Thesis Title Enhancement of Electrostatic Precipitator for Submicron

Particle Collection Using Non-Thermal Plasma

Technique

Author Mr. Vishnu Thonglek

Degree Doctor of Engineering (Energy Engineering)

Thesis Advisory Committee Prof. Dr. Tanongkiat Kiatsiriroat Advisor

Assoc. Prof. Dr. Sumpun Chaitep Co-advisor

Assoc. Prof. Dr. Nakorn Tippayawong Co-advisor

Asst. Prof. Dr. Natthawud Dussadee Co-advisor

ABSTRACT

Emission control of fine particulate matters has been one of main interest due to the serious effects on human health and many countries have launched new emission regulations. The existing concept is normally based on electrostatic precipitators (ESPs) due to its high effective particle captures with low pressure drop. The collection efficiency of the ESPs could reach up to 99.99%, however, the technique is not suitable for submicron in the range of 0.1-1 μm and ultrafine particles of which the size is less than 0.1 μm . For these particle sizes the efficiency is less than 50%. Therefore, development technique for enhancing the submicron particles collection of conventional ESPs is needed.

In this research work, experimental studies on improvement of electrostatic precipitator for submicron particle collection were carried out. The study was separated into 3 steps. Firstly, a lab-scale wire-cylinder ESP under negative high voltage pulse energization was tested and the collection efficiency was compared to that under a negative high voltage DC-energization. Secondly, a non-thermal plasma

agglomeration technique for number particle reduction of submicron particles with a size range of 0.3- $5.0 \mu m$ generated in an exhaust gas from diesel oil combustion was presented. Finally, a combination of a submicron particle agglomerator to pre-charge the particles before collecting in a pulse-energized ESP was carried out.

The particle collection efficiency in terms of air velocity, supplied voltage and dust loading were experimentally investigated. For pulse energization, the pulse peak voltage can be set much higher than that of DC energization. Moreover, the high voltage pulse energizing not only used lower energy but also had higher efficiency than the DC energization. The total collection efficiency could be increased up to 92% at – 10 kV of supplied voltage and pulse frequency at 40 kHz. Investigation of the agglomeration characteristics and the reduction efficiency of submicron particles in a size range of $0.3 - 5.0 \mu m$ were performed. The experimental results showed that the particle reduction efficiency increased with increasing pulse peak voltage and pulse frequency. With higher gas velocity and higher dust loading, a higher frequency of small particle collisions could be obtained, and the agglomeration of charged small particles could be achieved easily. However, at higher gas velocity, some particles were insufficiently charged. In our experiment at a peak voltage of 45 kV and a pulse frequency at 20 kHz, the efficiency increased when the gas velocity was increased from 0.5 ms⁻¹ to 1 ms⁻¹, but a lower efficiency was obtained when the speed was over 1 m/s. In this condition, the submicron particle number reduction efficiency for all particle sizes was over 90% in our non-thermal plasma ESP. A model to predict the reduction efficiency at various operating conditions could be evaluated from the experimental data as $\eta_r = 91.811 \times V_{ave}^{0.039988} \times N^{-0.004392} \times U_g^{0.002238} \times d_p^{0.0053816}$).

The ESP performance was considered under with and without NTP precharger. The results indicated that the overall efficiency was greater than 95% when the NTP pre-charger was included. The overall collection efficiency also increased with the increase of the dust loading and gas velocity but was unlike in low dust loading. A model to predict the overall collection efficiency at various operating conditions could be evaluated from the experimental data as $\eta_c = 34.37 \times V_{mean}^{0.74514} \times N^{-0.021454} \times U_g^{0.094815}$.

ชื่อเรื่องวิทยานิพนธ์

การเพิ่มความสามารถของเครื่องตกตะกอนเชิงไฟฟ้าสถิต สำหรับกักเก็บอนุภาคขนาดเล็กกว่าไมโครเมตรโดยใช้ เทคนิคนอนเทอร์มัลพลาสมา

ผู้เขียน

นายวิษณุ ทองเล็ก

ปริญญา

วิศวกรรมศาสตรคุษฎีบัณฑิต (วิศวกรรมพลังงาน)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ส.คร. ทนงเกียรติเกียรติสิริโรจน์อาจารย์ที่ปรึกษาหลักรศ.คร. สัมพันธ์ใชยเทพอาจารย์ที่ปรึกษาร่วมรศ.คร. นครทิพยาวงศ์อาจารย์ที่ปรึกษาร่วมผศ.คร. ณัฐวุฒิคุษฏีอาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

การควบคุมปริมาณของอนุภาคสารแขวนลอยขนาดเล็กที่แพร่กระจ่ายสู่อากาศได้รับ ความสนใจมาก เนื่องจากมีผลกระทบอย่างรุนแรงต่อสุขภาพของมนุษย์ และหลายประเทศได้นำเอา มาตรการความคุมการปลดปล่อยอนุภาคสารแขวนลอยใหม่ที่มาพิจารณา หลักการกรองแยก อนุภาคออกจากอากาศที่ใช้กันทั่วไปคือเครื่องตกตะกอนเชิงไฟฟ้าสถิตเนื่องจากมีประสิทธิภาพการ คักจับสูงถึง 99 เปอร์เซ็นต์ประกอบกับแรงคันอากาศตกมีค่าน้อย อย่างก็ตามไรเทคนิคคังกล่าวไม่ เหมาะสำหรับอนุภาคขนาด 0.1 ถึง 1 ไมโครเมตร และอนุภาคที่มีขนาดเล็กกว่าไมโครเมตร ประสิทธิภาพของเครื่องตกตะกอนเชิงไฟฟ้าสถิต สำหรับอนุภาคขนาด 0.1 ถึง 1 ไมโครเมตรยังต่ำ กว่า 50 เปอร์เซ็นต์ คังนั้นจึงจำเป็นต้องพัฒนาเทคนิคใหม่เพื่อเพิ่มความสามารถสำหรับกรอง อนุภาคที่มีขนาดเล็กกว่าไมโครเมตร ให้กับเครื่องตกตะกอนเชิงไฟฟ้าสถิตที่มีใช้งานในปัจจุบัน

วิทยานิพนธ์นี้ เป็นการศึกษาพัฒนาเทคนิคพลาสมาสำหรับเพิ่มความสามารถในการกรอง อนุภาคขนาดเล็กกว่าไมโครเมตร โดยแบ่งการศึกษาทดลองออกเป็น 3 ขั้นตอน ขั้นตอนแรกเป็น การทดลองประสิทธิภาพการตกตะกอนของเครื่องตกตะกอนเชิงไฟฟ้าสถิตแบบสายท่อ โดยการ กระตุ้นด้วยไฟฟ้าแรงดันสูงแบบพัลส์ขั้วลบเปรียบเทียบกับการกระตุ้นด้วยไฟฟ้าแรงดันสูง กระแสตรงขั้วลบซึ่งใช้ในเครื่องตกตะกอนเชิงไฟฟ้าสถิตธรรมดาทั่วไป ขั้นตอนที่สอง เป็นการ ทดลองหาประสิทธิภาพการลดจำนวนของอนุภาคขนาดเล็กกว่าไมโครเมตรในช่วงขนาด 0.3-5.0 ไมโครเมตรด้วยเทคนิคการรวมตัวกันของอนุภาคขนาดเล็กภายใต้นอนเทอร์มัลพลาสมา ขั้นตอน สุดท้ายเป็นการทดลองหาประสิทธิภาพทั้งหมดโดยนำเอาเครื่องตกตะกอนเชิงไฟฟ้าสถิตแบบสายท่อ ที่การกระตุ้นด้วยไฟฟ้าแรงดันสูงแบบพัลส์ขั้วลบรวมกับนอนเทอร์มัลพลาสมาปรีชาร์จเจอร์

การศึกษาทดลองประสิทธิภาพการตกตะกอน ภายใต้อิทธิพลของความเร็วอากาศ แรงคันไฟฟ้า และความเข้มข้นของของอนุภาค พบว่าเมื่อกระตุ้นค้วยไฟฟ้าแรงคันสูงแบบพัลส์แคบ สามารถเพิ่มขนาดค่ายอดของแรงดันไฟฟ้าเกินกว่าค่าแรงดันเบรกดาวน์ของการกระตุ้นด้วย แรงคันไฟฟ้ากระแสตรง ยิ่งกว่านั้นการกระตุ้นค้วยไฟฟ้าแรงคันสูงยังใช้พลังงานน้อยกว่าแต่ให้ ประสิทธิภาพการตกตะกอนที่สูงกว่า โดยที่มีประสิทธิภาพการกักเก็บเชิงมวลสูงเป็น 92 เปอร์เซ็นต์ที่ ์ แรงคันสูง 10 กิโลโวลต์ ความถี่ 40 กิโลเฮิร์ต การศึกษาทดลองการรวมตัวอนุภาคให้มีขนาดใหญ่ขึ้น ด้วยเทคนิคพลาสมา และประสิทธิภาพการลดของอนุภาคขนาคระหว่าง 0.3 ถึง 5 ไมโครเมตร พบว่า ประสิทธิภาพการลดเพิ่มขึ้นเมื่อเพิ่มค่ายอดแรงดันและความถี่ของแรงดันสูงแบบพัลส์แคบ อนุภาค ขนาดเล็กที่มีประจุไฟฟ้าจะรวมตัวกันได้ดีเมื่อความเร็วก๊าซและความเข้มขั้นของอนุภาค ความถึ่ แรงคันไฟฟ้ามีค่าสูง อย่างไรก็ตามที่ความเร็วก๊าซสูง อนุภาคขนาดเล็กจะได้รับการประจุไฟฟ้าน้อย ผลการทคลองที่ค่ายอดแรงคัน 45 กิโลโวลต์ และความถี่ 20 กิโลเฮิร์ต ประสิทธิภาพจะเพิ่มขึ้นเมื่อทำ การเพิ่มความเร็วก๊าซจาก 0.5 เมตรต่อวินาที ถึง 1 เมตรต่อวินาที แต่ประสิทธิภาพจะตกลงเมื่อความเร็ว ก๊าซสูงเกิน 1 เมตรต่อวินาที ภายใต้เงื่อนไขคั้งกล่าวประสิทธิภาพการลคมีค่าเกินกว่า 90 เปอร์เซ็นต์ สำหรับอนุภาคทุกขนาด ข้อมูลจากการทดลองนำไปสร้างแบบจำลองสำหรับทำนายประสิทธิภาพการ ลด โดยเป็นฟังก์ชันของพารามิเตอร์ที่เกี่ยวข้องต่างๆ ดังนี้ $\eta_r \, = 91.811 imes V_{ave}^{0.039988} imes$ $N^{-0.004392} \times U_q^{0.002238} \times d_n^{0.0053816}$).

การพิจารณาสมรรถนะของเครื่องตกตะกอนเชิงไฟฟ้าสถิตภายใต้การใช้นอนเทอร์มัล พลาสมาปรีชาร์จเจอร์ ผลการทดลองแสดงให้เห็นว่าประสิทธิภาพโดยรวมอนุภาคเมื่อทำการทดลอง โดยเครื่องตกตะกอนเชิงไฟฟ้าสถิต ร่วมกับนอนเทอร์มัลพลาสมาปรีชาร์จเจอร์ พบว่ามีค่าเพิ่มขึ้น มากกว่า 95 เปอร์เซ็นต์ และประสิทธิภาพการกักเก็บโดยรวมเพิ่มขึ้นเมื่อความเร็วก๊าซและความ เข้มข้นของอนุภาคเพิ่มขึ้น แต่มีความแตกต่างเมื่อความเข้มข้นต่ำ ค่อนข้างคงที่เมื่อความเร็วก๊าซ เพิ่มขึ้น ข้อมูลจากการทดลองนำไปสร้างแบบจำลองสำหรับทำนายประสิทธิภาพการกักเก็บโดยรวม โดยเป็น ฟังก์ชันของพารามิเตอร์ที่เกี่ยวข้องต่างๆ ดังนี้ $\eta_c = 34.37 \times V_{mean}^{0.74514} \times N^{-0.021454} \times U_g^{0.094815}$