TABLE OF CONTENTS

xii

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	V
ABSTRACT (THAI)	viii
TABLE OF CONTENTS	xii
LIST OF TABLES	xviii
LIST OF FIGURES	xxii
ABBREVIATIONS AND SYMBOLS	xxvi
CHAPTER 1 INTRODUCTION	
1.1 Background and statement of the problems	1
1.1.1 Environmental problem in Thailand	1
1.1.2 Life cycle impact assessment	5
1.1.3 Life cycle impact assessment method	7
1.2 Objective of the research	9
1.3 Research scope	9
1.4 Future benefit of research	10
1.5 Research procedure and methodology	10
1.5.1 Theory and principle review	11 9
1.5.2 Analysis environmental problems in Thailand	
1.5.3 Data collection	11
1.5.4 Data analysis	12
1.5.5 Model development	Universit
1.5.6 Model application	13
1.5.7 Conclusion and recommendation	

CHA	APTER 2 THEORY AND LITERATURE REVIEW	15
	2.1 Introduction to Life Cycle Assessment (LCA) Approaches	15
	2.2 Life-cycle Impact assessment Method based on Endpoint modeling	19
	(LIME)	
	2.3 ReCiPe	22
	2.4 IMPACT 2002 ⁺	23
	2.5 Global warming damage model	25
	2.5.1 What is global warming?	25
	2.5.2 Relevant research	26
	2.6 Human toxicity model	32
	2.6.1 What is the human toxicity?	32
	2.6.2 Human toxicity methodology	34
	2.6.3 Relevant research	39
	2.7 Ecotoxicity model	41
	2.7.1 What is the ecotoxicity?	41
	2.7.2 Ecotoxicity methodology	41
	2.7.3 Relevant research	43
	2.8 Eutrophication model	44
	2.8.1 What is the eutrophication?	44
	2.8.2 Eutrophication methodology	44
	2.8.3 Relevant research	46
	2.9 Acidification model	47
	2.9.1 What is the acidification?	47
	2.9.2 Acidification methodology	48
	2.9.3 Relevant research	50
	2.10 Contingent Valuation Method (CVM)	51
	2.10.1 What is the contingent valuation method?	51
	2.10.2 Economic theory of contingent valuation	52
	2.10.3 Relevant research	53
	2.11 LCA of electricity power plant in Thailand	56
	2.11.1 LCA of electricity power plant in Thailand	56

xiii

2.11.2 Relevant research	57
CHAPTER 3 MODELING CONCEPT	59
3.1 Opinion concerning major environmental problems in Thailand	59
3.2 Cause and effect of global warming	60
3.3 IMPACT2002 model for human toxicity and eco-toxicity	62
3.3.1 Human toxicity	64
3.3.2 Ecotoxicity	67
3.4 Cause and effect of eutrophication	69
3.5 Cause and effect of acidification	70
3.6 Weighting factor	71
3.7 Integration model	72
CHAPTER 4 IMPACT CATEGORY MODEL	74
4.1 Global warming impact category	74
4.1.1 Framework of global warming impact category	74
4.1.2 Scope and system boundary	75
4.1.3 Data requirement	77
4.1.4 Global warming impact category model	78
4.1.5 Result	86
4.1.6 Discussion	93
4.2 Human toxicity impact category	95
4.2.1 Framework of human toxicity impact category	95
4.2.2 Scope and system boundary	96
4.2.3 Data requirement	97
4.2.4 Human toxicity impact category model	98
4.2.5 Result	100
4.2.6 Discussion	109
4.3 Ecotoxicity impact category	109
4.3.1 Framework of ecotoxicity impact category	109
4.3.2 Scope and system boundary	110

xiv

XV	
4.3.3 Data requirement	111
4.3.4 Ecotoxicity impact category model	112
4.3.5 Result	114
4.3.6 Discussion	116
4.4 Eutrophication impact category	117
4.4.1 Framework of eutrophication impact category	117
4.4.2 Scope and system boundary	118
4.4.3 Data requirement	120
4.4.4 Eutrophication model with results and discussion	121
4.4.5 Discussion	126
4.5 Acidification impact category	128
4.5.1 Framework of acidification impact category	128
4.5.2 Scope and system boundary	129
4.5.3 Data requirement	131
4.5.4 Acidification model with results and discussion	131
4.5.5 Discussion	141
CHAPTER 5 NORMALIZATION AND WEIGHTING FACTORS	143
5.1 Scope and system boundary of weighting factor	143
5.2 Questionnaire structure	145
5.3 Bid price determination	145
5.4 Elicitation method	145
5.5 Hypothesized scenario	146
5.6 Variable analysis	146
5.6.1 Dependent variables	146
5.6.2 Independent variables	147
5.7 Hypothesized effects of variables on WTP	147
5.8 Result and discussion	148
5.8.1 Social-economic profile	148
5.8.2 Problem concerns in Thailand	149
5.8.3 Environmental concerns in Thailand	150

xvi	
5.8.4 Attitude about the environmental damage on human health, social assets, biodiversity, and primary production effect on peoples	151
5.8.5 Attribute about loss of safeguard subject	152
5.8.6 Attribute about damage of safeguard subjects	153
5.8.7 Estimated the Willingness-to-Pay (WTP) for management of	154
natural resources to decrease the loss of human health, social	
assets, biodiversity, and primary production	
5.8.8 Reasons for the unwillingness-to-pay (un-WTP) for	157
management of natural resources to decrease the loss of	
human health, social assets, biodiversity, and primary production	
5.8.9 Willingness-to-pay for management of natural resources to	162
decrease the loss of human health, social assets, biodiversity, and primary production	
5.9 Weighting factor for impact assessment model	165
5.10 Discussion	166
CHAPTER 6 MODEL TESTING: ELECTRICITY IN THAILAND	169
6.1 Goal and scope definition	169
6.1.1 Coal–fired power plant	172
6.1.2 Natural gas power plant	172
6.1.3 Solar power plant	173
6.1.4 Hydro power plant	173
6.2 Life cycle inventory of electricity generation	173
6.3 Life cycle impact assessment of electricity generation	184
6.3.1 Global warming	185
6.3.2 Human toxicity	195
6.3.3 Ecotoxicity	202
6.3.4 Eutrophication	206
6.3.5 Acidification	209

xvii		
6.4 Interpretation	213	
CHAPTER 7 CONCLUSIONS AND RECOMMENDATION	216	
7.1 Impact assessment model for Thailand	216	
7.1.1 Global warming	216	
7.1.2 Human toxicity	218	
7.1.3 Ecotoxicity	219	
7.1.4 Eutrophication	219	
7.1.5 Acidification	220	
7.2 Weighting factor for integrated model	221	
7.3 Applying impact assessment to life cycle assessment of electricity	222	
in Thailand		
7.4 Recommendation	223	
REFERENCE	225	
APPENDICES	240	
Appendix A: Global warming	241	
Appendix B: Human toxicity	262	
Appendix C: Ecotoxicity	298	
Appendix D: Eutrophication	341	
Appendix E: Acidification	344	
Appendix F: Weighting factor	356	
Appendix G: Definition	380	
CURRICULUM VITAE	383	

LIST OF TABLES

xviii

	LIST OF TABLES	
Table		Page
2.1	The ozone layer depletion damage modeling step	22
2.2	Summary of models used to assess toxic chemicals	32
2.3	Emission compartments, environmental receptors, and human intake	37
	routes	
2.4	The results of damage factors on human health caused by heavy metals	40
2.5	Decrease in fishery production by loads (Yen/kg substance)	46
2.6	Typical acid substances and their causative substances	50
3.1	Opinion concerning major environmental problems in Thailand	60
4.1	The assumption of relative risk on health effects were considered	80
4.2	Mean and range of COSMIC model outputs, for temperature change in	81
	S550 scenario on the year 2020, relative to the year 1990	
4.3	The DALYs, relative risk factor for 2003 used in the calculation of the	82
	human health, and the resulted of $\Delta DALY_{c,r,t}$	
4.4	The calculation of the NPP effect factor	87
4.5	The characterization factor of each GHGs and temperature factor	88
4.6	The damage function of global warming for nine GHGs with calculated	89
4.7	Comparison of the damage function for global warming of this study,	95
	LIME, Eco-indicator 99, and ReCiPe	
4.8	Input parameters for fate and exposure analysis	-99
4.9	Human toxicity characterization factor	105
4.10	Comparison HTP between this study and LIME method	106
4.11	Damage factors of chemical substances on human health damage	108
4.12	Total number of species in danger of extinction in Japan and plants in	113
	IUCN red list in Japan	
4.13	Effect parameter for biodiversity damage in Thailand	113

	xix	
4.14	Ecotoxicity characterization factor	114
4.15	Damage factors of chemical substances on biodiversity	116
4.16	The midpoint factor of eutrophication potential	122
4.17	Calculation results of DO concentration in bottom	123
4.18	Impact for benthic organisms caused by loads ($\times 10^{-6}$ %)	125
4.19	Eutrophication damage factor	126
4.20	Comparison characterization factor of eutrophication	127
4.21	Comparison damage factor of eutrophication	128
4.22	DAP, ADF, and parameters used for midpoint approach	134
4.23	Damage function of acidification for terrestrial ecosystem	140
4.24	Value of wood production	140
4.25	Damage function of acidification for wood production	141
4.26	Comparison of acidification potential	142
5.1	The survey questionnaire consisted of three sections outline	145
5.2	Definition of variables	148
5.3	Social–economic profile of sample respondents	149
5.4	Problem concerns in Thailand	150
5.5	The environmental concerns in Thailand	151
5.6	Attitude about environmental damage	152
5.7	Attribute about loss of safeguard subjects	153
5.8	Attribute about damage of area of safeguard	154
5.9	WTP for bid price	156
5.10	Reason for non–WTP	160
5.11	The calculated result of contingent valuation analysis	163
5.12	Multivariate probit analysis	-163
5.13	An example of characterization, damage, and weighting coefficients	166
	of Global Warming	
5.14	Normalization values for safeguard areas in Thailand based on LIME	168
	Method	
5.15	The relative weighting factor based on annual damage from Japan	168
6.1	The LCI analysis of coal-fired power plant in unit kgsubstance/kWh	174

6.2	The LCI analysis of combined-cycle power plant in unit kg _{substance} /kWh	176
6.3	The LCI analysis of thermal power plant in unit kg _{substance} /kWh	178
6.4	The LCI analysis of hydro power plant in unit kg _{substance} /kWh	181
6.5	The LCI analysis of solar power plant in unit kg _{substance} /kWh	182
6.6	The scope of LCIA	185
A.1	Lifetimes, radiative efficiencies, temperature factors, and	242
	characterization factor	
A.2	Damage function of global warming on human health	245
A.3	Damage function of global warming on social asset	252
A.4	Damage function of global warming on primary production	256
A.5	WHO Regions and 14 sub-regions	260
B.1	Model parameters that can be adapted to regional or local conditions	263
B.2	Fate analysis	265
B.3	Exposure analysis	268
B.4	Intake fraction	271
B.5	Midpoint factors	275
B.6	Damage factors	282
B.7	Water areas	294
B.8	Default parameter in the air module	295
B.9	Default parameters of soil module	295
B .10	Default parameters of the vegetation module	296
B .11	Default parameters of the water module	297
B.12	Default parameters of the sedimentation module	297
B.13	Default parameters of the sea module	297
C .1	Result of chemical concentration and midpoint factor	299
C.2	Chemical data damage	303
C.3	Damage factor of ecotoxicity on biodiversity	314
D.1	Water quality of Songkla lake	342
D.2	Water quality of Phayao lake	343
E.1	Estimated air pollutant emission by type from energy consumption	345

XX

E.2	Annual SO ₂ concentration	346
E.3	Annual HNO ₃ concentration	346
E.4	Annual HCl concentration	347
E.5	Annual HNO ₃ concentration	347
E.6	Annual NO concentration	347
E.7	Annual NO ₂ concentration	
E.8	Annual NO _x concentration	348
E.9	Annual SO ₄ ²⁻ concentration	348
E.10	Annual NO ₃ ⁻ in PM concentration	349
E.11	Annual Cl ⁻ in PM concentration	349
E.12	Annual NH4 ⁺ in PM concentration	349
E.13	Annual Na ⁺ in PM concentration	350
E.14	Annual Mg ²⁺ in PM concentration	350
E.15	Annual Ca ²⁺ in PM concentration	350
E.16	Annual deposition in 2004	351
E.17	Annual deposition in 2005	351
E.18	Annual deposition in 2006	35
E.19	Annual deposition in 2007	352
E.20	Annual deposition in 2008	352
E.21	Annual deposition in 2009	352
E.22	Soil pH and Al ³⁺	353
F.1	Weighting factor coefficients of global warming on human health	362
F.2	Weighting factor coefficients of global warming on social assets	365
	and primary production	
F.3	Weighting factor coefficients of human toxicity on human health	368
F.4	Weighting factor coefficients of ecotoxicity on biodiversity	37
F.5	Weighting factor coefficients of eutrophication on social assets	379
F.6	Weighting factor coefficients of acidification on primary production	379
	and social assets	

xxi

LIST OF FIGURES

	LIST OF FIGURES	
Figur		Page
1.1	Summary of the environmental problems in Thailand	2
1.2	Illustrative inventory data, category indicators, areas of protection,	8
	as well as an optional step to estimate a final indicator in terms of Yen	
	(based on LIME)	
1.3	The research procedure and methodology	14
2.1	The four steps of LCA	15
2.2	Element of the LCIA phase	16
2.3	Some cause–effects links in LCIA	17
2.4	Potential problems in impact category, indicator and model selection	18
2.5	The principal framework of LIME	22
2.6	Overall structure of the LCIA method ReCiPe	23
2.7	Overall scheme of the IMPACT 2002 ⁺ framework, linking LCI	25
	results via the midpoint categories to damage categories	
2.8	Cause–effect of global warming	26
2.9	Overview of the steps in modeling effects of greenhouse gases with respect to climate change	27
2.10	Framework of the damage function	31
2.11	General scheme of the impact pathway for human toxicity and ecotoxicity	36
2.12	Chain of potential impacts of eutrophication	44
2.13	Acidification chain of potential impact	48
2.14	The system boundary of natural gas life cycle assessment	57
2.15	Total external costs of environmental impacts of power plants	58
3.1	Cause and effect relationship of global warming	61
3.2	Cause and effect relationship of toxic chemicals	63
3.3	Framework for the fate modeling	64

xxii

3.4	Development procedure to determine damage function on human	66
	health and biodiversity	
3.5	Cause and effect chain of eutrophication	70
3.6	Cause and effect chain of acidification	71
3.7	Procedure to evaluate weighting factors of safeguard subjects applying	72
	contingent valuation	
3.8	Impact assessment model for Thailand based on endpoint modeling	73
4.1	Framework on global warming	75
4.2	Schematic diagram of the damage function for global warming	77
4.3	Data requirement for global warming impact category	78
4.4	Framework on human toxicity	96
4.5	Development procedure to determine damage function on human health	97
4.6	Data requirement for human toxicity impact category	97
4.7	Fate analysis through environmental media	101
4.8	Human exposure via inhalation and ingestion of Thai peoples	102
4.9	Intake fraction of chemical substance	103
4.10	Comparison the world and Thailand intake fraction via inhalation and	104
	ingestion	
4.11	The framework on ecotoxicity category	110
4.12	Development procedure to determine damage function on biodiversity	111
4.13	Data requirement for ecotoxicity impact category	111
4.14	Framework on eutrophication	118
4.15	Eutrophication chain of potential impact	119
4.16	The eutrophication target area in Thailand	120
4.17	Data requirement for eutrophication category	120
4.18	Framework on acidification	129
4.19	Acidification chain of potential impact	130
4.20	Data requirement for acidification	131
4.21	Relationship between pH and depth	137
4.22	Relationship between leachate pH and Al ³⁺ concentration for	138
	representative soil types in Thailand	

xxiii

		٠	
Х	Х	1	V

5.1	The framework and scope of weighting factor	144
5.2	The system boundary of the area of residence for data collection	144
6.1	The system boundary of coal-fired, natural gas, hydro, and solar power plants	170
6.2	The location of power plants and energy sources for electricity	171
	production in Thailand	
6.3	Global warming impact by each substances entire life cycle of	186
	electricity generation	
6.4	Global warming impact by life cycle stage	186
6.5	Global warming damage to human health	190
6.6	Global warming based on social damage	192
6.7	Global warming based on primary production damage	193
6.8	Economic valuation from global warming	195
6.9	Comparison of impacts of chemical substances on cancer from human	196
	toxicity effect	
6.10	Human toxicity on cancer effect by each substances entire life cycle of	196
	electricity power plant	
6.11	Comparison of impacts of chemical substances on chronic diseases from	197
	human toxicity effect	
6.12	Human toxicity effect on chronic diseases of each substance from the	198
	entire life cycle electricity power plants	
6.13	Human toxicity chemical damage to human health	199
6.14	Comparison of impacts from chemical substances on human health	201
6.15	Economic valuation from human toxicity	202
6.16	Ecotoxicity effect on aquatic ecosystems of each substance from the	203
	entire life cycle of electricity generation power plants	
6.17	Ecotoxicity chemical damage to biodiversity	204
6.18	Comparison of impacts from chemical substances on ecotoxicity	205
6.19	Comparison of impacts from chemical substances on ecotoxicity	206
6.20	Eutrophication impact of each substance from the entire life cycle of	207

		electricity generation	
(6.21	Social damage from eutrophication	208
	6.22	Economic valuation of eutrophication	209
	6.23	Acidification impact of each substance from the entire life cycle of	210
		electricity generation	
	6.24	Social damage from acidification	211
	6.25	Primary production damage from acidification	212
	6.26	Economic valuation of acidification	213
(6.27	Comparison of midpoint impact categories of electricity power plants	214
N	6.28	Economic valuation of electricity power plants	215
	7.1	Economic cost electricity power plant in Thailand	222

XXV

<mark>ລິບສິກສົ້ນກາວົກຍາລັຍເຮີຍວໃหນ່</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

xxvi

Abbreviation	
ADF	atmospheric deposition factor
AMI	assessment of mean impact
AoPs	areas of protections
Att	attributable
a _x	radiative efficiency
В	burden
BD	biodiversity damage
BoD	burden of disease
BW	body weight
с	cases
CI	category indicator
CV	contingent valuation
CVM	contingent valuation method
D	severity
DALY	disability adjusted life year
DD	data deficient
DF	damage factor
EF	effect factor
EINES	expected increase in number of extinct species
EN	ebdabgerred
eq.	equivalent Chiang Mai University
ETH	ecotoxicity
EW	extinct in the wild
EX	extinct

xxvii

FF	fate factor
GDP(PPP) _{percap}	the gross domestic production at purchasing power parity per capita
GHG	greenhouse gases
GISS	Goddard Institute for Space Studies model
GWP	global warming potential
НН	human health
iF	intake fraction
IPCC	the Intergovernmental Panel on Climate Change
LC	least concern
LCA	life cycle assessment
LCI	life cycle inventory
LCIA	life cycle impact assessment
LD50	lethal dose 50
LIME	Life-cycle Impact Assessment Method based on Endpoint Modeling
LOEAL	Lowest Observed Adverse Effect Level
LT	life time
NE	not evaluated
NOEAL	No Observed Adverse Effect Level
NPP	net primary production
nss-Cl	non-sea salt chloride
NT	near threatened
PDF	potentially disappeared fraction
PDI	predicted daily intake
Pop	population
r e i i	reference gas
RR	relative risk
RUM	Random utility maximum
SA	social assets
SRES	species report on emission scenario
SRR	source –receptor ratio
	0

xxviii

Т	time horizon
TD50	toxic dose 50
TF	temperature factor
UK89	United Kingdom
UKMO	United Kingdom Meteorological Office
VOCs	volatile organic compounds
VU	vulnerable
WTA	willingness-to-accepted
WTP	willingness-to-pay

Subscripts	
a	air
d	health burden
emitted	emission
G	species
h	human effect
i	substances
intake	intake
r	region
S	soil
t	time
ТН	Thailand
tot	total
W	water

Greek symbol

risk β θ unobservable component 3 standard normal random η α/β maximum likelihood method

resident time Chiang Mai University