TABLE OF CONTENTS

TABLE OF CONTENTS		
	Page	
ACKNOWLEDGEMENTS	iii	
ABSTRACT	iv	
TABLE OF CONTENTS	ix	
LIST OF TABLES	xiii	
LIST OF FIGURES	XV	
CHAPTER 1 INTRODUCTION	27	
1.1 Introduction	1	
1.2 Literature Review	3	
1.2.1 Bioethanol production	3	
1.2.2 Overview of bioethanol production in Thailand	4	
1.2.3 GHG emissions of bioethanol	6	
1.2.4 Water footprint of bioethanol	13	
1.3 Objective of the Study	17	
1.4 Scope of the Study.	17	
CHAPTER 2 THEORY	19	
2.1 Life cycle assessment (LCA) methodology	19	
2.2 Carbon footprint methodology	22	
2.2.1 Scoping	24	
2.2.2 Data collection	27	
2.2.3 Calculation	28	
2.2.4 Interpretation	29	
2.3 Water footprint methodology	29	
2.3.1 Component of a water footprint	31	

2.3.2 Step in water footprint assessment	33
2.4 Scenario analysis	52
CHAPTER 3 METHODOLOGY	55
3.1 The review of harvested areas, products and yields of sugarcane	55
and cassava	
3.2 The study of the increase in the sugarcane and cassava harvested areas	55
by Geographic Information System	
3.3 Area selection and field data collection	56
3.4 Carbon footprint assessment of sugarcane-based and cassava-based	57
Bioethanol	
3.4.1 Goal definition	57
3.4.2 Scope definition	57
3.4.3 Data collection	60
3.4.4 Carbon footprint calculations	62
3.4.5 Interpretation	63
3.5 Water footprint assessment of bioethanol from sugarcane and cassava	64
3.5.1 Setting goals and scope of the study	64
3.5.2 Data collection	64
3.5.3 Calculation of WFs of sugarcane and cassava	66
3.5.4 Calculation of WFs of sugarcane- and cassava-based bioethanol	72
3.6 The scenario analysis of bioethanol for Thailand	73
3.6.1 Definitions and system boundaries	73
3.6.2 Scenario I: Compare gasoline 95, E10, E20 and E85	76
3.6.3 Scenario II: Increase capacity to 9 million liters of ethanol	77
per day by 2021	
CHAPTER 4 RESULTS AND DISCUSSION	82
4.1 The data from the literature and GIS concerning the selected areas for	82
the flied data collection	
4.1.1 Harvested areas, products and yields of sugarcane and cassava	82

Х

		4.1.2 The study of harvested areas of sugarcane and cassava by	83
		geological information system	
		4.1.3 General survey data of sugarcane and cassava plantations in	84
		northern Thailand	
	4.2	Carbon footprint	86
		4.2.1 Data collection results	86
		4.2.2 Carbon footprint calculations and interpretation	95
	4.3	Water footprint	102
		4.3.1 The green and blue evapotranspiration of sugarcane and cassava	a 102
		4.3.2 WFs of sugarcane and cassava	108
		4.3.3 WFs of sugarcane-based bioethanol	113
		4.3.4 WFs of cassava-based bioethanol	116
		4.3.5 The reduction of carbon and water footprints	119
	4.4	The results of scenario analysis	120
		4.4.1 Scenario I: Compare gasoline 95, E10, E20 and E85	120
		4.4.2 Scenario II: Increasing ethanol production to 9 million liters	122
		per day by 2021	
CHA	PTEF	R 5 CONCULSION AND RECOMMENDATIONS	132
	5.1	Conclusion	132
		5.1.1 Carbon footprint	132
		5.1.2 Water footprint	133
		5.1.3 Comparing the effects between gasoline 95, E10, E20 and E85	135
		5.1.4 The future of bioethanol of AEDP	135
	5.2	Guidelines to promote ethanol uses in Thailand	138

5.2.1 Guidelines of land uses for growing sugarcane and cassava5.2.2 Guidelines to reduce greenhouse gas emissions 138 139 5.2.3 Guidelines for water uses 5.3 Recommendations 140 142

REFERENCES	144
APPENDICES	150
APPENDIX A THE DATA OF SOIL SERIES OF CULTIVATION	151
AREA OF SUGARCANE AND CASSAVA IN NORTHERN	
THAILAND	
APPENDIX B THE SUMMARY OF IMPORTANCE SERVEY DATA	154
APPENDIX C CARBON FOOTPRINT CALCULATIONS OF	157
SUGARCANE-BASED AND CASSAVA-BASED BIOETHANO	L
APPENDIX D WATER FOOTPRINT OF SUGARCANE-BASED AND	164
CASSAVA-BASED BIOETHANOL CALCULATION	
APPENDIX E LIST OF PUBLICATION	177

CURRICULUM VITAE

201

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table

Page

1.1	Emission of greenhouse in ethanol production from sugarcane	8
1.2	Possible modalities for ethanol production in Mexico	10
1.3	Land and water use for biofuels	16
2.1	Global warming potential at 100-year time horizon	26
3.1	Scope of information used to assess the carbon footprint of	59
	sugarcane-based ethanol	
3.2	Scope of information used to assess the carbon footprint of	60
	cassava-based ethanol	
3.3	Data collection procedure of sugarcane-based ethanol	61
3.4	Data collection procedure of cassava-based ethanol	61
3.5	Emission factor for calculation of bioethanol from sugarcane and cassava	63
3.6	Data and sources for the calculation of WFs	64
3.7	Capacity for ethanol and proportion production in each year	77
3.8	Target of increase the national average production	80
4.1	Harvested areas, products and yields of sugarcane and cassava	83
4.2	The inventory data for 1 hectare of sugarcane cultivation	87
4.3	The inventory data for 1 kilogram of molasses	90
4.4	Allocation by mass of sugar and molasses	90
4.5	The inventory data for 1 liter of sugarcane-based bioethanol	91
4.6	The inventory data for 1 hectare of cassava cultivation	94
4.7	The inventory data for 1 liter of cassava-based bioethanol	95
4.8	GHG emission of 1 kilogram of unburned sugarcane	97
4.9	GHG emission of 1 kilogram of burned sugarcane	97

4.10	Carbon footprint results for 1 liter of sugarcane-based bioethanol	98
	(Allocation by mass)	
4.11	Carbon footprint results for 1 liter of sugarcane-based bioethanol	98
	(Allocation by economics)	
4.12	GHG emission of 1 kilogram of cassava	101
4.13	Carbon footprint results for 1 liter of cassava-based bioethanol	101
4.14	The ET _a , ET _{green} and ET _{blue} of sugarcane and cassava	103
4.15	Evapotranspiration and forecast yield under optimal condition	107
4.16	Water footprint of sugarcane under rain-fed condition	109
4.17	Water footprint of sugarcane under optimal condition	109
4.18	Water footprint of cassava under rain-fed condition	111
4.19	Water footprint of cassava under optimal condition	112
4.20	The use of land for growing sugarcane and cassava	124
4.21	The areas plants sugarcane and cassava by AEDP with increased	126
	average yields	
4.22	Water footprint for sugarcane and cassava production	129
4.23	Water footprint for increasing yield sugarcane and cassava plants	131

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xiv

LIST OF FIGURES

Figure

	LIST OF FIGURES	
Figu	ire	Page
9.1	World production of bioethanol's	3
1.2	GHG emissions of different sugar-based ethanol configurations	11
1.3	Breakdown of GHG emissions by step for sugar-based ethanol scenarios	11
1.4	Modeling of changes in agricultural systems to satisfy increased demand	12
	of a ton of cassava in Thailand	
2.1	Life cycle stages	20
2.2	Phase of LCA	21
2.3	Steps of carbon footprint calculation	24
2.4	Cradle-to-gate and cradle-to-grave assessments	26
2.5	Components of a water footprint	31
2.6	Chain supply in the production process of water footprint	33
2.7	Steps in the water footprint assessment	34
2.8	Reference crop evapotranspiration (ETo), crop evapotranspiration under	39
	standard condition (ETc) and non-standard conditions (ETc adj)	
2.9	Crop coefficients and crop development stages	42
2.10	Schematization of the production system to produce one output product p	47
2.11	Schematization of the production system to produce output product p	48
2.12	2. The five phases of general scenario process	53
3.1	Graphical depiction of the methodology of this research work	56
3.2	A process map for sugarcane-based ethanol	58
3.3	A process map for cassava-based ethanol	58
3.4	The entire system boundary of this research study	59
3.5	Climate data input to the CROPWAT model	67

Rain data input to the CROPWAT model 67 3.6 3.7 Sugarcane data input to the CROPWAT model 68 3.8 Cassava data input to the CROPWAT model 69 3.9 Soil data input to the CROPWAT model 69 3.10 The results derived from the model execution 71 74 3.11 Key determinants of the potential for bioethanol production from sugarcane and cassava in Thailand 3.12 System boundary of scenario I 76 77 3.13 System boundary of scenario II 4.1 The density of the spread of sugarcane and cassava harvested areas 85 in northern Thailand 4.2 The life cycle of sugarcane-based ethanol 89 4.3 93 The life cycle of cassava-based ethanol 96 4.4 Mass balance of 1 liter of sugarcane-based bioethanol 100 4.5 Mass balance of 1 liter of cassava-based bioethanol 4.6 CF calculation results during the life cycle of cassava-based bioethanol 102 4.7 Evapotranspiration, yield, total rainfall and effective rainfall in case of 104 sugarcane 4.8 Evapotranspiration, yield, total rainfall and effective rainfall 104 in case of cassava 4.9 Total crop water use and sugarcane yield of each province in northern 105 Thailand 4.10 Total crop water use and cassava yield of each province in northern 106 Thailand 4.11 Yield of sugarcane under rain-fed and optimal condition 108 4.12 Yield of cassava under rain-fed and optimal condition 1084.13 The WFs of sugarcane producer countries 110 4.14 The WFs of cassava producer countries 112 4.15 The water use for sugarcane-based bioethanol, showing the product fraction and value fraction per processing step 4.16 The WFs of sugarcane, molasses and bioethanol steps for 115

sugarcane cultivated under rain-fed condition

4.1′	7 The WFs of sugarcane, molasses and bioethanol steps for sugarcane	115
	cultivated under optimal condition	
4.18	3 The WFs of country producer sugarcane-based bioethanol	116
4.19	The water use for cassava-based bioethanol, showing the product	117
	fraction and value fraction per processing step	
4.20) The WFs of cassava, cassava chips and bioethanol steps for	118
	cassava cultivated under rain-fed condition	
4.2	The WFs of cassava, cassava chips and bioethanol steps for cassava	118
	cultivated under optimal condition	
4.22	2 Land use for different types of fuels	121
4.23	3 Greenhouse gas emissions of each fuel type	121
4.24	4 Water consumption for different types of fuel productions	122
4.2	5 Comparing land use for growing sugarcane and cassava	124
4.20	6 Carbon footprints for a constant and changed ratio of ethanol production	127
	(Allocation of molasses by mass)	
4.2	7 Carbon footprints for a constant and changed ratio of ethanol production	128
	(Allocation of molasses by economics)	
4.28	⁸ Water footprints for fixed and changed ratios of ethanol production	130

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved