept 

No. of 

Obs 
Mstar beta 

SSE 

(Million) 
MAPE AIC BIC 

3 1,801,249 0.2028 828 46.77 20.10 19.80 

4 1,479,900 0.1343 965 46.49 19.80 19.65 

5 1,481,169 0.1248 987 48.10 19.50 19.42 

6 1,803,815 0.0980 1,110 49.09 19.37 19.33 

7 1,154,894 0.0420 2,057 43.42 19.78 19.78 

8 1,154,819 0.0477 2,013 45.38 19.59 19.60 

9 1,170,708 0.0657 2,130 47.97 19.50 19.53 

10 1,154,446 0.0486 2,501 45.96 19.54 19.57 

11 1,152,311 0.0414 2,732 45.29 19.51 19.55 

12 1,152,992 0.0432 2,703 47.69 19.40 19.44 

13 1,151,351 0.0365 2,988 46.62 19.41 19.45 

14 1,147,465 0.0492 5,261 49.36 19.89 19.93 

15 1,156,423 0.0527 6,002 50.58 19.94 19.99 

16 1,156,741 0.0520 6,247 51.80 19.91 19.96 

17 1,153,404 0.0503 6,400 53.22 19.86 19.91 

18 1,471,196 0.0431 6,379 53.38 19.80 19.85 

19 1,474,993 0.0468 8,795 54.26 20.06 20.11 

20 1,159,226 0.0496 11,191 54.90 20.24 20.29 

21 1,481,511 0.0480 11,634 55.94 20.23 20.28 

22 1,173,916 0.0501 14,895 56.08 20.42 20.47 

23 1,253,215 0.0507 17,641 55.86 20.54 20.59 

24 1,188,729 0.0502 19,173 56.12 20.58 20.63 

25 1,100,433 0.0523 27,163 54.44 20.89 20.94 

26 1,805,585 0.0484 26,768 57.26 20.83 20.88 

27 1,807,158 0.0477 28,475 57.46 20.85 20.90 

28 1,814,071 0.0475 31,563 56.29 20.91 20.96 

29 2,227,125 0.0468 34,114 54.64 20.95 21.00 

30 1,837,872 0.0474 40,498 47.21 21.09 21.14 

31 3,407,578 0.0455 41,516 39.35 21.08 21.13 

32 4,157,133 0.0434 41,343 - 21.04 21.09 
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Table 3.7:  Estimation results for the Logistic function using OLS and quadratic 

interpolation and floating y-intercept 

No. of 

Obs 
Mstar beta 

SSE 

(Billion) 
MAPE AIC BIC 

3 14,206,418 0.1533 128,742 4,090.07 32.06 31.76 

4 17,506,575 0.0768 271,120 8,567.81 32.35 32.19 

5 17,474,348 0.0810 321,718 7,912.65 32.20 32.12 

6 17,467,623 0.0521 398,455 10,010.27 32.16 32.13 

7 17,498,133 -0.0273 577,603 18,651.75 32.33 32.32 

8 17,487,017 -0.0028 613,993 15,285.95 32.22 32.23 

9 14,146,111 0.0366 384,687 8,245.69 31.61 31.63 

10 17,448,404 0.0129 713,254 12,454.42 32.10 32.13 

11 17,445,629 0.0063 805,493 12,746.84 32.11 32.14 

12 17,430,938 0.0147 834,249 11,324.17 32.04 32.08 

13 17,432,294 0.0070 940,762 11,624.54 32.07 32.11 

14 14,088,671 0.0325 554,070 6,779.44 31.45 31.50 

15 14,047,217 0.0405 547,368 5,924.48 31.36 31.41 

16 14,026,344 0.0405 569,575 5,721.50 31.33 31.38 

17 14,012,036 0.0387 600,164 5,652.03 31.31 31.36 

18 14,021,505 0.0275 688,650 5,993.83 31.39 31.44 

19 13,977,607 0.0356 659,804 5,198.35 31.28 31.33 

20 13,932,661 0.0406 643,819 4,696.98 31.20 31.25 

21 13,917,851 0.0392 670,183 4,601.10 31.19 31.24 

22 13,871,753 0.0429 656,660 4,270.34 31.12 31.17 

23 13,833,293 0.0446 654,673 4,097.41 31.07 31.12 

24 13,811,502 0.0439 670,643 4,062.48 31.04 31.09 

25 13,741,956 0.0476 646,863 3,892.09 30.96 31.01 

26 13,752,916 0.0423 702,751 3,928.40 31.00 31.05 

27 13,734,692 0.0413 721,721 3,927.28 30.99 31.04 

28 13,707,001 0.0413 729,553 3,979.00 30.96 31.01 

29 13,685,166 0.0407 743,460 4,114.18 30.94 30.99 

30 13,642,973 0.0417 737,834 4,657.77 30.90 30.95 

31 13,636,511 0.0397 769,074 5,512.14 30.91 30.95 

32 13,642,970 0.0361 822,552 0.00 30.94 30.99 

 

 In Table 3.8 it is clear that the MAPE of the model with fixed y-intercept is 

much lower than that of the floating one.  Moreover, the AIC and BIC of the model 

with fixed y-intercept are also lower. 

 These differences of the means between both models are statistically 

significant. In Table 3.9 the t-tests show that the means are significantly different at 

the 99% confidence level. Therefore, the model with fixed y-intercept can be 

considered better than the floating y-intercept.  
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Table 3.8: Descriptive statistics of MAPE, AIC and BIC from the estimation methods 

with fixed and floating y-intercept 

  Mean N Std. Deviation Std. Error Mean 

Pair 1 FIXMAPE 50.722 29 4.850 .901 

 FLOATMAP 7169.757 29 3905.065 725.152 

Pair 2 FIXAIC 20.154 30 .587 .107 

 FLOATAIC 31.486 30 .520 .095 

Pair 3 FIXBIC 20.172 30 .611 .112 

 FLOATBIC 31.504 30 .481 .088 

Source: Calculation using SPSS version 11.0. 

 

Table 3.9: Comparison of MAPE, AIC and BIC for the estimation methods with 

fixed and floating y-intercept 

Source: Calculation using SPSS version 11.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
FIXMAPE  

FLOATMAP 
-7119.036 3908.36 725.765 -8605.698 -5632.373 -9.81 28 .000 

Pair 2 
FIXAIC  

FLOATAIC 
-11.333 1.06 .194 -11.731 -10.935 -58.27 29 .000 

Pair 3 
FIXBIC  

FLOATBIC 
-11.332 1.06 .194 -11.729 -10.934 -58.28 29 .000 
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Analysis 3: Sufficient number of observation 

1)  Sales forecasts with least squares using quadratic interpolation algorithm 

 

 When using the least squares method with quadratic interpolation algorithm to 

estimate parameter M*, the MAPE drops sharply when 7 observations are present in 

the model. After that it gradually rises after the 27
th

 observation. 

 

Table 3.10: Least squares with quadratic interpolation and fixed intercept At Vo 

 

N M* Beta Out-sample test (MAPE) 

3 1.80E+06 0.2028 936.1434 

4 1.48E+06 0.1343 371.2554 

5 1.48E+06 0.1248 321.8111 

6 1.80E+06 9.80E-02 185.2782 

7 1.15E+06 0.042 26.9965 

8 1.15E+06 0.0477 3.02E+01 

9 1.17E+06 0.0657 60.8896 

10 1.15E+06 0.0486 30.1602 

11 1.15E+06 0.0414 27.0777 

12 1.15E+06 0.0432 28.0434 

13 1.15E+06 0.0365 2.98E+01 

14 1.15E+06 4.92E-02 30.4141 

15 1.16E+06 0.0527 36.0846 

16 1.16E+06 0.052 36.7475 

17 1.15E+06 0.0503 35.8103 

18 1.47E+06 0.0431 25.4413 

19 1.48E+06 0.0468 27.5098 

20 1.16E+06 0.0496 31.3205 

21 1.48E+06 0.048 30.9512 

22 1.17E+06 0.0501 34.8615 

23 1.25E+06 0.0507 39.3213 

24 1.19E+06 0.0502 41.5403 

25 1.10E+06 0.0523 48.9638 

26 1.81E+06 0.0484 34.4178 

27 1.81E+06 0.0477 35.6350 

28 1.81E+06 0.0475 42.9912 

29 2.23E+06 0.0468 51.6853 

30 1.84E+06 0.0474 74.1752 

31 3.41E+06 0.0455 95.4737 

32 4.16E+06 0.0434  

Source: Own calculation 
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2)  Sales forecasts with least squares using quasi-Newton algorithm 

 

 When using the least squares method with Quasi-Newton algorithm to 

estimate parameter M*, we observe the same effect as previously, i.e., the MAPE 

drops sharply from 7 observations and then gradually rises after the 24
th

 observation. 

 

Table 3.11:  Least squares with Quasi-Newton and fixed intercept at Vo   

 

N M* Beta SSE Out-sample test (MAPE) 

3 1.77E+06 0.2006 3.14E+12 9.09E+02 

4 1.77E+06 0.1325 3.14E+12 3.81E+02 

5 1.78E+06 0.1227 3.16E+12 3.25E+02 

6 1.77E+06 0.0968 3.16E+12 1.79E+02 

7 1.78E+06 0.0408 3.17E+12 2.71E+01 

8 1.78E+06 0.0464 3.17E+12 2.98E+01 

9 1.82E+06 0.0637 3.31E+12 59.2146 

10 1.78E+06 0.0473 3.18E+12 2.97E+01 

11 1.77E+06 0.0403 3.15E+12 27.2792 

12 1.77E+06 0.0421 3.16E+12 2.80E+01 

13 1.77E+06 0.0357 3.14E+12 2.99E+01 

14 1.76E+06 0.048 3.13E+12 2.99E+01 

15 1.79E+06 0.051 3.20E+12 3.47E+01 

16 1.79E+06 0.0503 3.20E+12 35.6878 

17 1.78E+06 0.0489 3.18E+12 3.50E+01 

18 1.75E+06 0.0429 3.13E+12 2.55E+01 

19 1.77E+06 0.046 3.15E+12 2.68E+01 

20 1.79E+06 0.0479 3.22E+12 3.00E+01 

21 1.78E+06 0.0469 3.19E+12 2.98E+01 

22 1.82E+06 0.0483 3.31E+12 33.0224 

23 1.90E+06 0.0486 3.63E+12 36.3320 

24 1.85E+06 0.0483 3.43E+12 39.0104 

25 1.68E+06 0.0504 2.81E+12 4.60E+01 

26 1.79E+06 0.0476 3.22E+12 3.22E+01 

27 1.79E+06 0.047 3.23E+12 33.7473 

28 1.80E+06 0.0467 3.26E+12 4.09E+01 

29 1.80E+06 0.0462 3.28E+12 49.5553 

30 1.83E+06 0.0463 3.38E+12 6.87E+01 

31 1.81E+06 0.0454 3.31E+12 9.05E+01 

32 1.78E+06 0.044 3.24E+12  

Source: Own calculation 
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3)  Sales forecasts with maximum likelihood using quadratic interpolation 

algorithm 

 When using the maximum likelihood method with quadratic interpolation 

algorithm to estimate parameter M*, we observe again the same phenomenon as with 

the previous two methods, i.e., a drop of MAPE drops from 7 observations and a 

gradual increase after the 24
th

 observation. 

 

Table 3.12: Maximum likelihood with quadratic interpolation and fixed intercept at 

Vo  

N M* Beta Out-sample test (MAPE) 

3 1.15E+06 0.2049 710.7455 

4 1.15E+06 0.1352 341.249 

5 1.15E+06 0.1257 299.5281 

 6 1.15E+06 0.099 172.7165 

7 1.15E+06 0.042 26.9965 

8 1.15E+06 4.77E-02 30.1830 

9 1.17E+06 0.0657 60.8877 

10 1.15E+06 0.0486 30.1596 

11 1.15E+06 4.14E-02 27.0777 

12 1.15E+06 0.0432 28.0433 

13 1.15E+06 3.65E-02 29.7533 

14 2.69E+06 0.0482 30.7983 

15 2.20E+06 0.0517 36.7008 

16 2.20E+06 0.0511 37.3895 

17 2.19E+06 0.0495 36.282 

18 4.05E+06 0.0423 25.6119 

19 5.00E+06 0.0458 27.9018 

20 4.11E+06 0.0482 31.9772 

21 5.03E+06 0.047 31.4440 

22 3.40E+06 0.0488 35.5675 

23 1.94E+06 0.05 39.7354 

24 5.25E+06 0.0487 42.5036 

25 3.12E+06 0.0508 50.3024 

26 1.40E+07 0.0473 35.0448 

27 2.10E+07 0.0465 36.2831 

28 2.10E+07 0.0463 43.6599 

29 2.57E+07 0.0458 52.2262 

30 2.14E+07 0.0462 75.3084 

31 4.67E+07 0.0449 96.1237 

32 6.60E+07 0.0429  

Source: Own calculation 
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4)  Sales forecasts with maximum likelihood using quasi-Newton algorithm 

  

 When using the maximum likelihood method with quasi-Newton algorithm to 

estimate parameter M*, the MAPE again drops sharply when 7 observations presents 

in the model and then gradually rises after the 24
th

 observation.. 

 

Table 3.13:  Maximum likelihood with Quasi-Newton and fixed intercept at Vo  

 

N M* Beta Likelihood Out-sample test (MAPE) 

3 1.88E+06 0.2123 2.28E-15 1.04E+03 

4 2.11E+06 0.1573 2.96E-20 622.3783 

5 1.80E+06 0.1244 3.93E-25 338.1848 

6 1.90E+06 0.1033 5.06E-30 215.7572 

7 1.80E+06 0.0413 5.45E-35 27.0290 

8 1.79E+06 4.68E-02 7.22E-40 30.1028 

9 1.82E+06 0.0638 0.0638 59.5629 

10 1.79E+06 0.0475 9.03E-50 29.9117 

11 1.79E+06 0.0405 1.13E-54 27.1930 

12 1.79E+06 0.0422 1.50E-59 28.0026 

13 1.79E+06 3.58E-02 1.83E-64 29.8949 

14 1.77E+06 0.0478 8.92E-70 29.7504 

15 1.79E+06 0.051 1.15E-74 34.8033 

16 1.79E+06 0.0504 1.50E-79 35.7265 

17 1.78E+06 0.0488 1.88E-84 34.9676 

18 1.78E+06 0.0424 1.48E-89 25.3802 

19 1.78E+06 0.0458 1.40E-94 26.6273 

20 1.79E+06 0.0479 1.62E-99 30.0215 

21 1.78E+06 0.0469 1.96E-104 29.6755 

22 1.82E+06 0.0483 2.28E-109 33.0818 

23 1.90E+06 0.0487 3.00E-114 36.4223 

24 1.85E+06 0.0483 3.77E-119 39.1461 

25 1.68E+06 0.0504 2.90E-124 46.0518 

26 1.78E+06 0.0475 1.23E-129 31.8652 

27 1.78E+06 0.0468 1.42E-134 33.4098 

28 1.78E+06 0.0467 1.86E-139 40.7572 

29 1.78E+06 0.0462 2.26E-144 49.6259 

30 1.81E+06 4.64E-02 2.86E-149 6.93E+01 

31 1.78E+06 0.0455 2.09E-154 91.3084 

32 1.74E+06 0.044 7.32E-160  

Source: Own calculation 
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Figure 3.6: Mean Absolute Percentage Error of the Least squares with quadratic 

interpolation and fixed intercept At Vo 

 

 
Figure 3.7: Mean Absolute Percentage Error of the Least squares with Quasi-Newton 

and fixed intercept at Vo 
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 Figure 3.8: Mean Absolute Percentage Error of the Maximum Likelihood 

 with quadratic interpolation and fixed intercept at Vo 

 

 

 
 

 Figure 3.9:  Mean Absolute Percentage Error of the maximum likelihood with 

 Quasi-Newton and fixed intercept at Vo 
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With all the tested estimation methods, we find that the sufficient numbers of 

observations for sales forecasts of an innovative agro-industrial product, the feta 

cheese from buffalo milk, is between 7 to 24 months. The Mean Absolute Percentage 

Errors from the out-of-sample test drop sharply in this range. Therefore, practitioners 

can forecast the sales of the new product after half a year after the product launch with 

high accuracy. 

 

Analysis 4:  Comparison between Bass model and Logistic function 

 

The results show the comparison between the Bass model and the logistic 

function for the whole dataset (32 observations from January 2010 to August 2012) 

and for the selected observations (from observation 7 to 24). 

 

1) Logistic function 

    1.1)  Logistic 1 

The estimation result of the Logistic function using maximum likelihood with 

quadratic interpolation (to search for M) and fixed intercept at Vo (Logistic 1) is 

presented in Table 3.14. 
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Table 3.14: Estimation result of the Logistic function using maximum likelihood with 

quadratic interpolation (to search for M) and fixed intercept at Vo 

N M* Beta Out-sample test (MAPE) 

3 1.15E+06 0.2049 710.7455 

4 1.15E+06 0.1352 341.249 

5 1.15E+06 0.1257 299.5281 

 
6 1.15E+06 0.099 172.7165 

7 1.15E+06 0.042 26.9965 

8 1.15E+06 4.77E-02 30.1830 

9 1.17E+06 0.0657 60.8877 

10 1.15E+06 0.0486 30.1596 

11 1.15E+06 4.14E-02 27.0777 

12 1.15E+06 0.0432 28.0433 

13 1.15E+06 3.65E-02 29.7533 

14 2.69E+06 0.0482 30.7983 

15 2.20E+06 0.0517 36.7008 

16 2.20E+06 0.0511 37.3895 

17 2.19E+06 0.0495 36.282 

18 4.05E+06 0.0423 25.6119 

19 5.00E+06 0.0458 27.9018 

20 4.11E+06 0.0482 31.9772 

21 5.03E+06 0.047 31.4440 

22 3.40E+06 0.0488 35.5675 

23 1.94E+06 0.05 39.7354 

24 5.25E+06 0.0487 42.5036 

25 3.12E+06 0.0508 50.3024 

26 1.40E+07 0.0473 35.0448 

27 2.10E+07 0.0465 36.2831 

28 2.10E+07 0.0463 43.6599 

29 2.57E+07 0.0458 52.2262 

30 2.14E+07 0.0462 75.3084 

31 4.67E+07 0.0449 96.1237 

32 6.60E+07 0.0429 - 

Source: Own calculation 
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  1.2)  Logistic 2 

The estimation result of Logistic function using least squares with quadratic 

interpolation and fixed intercept at Vo (Logistic 2) is presented in Table 3.15. 

 

Table 3.15:  Estimation result of  Logistic function using least squares with quadratic 

interpolation (to search for M) and fixed intercept at Vo 

N M* Beta Out-sample test (MAPE) 

3 1.80E+06 0.2028 936.1434 

4 1.48E+06 0.1343 371.2554 

5 1.48E+06 0.1248 321.8111 

6 1.80E+06 9.80E-02 185.2782 

7 1.15E+06 0.042 26.9965 

8 1.15E+06 0.0477 3.02E+01 

9 1.17E+06 0.0657 60.8896 

10 1.15E+06 0.0486 30.1602 

11 1.15E+06 0.0414 27.0777 

12 1.15E+06 0.0432 28.0434 

13 1.15E+06 0.0365 2.98E+01 

14 1.15E+06 4.92E-02 30.4141 

15 1.16E+06 0.0527 36.0846 

16 1.16E+06 0.052 36.7475 

17 1.15E+06 0.0503 35.8103 

18 1.47E+06 0.0431 25.4413 

19 1.48E+06 0.0468 27.5098 

20 1.16E+06 0.0496 31.3205 

21 1.48E+06 0.048 30.9512 

22 1.17E+06 0.0501 34.8615 

23 1.25E+06 0.0507 39.3213 

24 1.19E+06 0.0502 41.5403 

25 1.10E+06 0.0523 48.9638 

26 1.81E+06 0.0484 34.4178 

27 1.81E+06 0.0477 35.6350 

28 1.81E+06 0.0475 42.9912 

29 2.23E+06 0.0468 51.6853 

30 1.84E+06 0.0474 74.1752 

31 3.41E+06 0.0455 95.4737 

32 4.16E+06 0.0434 - 

Source: Own calculation 
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1.3)  Logistic 3 

The estimation result of Logistic function using maximum likelihood with 

Quasi-Newton (to search for M and Beta) and fixed intercept at Vo (Logistic 3) is 

presented in Table 3.16. 

 

Table 3.16: Estimation result of Logistic function using maximum likelihood with 

Quasi-Newton (to search for M and Beta) and fixed intercept at Vo 

N M* Beta Likelihood Out-sample test (MAPE) 

3 1.88E+06 0.2123 2.28E-15 1.04E+03 

4 2.11E+06 0.1573 2.96E-20 622.3783 

5 1.80E+06 0.1244 3.93E-25 338.1848 

6 1.90E+06 0.1033 5.06E-30 215.7572 

7 1.80E+06 0.0413 5.45E-35 27.0290 

8 1.79E+06 4.68E-02 7.22E-40 30.1028 

9 1.82E+06 0.0638 0.0638 59.5629 

10 1.79E+06 0.0475 9.03E-50 29.9117 

11 1.79E+06 0.0405 1.13E-54 27.1930 

12 1.79E+06 0.0422 1.50E-59 28.0026 

13 1.79E+06 3.58E-02 1.83E-64 29.8949 

14 1.77E+06 0.0478 8.92E-70 29.7504 

15 1.79E+06 0.051 1.15E-74 34.8033 

16 1.79E+06 0.0504 1.50E-79 35.7265 

17 1.78E+06 0.0488 1.88E-84 34.9676 

18 1.78E+06 0.0424 1.48E-89 25.3802 

19 1.78E+06 0.0458 1.40E-94 26.6273 

20 1.79E+06 0.0479 1.62E-99 30.0215 

21 1.78E+06 0.0469 1.96E-104 29.6755 

22 1.82E+06 0.0483 2.28E-109 33.0818 

23 1.90E+06 0.0487 3.00E-114 36.4223 

24 1.85E+06 0.0483 3.77E-119 39.1461 

25 1.68E+06 0.0504 2.90E-124 46.0518 

26 1.78E+06 0.0475 1.23E-129 31.8652 

27 1.78E+06 0.0468 1.42E-134 33.4098 

28 1.78E+06 0.0467 1.86E-139 40.7572 

29 1.78E+06 0.0462 2.26E-144 49.6259 

30 1.81E+06 4.64E-02 2.86E-149 6.93E+01 

31 1.78E+06 0.0455 2.09E-154 91.3084 

32 1.74E+06 0.044 7.32E-160 - 

Source: Own calculation 
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1.4)  Logistic 4 

The estimation result of Logistic function using least squares with Quasi-

Newton (to search for M and Beta) and fixed intercept at Vo (Logistic 4) is presented 

in Table 3.17. 

 

Table 3.17:  Estimation result of Logistic function using least squares with Quasi- 

Newton (to search for M and Beta) and fixed intercept at Vo 

N M* Beta SSE Out-sample test (MAPE) 

3 1.77E+06 0.2006 3.14E+12 9.09E+02 

4 1.77E+06 0.1325 3.14E+12 3.81E+02 

5 1.78E+06 0.1227 3.16E+12 3.25E+02 

6 1.77E+06 0.0968 3.16E+12 1.79E+02 

7 1.78E+06 0.0408 3.17E+12 2.71E+01 

8 1.78E+06 0.0464 3.17E+12 2.98E+01 

9 1.82E+06 0.0637 3.31E+12 59.2146 

10 1.78E+06 0.0473 3.18E+12 2.97E+01 

11 1.77E+06 0.0403 3.15E+12 27.2792 

12 1.77E+06 0.0421 3.16E+12 2.80E+01 

13 1.77E+06 0.0357 3.14E+12 2.99E+01 

14 1.76E+06 0.048 3.13E+12 2.99E+01 

15 1.79E+06 0.051 3.20E+12 3.47E+01 

16 1.79E+06 0.0503 3.20E+12 35.6878 

17 1.78E+06 0.0489 3.18E+12 3.50E+01 

18 1.75E+06 0.0429 3.13E+12 2.55E+01 

19 1.77E+06 0.046 3.15E+12 2.68E+01 

20 1.79E+06 0.0479 3.22E+12 3.00E+01 

21 1.78E+06 0.0469 3.19E+12 2.98E+01 

22 1.82E+06 0.0483 3.31E+12 33.0224 

23 1.90E+06 0.0486 3.63E+12 36.3320 

24 1.85E+06 0.0483 3.43E+12 39.0104 

25 1.68E+06 0.0504 2.81E+12 4.60E+01 

26 1.79E+06 0.0476 3.22E+12 3.22E+01 

27 1.79E+06 0.047 3.23E+12 33.7473 

28 1.80E+06 0.0467 3.26E+12 4.09E+01 

29 1.80E+06 0.0462 3.28E+12 49.5553 

30 1.83E+06 0.0463 3.38E+12 6.87E+01 

31 1.81E+06 0.0454 3.31E+12 9.05E+01 

32 1.78E+06 0.044 3.24E+12 - 

Source: Own calculation 
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 1.5)  Bass 1 

The estimation result of the Bass model using least squares and searching for 

only M (fixed p and fixed q) with quadratic interpolation (Bass 1) is presented in 

Table 3.18. 

 

Table 3.18: Estimation result of the Bass model using least squares and searching for 

only M (fixed p and fixed q) with quadratic interpolation 

N M* p* q* SSE MAPE 

3 7.92E+04 0.03 0.38 9.62E+08 56.6884 

4 6.37E+04 0.03 0.38 1.15E+09 4.22E+01 

5 5.92E+04 0.03 0.38 1.20E+09 40.2503 

6 5.39E+04 0.03 0.38 1.34E+09 38.4486 

7 4.57E+04 0.03 0.38 1.94E+09 36.4375 

8 4.50E+04 0.03 0.38 1.95E+09 38.0884 

9 4.84E+04 0.03 0.38 2.20E+09 36.9074 

10 4.53E+04 0.03 0.38 2.50E+09 37.5299 

11 4.36E+04 0.03 0.38 2.61E+09 39.2315 

12 4.39E+04 0.03 0.38 2.62E+09 40.6573 

13 4.26E+04 0.03 0.38 2.75E+09 42.2694 

14 4.75E+04 0.03 0.38 4.91E+09 36.1523 

15 4.93E+04 0.03 0.38 5.25E+09 34.6348 

16 4.98E+04 0.03 0.38 5.27E+09 35.6607 

17 4.99E+04 0.03 0.38 5.28E+09 37.5858 

18 4.86E+04 0.03 0.38 5.62E+09 37.5954 

19 5.11E+04 0.03 0.38 7.00E+09 34.1257 

20 5.33E+04 0.03 0.38 8.09E+09 31.5217 

21 5.37E+04 0.03 0.38 8.13E+09 33.0588 

22 5.58E+04 0.03 0.38 9.53E+09 30.4537 

23 5.75E+04 0.03 0.38 1.05E+10 29.04 

24 5.84E+04 0.03 0.38 1.08E+10 29.4457 

25 6.15E+04 0.03 0.38 1.47E+10 25.301 

26 6.09E+04 0.03 0.38 1.48E+10 25.9967 

27 6.17E+04 0.03 0.38 1.51E+10 26.5434 

28 6.29E+04 0.03 0.38 1.58E+10 24.7814 

29 6.38E+04 0.03 0.38 1.64E+10 23.8492 

30 6.57E+04 0.03 0.38 1.87E+10 14.5013 

31 6.60E+04 0.03 0.38 1.87E+10 19.2648 

32 6.56E+04 0.03 0.38 1.88E+10 - 

Source: Own calculation 
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 1.6)  Bass 2 

The estimation result of the Bass model using least squares to search for  M 

and q (fixed p) with Quasi-Newton (Bass 2) is presented in Table 3.19. 

 

Table 3.19:  Estimation result of the Bass model using least squares searching for  M 

and q (fixed p) with Quasi-Newton 

N M* p* q* SSE MAPE 

3 1.65E+05 0.03 0.1613 1.75E+10 170 

4 1.32E+05 0.03 1.46E-01 3.34E+10 1.15E+02 

5 1.11E+05 0.03 0.1335 4.57E+10 79.8921 

6 9.10E+04 0.03 0.1234 5.64E+10 49.7268 

7 7.28E+04 0.03 0.1098 6.28E+10 31.8864 

8 6.27E+04 0.03 0.104 6.38E+10 3.04E+01 

9 5.94E+04 0.03 0.1032 5.97E+10 30.2363 

10 5.24E+04 0.03 9.77E-02 5.66E+10 33.2553 

11 4.42E+04 0.03 9.74E-02 5.68E+10 4.15E+01 

12 4.20E+04 0.03 0.0983 5.16E+10 44.0503 

13 3.92E+04 0.03 9.80E-02 4.72E+10 4.91E+01 

14 4.20E+04 0.03 0.1068 4.32E+10 44.7081 

15 4.27E+04 0.03 0.1119 3.89E+10 4.37E+01 

16 4.45E+04 0.03 0.1095 3.28E+10 42.7652 

17 4.24E+04 0.03 0.1189 3.15E+10 45.8242 

18 4.10E+04 0.03 1.20E-01 2.92E+10 4.88E+01 

19 4.30E+04 0.03 0.1266 2.72E+10 45.5426 

20 4.48E+04 0.03 0.1319 2.53E+10 42.6395 

21 4.51E+04 0.03 0.135 2.32E+10 43.4889 

22 4.69E+04 0.03 0.1396 2.21E+10 40.1709 

23 4.83E+04 0.03 0.1435 2.10E+10 37.3793 

24 4.92E+04 0.03 0.1461 1.96E+10 36.3505 

25 5.43E+04 0.03 0.1285 1.91E+10 28.2265 

26 4.85E+04 0.03 0.1982 2.39E+10 38.5536 

27 4.82E+04 0.03 0.2294 2.41E+10 38.9902 

28 5.03E+04 0.03 0.2098 2.26E+10 34.4547 

29 5.12E+04 0.03 0.2152 2.21E+10 30.7847 

30 5.28E+04 0.03 0.2213 2.34E+10 16.2434 

31 5.32E+04 0.03 0.2258 2.28E+10 3.9243 

32 5.30E+04 0.03 0.2297 2.23E+10 - 

Source: Own calculation 
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1.7)  Bass3 

The estimation result of the Bass model using least squares to search for M, p 

and q with Quasi-Newton (Bass 3) is presented in Table 3.20. 

 

Table 3.20: Estimation result of the Bass model using least squares to search for M, p 

and q with Quasi-Newton 

N M* p* q* SSE MAPE 

3 8.42E+05 -5.40E-02 6.43E-01 3.39E+09 1.00E+02 

4 4.50E+05 -1.49E-02 3.59E-01 4.93E+09 1.00E+02 

5 5.98E+05 -3.42E-02 4.84E-01 6.60E+09 1.00E+02 

6 4.06E+05 -1.57E-02 3.48E-01 8.13E+09 1.00E+02 

7 - - - 8.58E+09 - 

8 2.64E+06 -3.04E-01 2.90E+00 9.80E+09 1.00E+02 

9 -6.66E+05 0.1408 -0.7207 1.21E+10 6.19E+09 

10 9.15E+04 0.0166 0.0709 1.31E+11 3.12E+01 

11 1.11E+06 -0.1585 1.5482 1.55E+10 100 

12 7.51E+04 0.0363 0.0597 1.34E+11 27.6333 

13 2.80E+05 -0.0235 0.3995 1.88E+10 100 

14 8.18E+04 0.0305 0.0592 1.00E+11 24.9463 

15 1.02E+05 0.0981 0.0201 3.05E+10 27.4695 

16 6.48E+04 0.0071 0.0812 1.19E+11 30.9202 

17 4.55E+04 0.0361 4.16E-02 1.56E+11 52.6333 

18 8.41E+04 0.1067 0.0275 4.77E+10 31.1679 

19 - - - 4.59E+10 - 

20 1.02E+05 0.1795 -1.68E-02 1.03E+10 47.2168 

21 4.27E+04 0.0227 0.0597 1.51E+11 52.368 

22 4.00E+04 0.0215 0.0411 1.61E+11 59.9345 

23 1.12E+05 0.2081 -0.0195 1.16E+10 44.1433 

24 3.97E+04 0.0205 0.0553 1.63E+11 54.8113 

25 4.21E+04 0.0226 0.0612 1.63E+11 47.9314 

26 8.82E+04 0.188 0.0222 3.21E+10 27.9643 

27 1.02E+05 0.1989 0.003 1.57E+10 32.8234 

28 -1.24E+05 -0.4592 0.1857 7.17E+10 5.54E+05 

29 6.39E+04 0.1379 0.0408 9.27E+10 28.3513 

30 7.74E+04 0.1557 0.0363 6.05E+10 14.0515 

31 7.67E+04 0.156 0.0367 6.10E+10 11.049 

32 9.27E+04 0.0945 0.0275 2.64E+10 - 

Source: Own calculation 
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Figure 3.10: Forecasting results of Bass1 (the best with the Bass model—on the left) 

and Logistic 4 (the best with the Logistic function—on the right) show the maximum 

sales, growth of the sales and duration that the sales will reach the maturity period. 

Logistic function presents a clearer S-curve than Bass model 
 

 

 

 
      

Figure 3.11: Mean Absolute Percentage Error (MAPE) of Bass1 (the best of Bass 

model on the left) and Logistic 4 (the best of Logistic function—on the right) at 

different numbers of observation. The MAPE of the Logistic function drops sharply at 

the 7
th

 month 

 

 

 

 

M
ea

n
 A

b
so

lu
te

 P
er

ce
n

ta
g
e 

E
rr

o
r 

 (
%

) 



 
49 

 

2)  Comparison between the Bass model and the logistic function  

     2.1) Comparison on the whole period 

 

Table 3.21:  Paired Samples Statistics using data from whole period 

 

 
 

Mean 

MAPE 
N 

Std. 

Deviation 

Std. Error 

Mean 

  

Pair 1 Logistic1  86.972 29 142.451 26.452   

 BASS1 33.732 29 8.241 1.530   

Pair 2 Logistic2  96.584 29 181.944 33.786   

 BASS2 46.119 29 30.385 5.642   

Pair 3 Logistic3  109.148 29 217.521 40.393   

 BASS2 46.119 29 30.385 5.642   

Pair 4 Logistic3  120.453 25 232.822 46.564   

 BASS3 53.865 25 31.671 6.33   

Pair 5 Logistic4  94.557 29 178.353 33.119  

 BASS2 46.119 29 30.385 5.642  

Pair 6 Logistic4  103.525 25 190.984 38.197  

 BASS3 53.865 25 31.671 6.334   
 

                  Paired                Std.             Std.        95%Confidence 

                           Differences        Deviation         Error Mean            Interval of the 

               Mean                           Difference 

                                       Lower         Upper 

Pair 1 Logistic1-

BASS1 

53.241 138.050 25.635 .729 105.752 

Pair 2 Logistic2-

BASS2 

50.465 154.908 28.766 -8.459 109.388 

Pair 3 Logistic3-

BASS2 

63.029 189.668 35.220 -9.117 135.175 

Pair 4 Logistic3-

BASS3 

66.589 218.134 43.627 -23.453 156.630 

Pair 5 Logistic4-

BASS2 

48.437 151.150 28.068 -9.057 105.932 

Pair 6 Logistic4-

BASS3 

49.661 177.400 35.480 -23.566 122.888 
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Table 3.21: (Continued) 

   t df Sig. (2-tailed)  

Pair 1 Logistic1-BASS1  2.077 28 .047  

Pair 2 Logistic2- BASS2  1.754 28 .090  

Pair 3 Logistic3- BASS2  1.790 28 .084  

Pair 4 Logistic3- BASS3  1.526 24 .140  

Pair 5 Logistic4- BASS2  1.726 28 .095  

Pair 6 Logistic4- BASS3  1.400 24 .174  

Source: Own calculation using SPSS 

 
 

When using all the observations, the Bass model is superior to the logistic 

function. In the next section, we will compare the two models considering just the 

selected period (7 to 24 months) for which the MAPE of the logistic function 

improves sharply. 

 

     2.2) Comparison for  the selected period   

We compare the MAPE of Bass model and logistic function just for the range 

of 7 to 24 months. The results are as follows: 

 

Table 3.22:  Paired Samples Statistics using data from 7
th

 to 24
th

 month 

 

  
Mean 

MAPE 
N 

Std. 

Deviation 

Std. Error      

Mean 

  

Pair 1 Logistic1 33.834 18 8.269 1.949   

 BASS1 35.578 18 3.737 .888   

Pair 2 Logistic2 33.506 18 8.204 1.934   

 BASS2 40.657 18 6.028 1.421   

Pair 3 Logistic3 32.6277 18 7.739 1.824   

 BASS2 40.657 18 6.028 1.421   

Pair 4 Logistic3 31.605 15 3.87010 .999   

 BASS3 52.296 15 27.131 7.005   

Pair 5 Logistic4 32.605 18 7.639 1.801   

 BASS2 40.657 18 6.028 1.421   

Pair 6 Logistic4 31.582 15 3.825 .988   

 BASS3 52.2960 15 27.131 7.005   
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Table 3.22: (Continued) 

  Paired            

Differences 

Mean 

Std. 

Deviation 

      Std.                  95% Confidence 

Error Mean              Interval of the 

                        Difference 

          Lower Upper   

Pair 1 
Logistic1 

BASS1 
-1.744 10.069 2.373 -6.751 3.264 

  

Pair 2 
Logistic2 

BASS2 
-7.151 12.142 2.862 -13.189 -1.113 

  

Pair 3 
Logistic3 

BASS2 
-8.029 11.763 2.773 -13.879 -2.180 

  

Pair 4 
Logistic3 

BASS3 
-20.691 27.984 7.226 -36.188 -5.194 

  

Pair 5 
Logistic4 

BASS2 
-8.052 11.637 2.743 -13.839 -2.265 

  

Pair 6 
Logistic4 

BASS3 
-20.714 27.998 7.229 -36.219 -5.209 

  

 

   t df Sig. (2-tailed) 
 

Pair 1 Logistic1-BASS1  -.735 17 .473  

Pair 2 Logistic2- BASS2  -2.499 17 .023  

Pair 3 Logistic3- BASS2  -2.896 17 .010  

Pair 4 Logistic3- BASS3  -2.864 14 .013  

Pair 5 Logistic4- BASS2  -2.935 17 .009  

Pair 6 Logistic4- BASS3  -2.865 14 .012  

Source: Own calculation using SPSS 
 

 

When considering only the selected period (7 to 24 months), the logistic 

function is superior to the Bass model. In 5 pairs out of 6, the MAPE of logistic 

function is  significantly smaller than that of the Bass model. 
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2.3)  Comparison between the best of Bass model and logistic function 

        In this section, the best Bass model which is BASS1 and the best logistic 

function which is Logistic4 will be compared.  The results are shown in Table 3.23 

 

Table 3.23:  Paired samples statistics between the best logistic model and the best 

Bass model 

  
Mean 

MAPE 
N 

Std.           

Deviation 

Std. Error 

Mean 

 

Pair 1 Logistic4 32.605 18 7.639 1.801   

 BASS1 35.578 18 3.737 .881   

 
  Paired            

Differences 

Mean 

Std. 

Deviation 

    Std.                        95% Confidence         

Error Mean                  Interval of the 

       Difference 

          Lower Upper   

Pair 1 
Logistic4 

BASS1 
-2.973 9.143 2.155 -7.519 1.574 

  

 

   t df Sig. (2-tailed) 
 

Pair 1 
Logistic4 

BASS1 
 -1.379 17 .186 

 

Source: Own calculation using SPSS 

 

The MAPE of the logistic function is slightly lower than that of Bass model. 

However, the difference is not statistically significant. The logistic function is thus 

superior to the Bass model when the model uses the data between 7 to 24 months, 

where the MAPE of the Logistic function is low. However, the best Logistic function 

is not significantly superior to the best Bass model. Therefore, it can be said that the 

Logistic function yield at least as good performance as Bass model. 
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Analysis 5: Comparison between the method of rolling windows and cumulative 

observations 

 In this section, we will first present the results from the method of rolling 

windows. The width of the windows was varied from 3 to 19. Due to the large size of 

the results, they are presented in the appendix section of this chapter. However, two of 

the best models with width of 15 and 16 observations, which demonstrate the lowest 

average MAPE in this class, are displayed here. 

 

Table 3.24: Estimation results for the Logistic function using OLS and quadratic 

interpolation with the method of rolling windows when the width of window is 15 

Repeat Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

1 1,156,423 0.0527 6,000 47.22 19.94 19.99 

2 1,482,125 0.0136 17,700 32.89 21.02 21.07 

3 1,806,054 0.0213 11,800 34.63 20.61 20.66 

4 2,205,003 0.0182 11,100 30.35 20.56 20.61 

5 2,729,756 0.0093 21,700 18.97 21.23 21.27 

6 3,357,948 0.0231 11,600 27.40 20.60 20.65 

 

 

Table 3.25: Estimation results for the Logistic function using OLS and quadratic 

interpolation with the method of rolling windows when the width of window is 16 

Repeat Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

1 1,156,741 0.0520 6,250 49.93 19.91 19.96 

2 1,483,627 0.0142 17,900 32.13 20.96 21.01 

3 1,802,822 0.0162 13,500 28.85 20.68 20.73 

4 2,206,022 0.0232 11,300 32.03 20.50 20.55 

5 2,731,507 0.0134 20,500 21.81 21.10 21.15 

 

 The study will find the best model with rolling windows using t-test. The 

results are shown in Tables 3.26 and 3.27.  
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Table 3.26: Descriptive statistics of MAPE, AIC and BIC from the estimation 

methods of rolling windows with widths15 and 16 

  Mean N Std. Deviation Std. Error Mean 

Pair 1 MAPE15 32.810 5 10.107 4.520 

 MAPE16 32.948 5 10.376 4.640 

Pair 2 AIC15 20.673 5 .496 .222 

 AIC16 20.629 5 .467 .209 

Pair 3 BIC15 20.720 5 .496 .222 

 BIC16 20.677 5 .467 .209 

Source: Calculation using SPSS version 11.0. 

 

 The MAPE of the model with a width of 15 observations is slightly lower than 

that with 16 observations. The AIC and BIC of the former model are higher than those 

of the latter model.  However, as shown in Table 3.26, these differences are not 

statistically significant. Therefore, the best model is the one with 15 observations 

because it uses fewer observations. 

 

Table 3.27:  Comparison of MAPE, AIC and BIC for the estimation methods of 

rolling windows with widths 15 and 16 

Source: Calculation using SPSS version 11.0. 

 

 In the next step, this study will compare the performances of the best model 

from the method of rolling windows to the best model with the method of cumulative 

observations. The results are shown in Tables 3.28 and 3.29. 

 

 

  
Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
MAPE15 

MAPE16 
-.138 3.611 1.615 -4.622 4.346 -.085 4 .936 

Pair 2 
AIC15 

AIC16 
.044 .071 .032 -.044 .131 1.390 4 .237 

Pair 3 
BIC15 

BIC16 
.043 .071 .032 -.045 .130 1.355 4 .247 
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Table 3.28: Descriptive statistics of MAPE, AIC and BIC from the estimation 

methods of rolling windows with width 15 and the model with the method of 

cumulative observations (OLS with quadratic interpolation) 

 

  Mean N Std. Deviation Std. Error Mean 

Pair 1 MAPE15 31.909 6 9.306 3.799 

 CUMMAPE 46.542 6 2.004 .818 

Pair 2 AIC15 20.661 6 .445 .181 

 CUMAIC 19.690 6 .260 .106 

Pair 3 BIC15 20.708 6 .445 .181 

 CUMBIC 19.597 6 .190 .077 

Source: Calculation using SPSS version 11.0 

 

Table 3.29: Comparison of MAPE, AIC and BIC between the estimation methods of  

rolling window with width 15 and the model with the method of cumulative 

observations (OLS  with quadratic interpolation ) 

 

Source: Calculation using SPSS version 11.0. 

 

 The results show that the MAPE of the model with rolling windows is much 

lower than that of the model with cumulative observations. However, the AIC and 

BIC of the model with rolling windows are higher than those of the model with 

cumulative observations. These results are clearly significant at the confidence level 

of 99%.  

 To judge which one is better, the purpose of the prediction should be the first 

priority. The model with smaller MAPE calculated from the out-of-sample test should 

be considered better. Therefore, the  model using rolling windows should be preferred 

to the model using cumulative observations. 

 

  
Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
MAPE15 

CUMMAPE 
-14.633 8.419 3.437 -23.468 -5.798 -4.26 5 .008 

Pair 2 
AIC15  

CUMAIC 
.971 .572 .234 .370 1.571 4.15 5 .009 

Pair 3 
BIC15  

CUMBIC 
1.111 .478 .195 .609 1.613 5.69 5 .002 
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Analysis 6: Comparison between Quasi-Newton, Gauss-Newton and Newton 

Raphson algorithms 

 The final part of this chapter is a comparison of forecasting accuracy when 

using the Logistic function with three estimation methods, namely: Quasi-Newton, 

Gauss-Newton, and Newton Raphson, by pairing one another in order to ascertain the 

statistical results. 

 

Table 3.30: Estimation results for the Logistic function using the Quasi-Newton 

method 

No. of 

Obs 
Mstar beta 

SSE 

(Million) 
MAPE AIC BIC 

3 1,769,174 0.2006 1,379 44.35 21.28 20.68 

4 1,769,195 0.1325 1,694 46.06 20.86 20.56 

5 1,775,316 0.1227 1,773 47.54 20.49 20.33 

6 1,773,386 0.0968 2,009 48.55 20.30 20.23 

7 1,779,552 0.0408 3,597 41.94 20.63 20.61 

8 1,778,500 0.0464 3,599 43.17 20.42 20.44 

9 1,818,692 0.0637 3,425 45.88 20.20 20.25 

10 1,780,237 0.0473 4,121 43.08 20.24 20.30 

11 1,773,006 0.0403 4,566 41.68 20.21 20.28 

12 1,774,508 0.0421 4,515 43.83 20.08 20.16 

13 1,766,806 0.0357 5,022 41.63 20.08 20.17 

14 1,761,750 0.0480 6,577 44.78 20.25 20.34 

15 1,786,617 0.0510 7,087 46.01 20.24 20.33 

16 1,787,332 0.0503 7,218 47.46 20.18 20.27 

17 1,778,910 0.0488 7,287 49.21 20.11 20.21 

18 1,749,170 0.0429 7,342 48.68 20.05 20.15 

19 1,766,718 0.0460 9,373 49.19 20.23 20.33 

20 1,790,914 0.0479 11,344 49.42 20.36 20.46 

21 1,780,803 0.0469 11,640 50.88 20.32 20.42 

22 1,817,839 0.0483 14,368 50.65 20.48 20.58 

23 1,904,091 0.0486 16,649 50.34 20.57 20.67 

24 1,849,916 0.0483 17,864 50.65 20.59 20.69 

25 1,678,951 0.0504 25,060 48.75 20.89 20.98 

26 1,786,158 0.0476 24,873 52.54 20.83 20.93 

27 1,786,979 0.0470 26,312 52.83 20.85 20.94 

28 1,797,910 0.0467 28,963 51.46 20.90 21.00 

29 1,803,229 0.0462 31,217 49.74 20.93 21.03 

30 1,833,973 0.0462 36,800 41.12 21.06 21.15 

31 1,810,095 0.0453 37,967 33.08 21.06 21.15 

32 1,775,842 0.0440 38,196 - 21.03 21.12 
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Table 3.31: Estimation results of the Logistic function using the Gauss-Newton 

method 

No.of 

obs 
Mstar beta 

SSE 

(Million) 
MAPE AIC BIC 

3 - - - - - - 

4 - - - - - - 

5 798,825 0.1262 852 48.23 19.75 19.60 

6 - - - - - - 

7 841,842 0.0412 2,446 42.66 20.24 20.23 

8 797,660 0.0433 1,841 45.13 19.75 19.77 

9 - - - - - - 

10 - - - - - - 

11 - - - - - - 

12 785,322 0.0509 2,354 49.52 19.43 19.51 

13 818,453 0.0295 3,253 44.19 19.65 19.73 

14 - - - - - - 

15 941,751 0.0359 6,970 42.54 20.22 20.32 

16 - - - - - - 

17 809,849 0.0499 6,343 53.15 19.97 20.07 

18 806,331 0.0438 6,281 53.92 19.89 19.99 

19 806,590 0.0480 8,767 54.85 20.16 20.26 

20 801,428 0.0451 10,943 54.28 20.32 20.42 

21 795,767 0.0520 11,943 57.71 20.35 20.45 

22 796,400 0.0568 15,589 58.24 20.56 20.66 

23 802,636 0.0536 18,024 56.92 20.65 20.75 

24 - - - - - - 

25 809,129 0.0502 26,834 53.95 20.95 21.05 

26 803,964 0.0463 26,608 57.17 20.90 21.00 

27 800,562 0.0516 29,480 58.91 20.96 21.06 

28 797,427 0.0513 32,804 57.92 21.02 21.12 

29 803,710 0.0440 33,806 54.39 21.01 21.11 

30 802,982 0.0488 41,234 48.18 21.17 21.27 

31 - - - - - - 

32 797,590 0.0433 42,138 0 21.12 21.22 

 

  As seen from Table 3.31 the Gauss-Newton method failed for some 

observations. This is a drawback of Gauss-Newton that should not be ignored. 
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Table 3.32: Estimation results of the Logistic function using the Newton-Raphson 

method 

No. of 

obs 
Mstar beta 

SSE 

(Million) 
MAPE AIC BIC 

3 808,619 0.2097 451 49.89 20.16 19.56 

4 803,758 0.1375 501 49.40 19.65 19.34 

5 817,901 0.1302 527 50.50 19.27 19.12 

6 807,550 0.1012 551 50.72 19.00 18.93 

7 925,510 0.0493 1,130 45.72 19.47 19.46 

8 897,251 0.0542 1,089 48.04 19.23 19.25 

9 938,099 0.0783 1,511 50.25 19.38 19.43 

10 933,702 0.0576 1,635 49.51 19.31 19.37 

11 913,564 0.0480 1,719 49.75 19.23 19.30 

12 897,359 0.0492 1,761 51.65 19.14 19.22 

13 888,280 0.0411 1,867 51.68 19.09 19.18 

14 990,619 0.0620 4,903 55.05 19.96 20.05 

15 964,321 0.0646 5,994 55.80 20.07 20.17 

16 933,076 0.0617 6,369 56.50 20.05 20.15 

17 908,432 0.0581 6,602 57.43 20.01 20.11 

18 903,282 0.0499 6,354 59.33 19.90 20.00 

19 919,693 0.0553 9,399 60.31 20.23 20.33 

20 919,387 0.058 12,339 60.72 20.44 20.54 

21 900,180 0.0555 12,925 61.56 20.43 20.53 

22 901,694 0.0576 16,746 61.56 20.63 20.73 

23 895,218 0.058 19,962 61.34 20.76 20.85 

24 882,434 0.0566 21,744 61.39 20.79 20.89 

25 894,059 0.0596 30,600 59.98 21.09 21.18 

26 879,593 0.0552 30,341 62.58 21.03 21.13 

27 868,891 0.0537 32,316 62.64 21.05 21.15 

28 863,153 0.0531 35,828 61.55 21.11 21.21 

29 856,184 0.0522 38,805 60.10 21.15 21.25 

30 858,009 0.0528 45,815 53.50 21.28 21.37 

31 848,169 0.0507 47,226 46.70 21.27 21.37 

32 839,224 0.0479 47,135 - 21.24 21.33 

 

 

 The following part was carried out in order to conduct a comparison and a statistical 

analysis using the t-test where incomplete data were omitted prior to the comparison. 
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Table 3.33: Data for the comparison between the Quasi-Newton and Gauss-Newton method 

 

No. of obs 
Quasi-Newton 

Mstar beta SSE 

(Million) 
MAPE AIC BIC 

5 1,775,316 0.1227 1,773 47.54 20.49 20.33 

7 1,779,552 0.0408 3,597 41.94 20.63 20.61 

8 1,778,500 0.0464 3,599 43.17 20.42 20.44 

12 1,774,508 0.0421 4,515 43.83 20.08 20.16 

13 1,766,806 0.0357 5,022 41.63 20.08 20.17 

15 1,786,617 0.0510 7,087 46.01 20.24 20.33 

17 1,778,910 0.0488 7,287 49.21 20.11 20.21 

18 1,749,170 0.0429 7,342 48.68 20.05 20.15 

19 1,766,718 0.0460 9,373 49.19 20.23 20.33 

20 1,790,914 0.0479 11,344 49.42 20.36 20.46 

21 1,780,803 0.0469 11,640 50.88 20.32 20.42 

22 1,817,839 0.0483 14,368 50.65 20.48 20.58 

23 1,904,091 0.0486 16,649 50.34 20.57 20.67 

25 1,678,951 0.0504 25,060 48.75 20.89 20.98 

26 1,786,158 0.0476 24,873 52.54 20.83 20.93 

27 1,786,979 0.0470 26,312 52.83 20.85 20.94 

28 1,797,910 0.0467 28,963 51.46 20.90 21.00 

29 1,803,229 0.0462 31,217 49.74 20.93 21.03 

30 1,833,973 0.0462 36,800 41.12 21.06 21.15 

32 1,775,842 0.0440 38,196 - 21.03 21.12 

No. of obs 
Gauss-Newton 

Mstar beta SSE (Million) MAPE AIC BIC 

5 798,825 0.1262 852 48.23 19.75 19.60 

7 841,842 0.0412 2,446 42.66 20.24 20.23 

8 797,660 0.0433 1,841 45.13 19.75 19.77 

12 785,322 0.0509 2,354 49.52 19.43 19.51 

13 818,453 0.0295 3,253 44.19 19.65 19.73 

15 941,751 0.0359 6,970 42.54 20.22 20.32 

17 809,849 0.0499 6,343 53.15 19.97 20.07 

18 806,331 0.0438 6,281 53.92 19.89 19.99 

19 806,590 0.0480 8,767 54.85 20.16 20.26 

20 801,428 0.0451 10,943 54.28 20.32 20.42 

21 795,767 0.0520 11,943 57.71 20.35 20.45 

22 796,400 0.0568 15,589 58.24 20.56 20.66 

23 802,636 0.0536 18,024 56.92 20.65 20.75 

25 809,129 0.0502 26,834 53.95 20.95 21.05 

26 803,964 0.0463 26,608 57.17 20.90 21.00 

27 800,562 0.0516 29,480 58.91 20.96 21.06 

28 797,427 0.0513 32,804 57.92 21.02 21.12 

29 803,710 0.0440 33,806 54.39 21.01 21.11 

30 802,982 0.0488 41,234 48.18 21.17 21.27 
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Table 3.33: (Continued) 

No.of obs 
Gauss-Newton 

Mstar beta SSE (Million) MAPE AIC BIC 

32 797,590 0.0433 42,138 - 21.12 21.22 

 

Table 3.34: Descriptive statistics of MAPE, AIC and BIC from the estimations using 

the Quasi-Newton and Gauss-Newton methods 

  Mean N Std. Deviation Std. Error Mean 

Pair 1 QNMAPE 45.4462 20 11.30581 2.52806 

 GUSMAPE 49.5930 20 12.85781 2.87509 

Pair 2 QNAIC 20.5273 20 .34291 .07668 

 GUSAIC 20.4050 20 .55077 .12315 

Pair 3 QNBIC 20.6002 20 .34993 .07825 

 GUSBIC 20.4789 20 .57704 .12903 

Source: Calculation using SPSS version 11.0. 

 

 

Table 3.35: Comparison of MAPE, AIC and BIC from the estimation using the 

Quasi-Newton and Gauss-Newton methods 

Source: Calculation using SPSS version 11.0. 

 

Table 3.34 shows that the Quasi Newton method yields smaller MAPE than that 

obtained with the Gauss-Newton method, with a very high confidence level. In contrast, 

the Gauss-Newton method provides significantly smaller average values of AIC and 

BIC at a confidence level of 90%. 

 

 

 

  
Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
QNMAPE  

GUSMAPE 
-4.147 2.872 .642 -5.491 -2.803 -6.46 19 .000 

Pair 2 
QNAIC  

GUSAIC 
.122 .289 .065 -.013 .258 1.89 19 .074 

Pair 3 
QNBIC  

GUSBIC 
.121 .288 .064 -.014 .256 1.88 19 .075 
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Table 3.36: Descriptive statistics of MAPE, AIC and BIC for the estimation using the 

Quasi-Newton and Newton-Raphson methods 

  Mean N Std. Deviation Std. Error Mean 

Pair 1 QNMAPE 45.150 30 9.545 1.743 

 NRMAPE 53.504 30 11.488 2.097 

Pair 2 QNAIC 20.524 30 .359 .066 

 NRAIC 20.181 30 .7739 .141 

Pair 3 QNBIC 20.557 30 .3339 .061 

 NRBIC 20.217 30 .8269 .151 

Source: Calculation using SPSS version 11.0. 

 

 

Table 3.37: Comparison of MAPE, AIC and BIC for the estimation methods using 

the Quasi-Newton and Newton-Raphson methods 

 

Source: Calculation using SPSS version 11.0. 

 

According to Table 3.36, the average value of MAPE using the Quasi-Newton 

method is significantly smaller than that using Newton-Raphson method at the 99% 

confidence level of 99%. However, the Newton-Raphson method provides 

significantly smaller average values of AIC and BIC at the confidence level of 99%.  

 

 

 

 

 

 

 

 

  
Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
QNMAPE  

NRMAPE 
-8.355 3.438 .628 -9.639 -7.071 -13.31 29 .000 

Pair 2 
QNAIC 

NRAIC 
.343 .591 .108 .122 .563 3.18 29 .004 

Pair 3 
QNBIC 

NRBIC 
.342 .590 .108 .122 .563 3.17 29 .004 
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Table 3.38: Data for the comparison between Gauss-Newton and Newton-Raphson 

No. of obs 
Gauss-Newton 

Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

5 798,825 0.1262 852 48.23 19.75 19.60 

7 841,842 0.0412 2,446 42.66 20.24 20.23 

8 797,660 0.0433 1,841 45.13 19.75 19.77 

12 785,322 0.0509 2,354 49.52 19.43 19.51 

13 818,453 0.0295 3,253 44.19 19.65 19.73 

15 941,751 0.0359 6,970 42.54 20.22 20.32 

17 809,849 0.0499 6,343 53.15 19.97 20.07 

18 806,331 0.0438 6,281 53.92 19.89 19.99 

19 806,590 0.0480 8,767 54.85 20.16 20.26 

20 801,428 0.0451 10,943 54.28 20.32 20.42 

21 795,767 0.0520 11,943 57.71 20.35 20.45 

22 796,400 0.0568 15,589 58.24 20.56 20.66 

23 802,636 0.0536 18,024 56.92 20.65 20.75 

25 809,129 0.0502 26,834 53.95 20.95 21.05 

26 803,964 0.0463 26,608 57.17 20.90 21.00 

27 800,562 0.0516 29,480 58.91 20.96 21.06 

28 797,427 0.0513 32,804 57.92 21.02 21.12 

29 803,710 0.0440 33,806 54.39 21.01 21.11 

30 802,982 0.0488 41,234 48.18 21.17 21.27 

32 797,590 0.0433 42,138 - 21.12 21.22 

 

No. of   obs  

Newton-Raphson 

Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

5 817,901 0.1302 527 50.50 19.27 19.12 

7 925,510 0.0493 1,130 45.72 19.47 19.46 

8 897,251 0.0542 1,089 48.04 19.23 19.25 

12 897,359 0.0492 1,761 51.65 19.14 19.22 

13 888,280 0.0411 1,867 51.68 19.09 19.18 

15 964,321 0.0646 5,994 55.80 20.07 20.17 

17 908,432 0.0581 6,602 57.43 20.01 20.11 

18 903,282 0.0499 6,354 59.33 19.90 20.00 

19 919,693 0.0553 9,399 60.31 20.23 20.33 

20 919,387 0.0580 12,339 60.72 20.44 20.54 

21 900,180 0.0555 12,925 61.56 20.43 20.53 

22 901,694 0.0576 16,746 61.56 20.63 20.73 

23 895,218 0.0580 19,962 61.34 20.76 20.85 

25 894,059 0.0596 30,600 59.98 21.09 21.18 

26 879,593 0.0552 30,341 62.58 21.03 21.13 

27 868,891 0.0537 32,316 62.64 21.05 21.15 

28 863,153 0.0531 35,828 61.55 21.11 21.21 

29 856,184 0.0522 38,805 60.10 21.15 21.25 
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Table 3.38: (Continued)  

No. of   obs  

Newton-Raphson 

Mstar beta 
SSE 

(Million) 
MAPE AIC BIC 

      30          858,009       0.0528  45,815 53.50          21.28      21.37 

      32          839,224       0.0479  47,135   -         21.24      21.33 

 

 

Table 3.39: Descriptive statistics of MAPE, AIC and BIC for the estimation using the 

Gauss-Newton and Newton-Raphson methods 

  Mean N Std. Deviation 
Std. Error 

Mean 

Pair 1 GUSMAPE 49.593 20 12.858 2.875 

 NRMAPE 54.230 20 13.796 3.085 

Pair 2 GUSAIC 20.405 20 .551 .123 

 NRAIC 20.331 20 .770 .172 

Pair 3 GUSBIC 20.479 20 .577 .129 

 NRBIC 20.406 20 .803 .180 

Source: Calculation using SPSS version 11.0. 

 

 

Table 3.40: Comparison of MAPE, AIC and BIC for the estimation using the Gauss-

Newton and Newton-Raphson methods 

 

Source: Calculation using SPSS version 11.0. 

 

From a paired comparison between the results obtained with the Gauss-

Newton and Newton-Raphson methods, it is clear that the average values of MAPE 

from the Gauss-Newton method are much lower, with statistical significance at a 

confidence level of 99%, whereas the differences between the average values of AIC 

and BIC are not statistically significant. 

  
Paired 

Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df 
Sig. 

(2-tailed) 

     Lower Upper    

Pair 1 
GUSMAPE 

NRMAPE 
-4.707 2.659 .595 -5.951 -3.462 -7.92 19 .000 

Pair 2 
GUSAIC  

NRAIC 
.0739 .285 .0637 -.059 .207 1.16 19 .260 

Pair 3 
GUSBIC  

NRBIC 
.0734 .284 .0635 -.060 .206 1.16 19 .262 
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However, this study covers only one product, so that the comparisons and the 

results just reflect this particular case. Therefore, it should be noted that our 

conclusions regarding the superiority of an algorithm or another are valid only for this 

case and should not be blindly generalized. 

 

3.7 Conclusions 

 In this chapter, we used limited data to forecast the sales of the feta cheese by 

estimating the S-curves following the theory of product life cycle.  First of all, we 

figured out whether the OLS or EGLS is better to be used in the estimation process. 

we also tried to find the sufficient number of observations that yields the most 

accurate forecasts due to the limitation of number of observations that usually occurs 

in the case of innovative agro-industrial products. Moreover, two functional forms of 

the model were compared: the traditional Bass model and the Logistic function. The 

methods of cumulative observations vs. rolling windows and the methods of fixed y-

intercept vs. floating y-intercept were also compared. Finally, we studied the 

suitability of three estimation algorithms for sales forecasting: Quasi-Newton, Gauss-

Newton and Newton-Raphson. 

 

 Our major results lead to the following conclusions: 

1. OLS is better than EGLS for parameter estimation in the Logistic 

transformation process. 

2. The sufficient number of observations is at least 7 months. The data should 

not exceed 24 months in order to make the forecasts accurate. 

3. The Logistic function is superior to the Bass model in terms of forecasting 

performance. It also shows a clearer S-curve pattern.. 

4. The method of rolling windows out perfoms the method of cumulative 

observations. The optimal window width is 15 months. 

5. The model with fixed y-intercept is much better than the with floating y-

intercept when the intercept is pegged at the first deseasonalized value of 

the sales series. 

6. Quasi-Newton seems to yield better forecasts than Gauss-Newton and 

Newton-Raphson when the accuracy is measured by MAPE from the out-
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of-sample test. However, the Gauss-Newton and Newton-Raphson 

algorithms yield smaller AIC and BIC from the in-sample measurement of 

the goodness of fit. This may be considered another critical finding of this 

study that a model with higher AIC and BIC will yield a better predictive 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


