Table of Contents

Page

Acknowledgements	iii
Abstract (Thai)	iv
Abstract (English)	
List of Tables	
List of Figures	xi
Abbreviations and Symblos	xiii
Chapter 1 Introduction	14
1.1 Principle and Rationale	14
1.2 Literature Review	15
1.2.1 Currently Available PD Frequency Response Measurement of NIST Standard	15
Using LCA 1.2.3 Newly PD Frequency Response Measurement Method	16
Using MZM	17
1.2.4 Improving Two-tone Lightwave Signal in MZM Method	18
MZM method 1.2.6 Summary of Literature Review and the Expected	20
Contribution of This Thesis	21
1.3 Objective	22
1.4 Scope of Work	22
1.5 Research Methodology	22
1.6 Expected Benefits	23
Chapter 2 Principle and Theory of Optoelectronic Measurement	24
2.1 Characterization of Components in Microwave Photonics System	24
2.2 Heterodyne Detection of Photodiodes	29

2.2.1 Principle of Photodiodes	29
2.2.2 CW Single Tone Light Detection of Photodiodes	33
2.2.3 Two-tone Detection of Photodiodes	34
2.3 Two-tone Light Amplification	35
2.3.1 Structure	35
2.3.2 Amplification in Three-Level System of an EDFA	36
2.3.3 Amplified Spontaneous Emission	37
Chapter 3 Research Designs and Methods	39
3.1 PD Frequency Response Measurement Setup without Using EDFA	A 39
3.2 PD Frequency Response Measurement Setup Using EDFA	42
3.2.1 EDFA is Used as a Pre-amp Before the Laser Output is	
Modulated by an MZM	42
3.2.2 EDFA is Used as a Post-amp for the Two-tone Signal	
Modulated by an MZM	43
3.3 EDFA Characterizations	44
3.3.1 Noise Figure	45
3.3.1 Gain Saturation	46
3.3.2 Gain Spectrum	48
Chapter 4 Results and Discussion	50
4.1 Two Stage Measurement System Setup	50
4.1.1 The Best Input Optical Power Level	50
4.1.2 The Best Constant Two-tone Optical Stimulus Signal Level	51
4.2 Compared PD Frequency Responses	54
4.2.1 Photodiode Model Picometrix P-18A	55
4.2.2 Photodiode Model Picometrix PT-15C	55
4.3 Null Point Biasing Control Using LabVIEW	56
4.3.1 MZM Characteristic	57
4.3.2 MZM Harmonics as a Function of the Bias Voltage	-58
4.3.3 Automated Null Point Biasing Control Algorithm	59
4.4 ASE Noise Analysis	60
4.5 Periodic PD Frequency Response Measurements	65
Chapter 5 Conclusion	68
5.1 Conclusions of This Research	68

References Curriculum Vitae	5.3 Suggestions and Guidelines for Further Research5.4 The Future Uses of the Research Results	
Curriculum Vitae	References	
	Curriculum Vitae	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Table		Т
- 4.01		San
2.1	Examples of microwave photonic components	
3.1	Insertion losses of the optical couplers	
4.1	Calculated RF power and frequency response error due to	
	ASE noise	

List of Figures

Figur		Page
1.10	NIST Nd: YAG heterodyne system, where labeled	
	components are BS(Beam splitter), M(Mirror), L(Lens),	
	F(Single mode fiber), D(Large area detector) and	
	A(Integrating amplifier).	16
1.2	LCA Model N4374C	17
1.3	Frequency response measurement systems using MZM	17
1.4	(a) Schematic of the MZ modulator, (b) Output spectrum	
	components of an MZM (c) Output lightwave response	
	of MZM at v= v_{π}	18
1.5	A high-extinction ratio MZM	19
1.6	Schematic of the DPMZM	19
1.7	MZM output Optical spectrum with various chirp parameters	20
1.8	Power of the two-tone stimulus signal as frequency change	21
2.1	A microwave fiber-optic link	25
2.2	An E/E two-port network	26
2.3	An O/O two-port network	26
2.4	An E/O two-port network	27
2.5	An O/E two-port network	27
2.6	Basic lightwave component analyzer configurations	
	For transmission measurement	28
2.7	Thermal equilibrium	30
2.8	Reverse bias	31
2.9	Cross section of a p-i-n photodiode	32
2.10	Frequency response (S ₂₁) of a Picometrix P18A photodiode	33
2.11	Structure of an EDFA	36
2.12	Three-level system of EDFA	36
2.13	ASE power spectrums as a function of wavelength	37
2.14	Amonics AEDFA-PA-25	37
2.15	(a) Unamplified lightwave and (b) Amplified lightwave	38
3.1	PD frequency response measurement system	41
3.2	LabVIEW front panel	42
3.3	PD frequency response measurements using EDFA as a pre-amp	43
3.4	PD frequency response measurements using EDFA as a post-amp	44
3.5	EDFA characterization measurement system	45
3.6	Noise figure as a function of optical wavelength	46

3.7	ASE noise estimation using MATLAB programming	47
3.8	EDFA-gain as a function of input optical power	48
3.9	EDFA-gain as a function of optical wavelength	49
4.1	Converted RF extinction ratio as a function of the input optical	
	power level	51
4.2	Input optical signal for the MZM	51
4.3	Output optical signal from the MZM with the modulation	
	frequency at 1GHz (resolution 0.06nm)	52
4.4	Converted RF extinction ratio as a function of the output	
	Optical two-tone power level	52
4.5	Amplified optical two-tone power by an EDFA	53
4.6	Extinction ratio of each point tested frequency (120 points)	53
4.7	Optical two-tone powers with and without using EDFA	54
4.8	Photodiode frequency responses (Picometrix P-18A)	55
4.9	Photodiode frequency responses (Picometrix PT-15C)	56
4.10	MZM characteristic	57
4.11	MZM bias voltages as the test frequency is swept	57
4.12	MZM harmonics as a function of bias voltages	58
4.13	Automated null point biasing control algorithm	59
4.14	PD (Picometrix P-18A) frequency response using gain-controlled	
	EDFA measured at different dates	66
4.15	PD (Picometrix P-18A) frequency response without using EDFA	
	measured at different dates	66
4.16	PD (Picometrix PT-15C) frequency response using gain-controlled	
	EDFA measured at different dates	67
4.17	PD (Picometrix PT-15C) frequency response without using EDFA	
	measured at different dates	67

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Abbreviations and Symbols

	Abbreviations and Symbols
ASE noise	Amplified Spontaneous Emission noise
CW	Continuous Wave
DFB laser	Distributed Feedback laser
DPMZM	Dual Parallel Mach Zehnder Modulator
DSB-SC	Double Side Band - Suppressed Carrier
DUT	Device Under Test
E/E	Electrical to Electrical
E/O	Electrical to Optical
EDFA	Erbium Doped Fiber Amplifier
High-ER MZM	High Extinction Ratio Mach Zehnder Modulator
LCA	Lightwave Component Analyzer
MZM	Mach Zehnder Modulator
Nd:YAG	Neodymium Yttrium Aluminum Garnet
NIST	National Institute of Standard and Technology
O/E	Optical to Electrical
0/0	Optical to Optical
OSA	Optical Spectrum Analyzer
PD	Photodiode
RF	Radio Frequency
SNR	Signal to Noise Ratio
VNA	Vector Network Analyzer
WDM	Wavelength Division Multiplexing