TABLE OF CONTENT

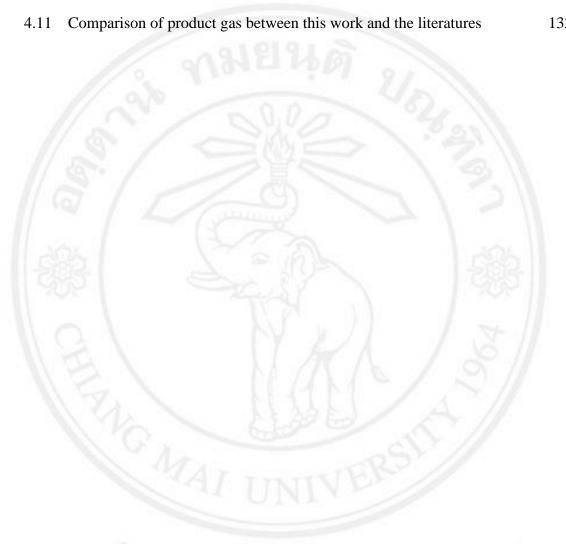
	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN ENGLISH	iv
ABSTRACT IN THAI	vi
TABLE OF CONTENT	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1 INTRODUCTION	1
1.1 Solid Waste Management	1
1.2 Waste-to-Energy Technology	7
1.3 Plasmochemical Conversion	9
1.4 Literature Reviews	14
1.4.1 Plasma Sources	14
1.4.2 Raw Material of Plasmochemical Conversion Process	33
1.4.3 Plasmochemical Conversion Product	35
1.4.4 Effect of Elemental Composition	35
1.4.5 Effect of Moisture Content	37
1.4.6 Microwave Modeling	37
1.4.7 Thermodynamic Equilibrium Modeling	41

1.4.8 Summary	43
1.5 Research Objectives	46
1.6 Potential Benefits	46
1.7 Scope of the Study	46
1.8 Outlines of the Thesis	47
CHAPTER 2 THEORY	48
2.1 Refuse Derived Fuel	48
2.2 Thermogravimetric Analysis	52
2.3 Microwave Plasma Generation	54
2.3.1 Microwave Power Source	57
2.3.2 Microwave Equipment	59
2.3.3 Plasma Reactor	61
2.4 Plasmochemical Reaction	61
2.5 Microwave Plasma Modeling	66
2.5.1 Governing Equations	66
2.5.2 Domain Equation	68
2.6 Plasmochemical Thermodynamic Equilibrium Modeling	70
CHAPTER 3 RESEARCH METHODOLOGY	78
3.1 Microwave Plasma System	78
3.1.1 Reactor	78
3.1.2 Gas Injection System	79
3.1.3 Gas Treatment System	82

3.2 Feedstock	84
3.2.1 Feedstock Preparation	84
3.2.2 Composition Analysis	87
3.3 Experimental Setup and Procedure	88
3.4 Data Processing	90
3.4.1 Plasma Characteristics	90
3.4.2 Product Gas Analysis and Conversion	on 90
3.4.3 Product Yields	94
3.4.4 Analysis of Fuel Properties	95
3.4.5 Carbon Conversion Efficiency	95
3.4.6 Mass Balance	96
3.4.7 Energy Analysis	97
3.5 Microwave Plasma Modeling	97
3.5.1 Model Definition	97
3.5.3 Initial Conditions	98
3.5.4 Boundary Conditions	99
3.6 Thermodynamic Equilibrium Modeling	100
CHAPTER 4 RESULTS AND DISCUSSION	103
4.1 Raw Materials Properties	103
4.2 Electric Field and Plasma Modeling Results	105
4.3 Plasma Characteristics	108
4.4 Gas Product	110

4.4.1 Effect of Carrier Gas Flow Rate on Evolution of Product Gas 111

	Effect of Residence Time on Evolution of Product Gas	11
4.5 Char Proc	lucts	1
4.6 Mass Bala	ance	11
4.7 Energy A	nalysis	12
4.8 Thermody	namic Equilibrium Modeling Results	12
4.9 Comparis	on with Literatures	13
CHAPTER 5 CONO	CLUSION AND SUGGESTION FOR FUTURE WOR	KS
5.1 Conclusio	n and a second	13
5.2 Suggestio	n for Future Works	13
REFERENCES		1.
APPENDICS		
APPENDIX A	A Calculation Examples	14
APPENDIX I	3 Thermodynamics Equilibrium Modeling	1:
APPENDIX (C Publication	10
	C.1 Papers in International Journals	10


LIST OF TABLES

Table

Page

Table		Page
1.1	Thailand MSW by means of disposal method	5
1.2	Previous Work on Plasma Assisted Conversion of Solid Fuel	34
1.3	Gaseous Product from Plasmochemical Conversion Process	36
2.1	Classification of RDF	50
2.2	Standard quality of RDF	51
2.3	Elemental composition of RDF	52
2.4	Breakdown voltage of some plasma gases relative to N_2	55
2.5	Ionization energy of several molecules	63
2.6	The value of h_f^o (kJ/kmol) and coefficients of empirical equation for $\Delta g_{f_f}^o$, 77
3.1	Feedstock Analysis Methods	88
3.2	Gas standard composition and conversion ration	94
4.1	Properties of raw materials	104
4.2	Microwave plasma characteristics	110
4.3	Product gas composition	112
4.4	Yields and heating values of product gas	113
4.5	Fuel properties of char products	120
4.6	Char yields and carbon conversion efficiency	120
4.7	Mass balance of plasmochemical products	121
4.8	Energy efficiency	123

4.9	RSME of model	124
4.10	Comparison of char between this work and the literatures	132
4.11	Comparison of product gas between this work and the literatures	133

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved

LIST OF FIGURES

Figur	e જાયદામળ	Page
1.1	Energy demand in Thailand	1
1.2	Alternative Energy Development Plan of Thailand Government,	
	target 25% of RE in total energy consumption by 2021	3
1.3	Compositions of municipal solid waste in Thailand	4
1.4	Disposal of solid wastes in Thailand	5
1.5	WTE implementation in Thailand	9
1.6	States of matter	10
1.7	Plasma generation	11
1.8	Plasma in natural	12
1.9	Plasma in household	12
1.10	Plasma gasification system	14
1.11	The principle of arc plasma torches	15
1.12	Schematic diagram of Arc plasma gasification system	16
1.13	Schematic diagram of Arc plasma pyrolysis system	18
1.14	Principle of RF plasma torches	19
1.15	Schematic diagram of RF plasma pyrolysis system	20
1.16	Schematic diagram of RF plasma thermolysis system	22
1.17	Schematic diagram of a circulating fluidized bed	
	microwave plasma reactor (CFB)	23

1.18	Schematic diagram of a microwave induced torrefaction	
	of rice husk and sugarcane residues	25
1.19	Syngas production from gasification of brown coal	
	in a microwave torch plasma	28
1.20	Schematic diagram of microwave plasma reforming reactor	
	with non-premixed configuration	29
1.21	Schematic diagram of microwave plasma steam gasification	
	of polyethylene	31
1.22	Schematic diagram of cellulose decomposition	
	by radio frequency plasma and microwave plasma	33
1.23	Geometric model of 700 W rated power microwave oven cavity	
	with magnetron as coaxial microwave feed source	39
1.24	Meshing scheme in the computational domain	39
1.25	Effect of microwave frequency on temperature in material	
	that resulted from electromagnetic field	40
1.26	Predicted color maps of the root mean square of the electric field	
	at steady conditions in the cavity	41
2.1	Integrated MSW hierarchy	49
2.2	RDF 5 or Densified RDF	51
2.3	Magnetron of domestic microwave oven	58
2.4	Microwave circulator	58
2.5	Microwave waveguide	59
2.6	A 3-stub tuner	60
2.7	Microwave tuning plunger	60

3.1	A schematic view of the microwave plasma system	79
3.2	A modified microwave oven cavity	80
3.3	The installation of reaction tube in the modified oven cavity	80
3.4	The water cooling system of reaction tube	81
3.5	A standard gas flow meter	81
3.6	A pressure regulator for argon	82
3.7	Filter equipments	83
3.8	A stack of glass tubes, each contained the isopropanol of 250 cm^3	
	which used as tar trap in this thesis	83
3.9	Sample bamboo which used as a representative of the biomass feedstock	85
3.10	Sample PE which used as a representative of the plastic feedstock	85
3.11	Compressed paper which used as a representative of the paper feedstock	86
3.12	Sample RDF which used as feedstock in this thesis	86
3.13	Experimental setup of the microwave plasma reactor	
	for pyrolysis of RDF	90
3.14	(a) Shimadzu Gas Chromatography model GC-8A	
	and (b) C-R8A Chromatopac data processes	92
3.15	The Restek pure gases and mixtures standard model Scotty 14	92
3.16	Shin Carbon ST Micropacked GC columns	93
3.17	The 2D geometry used for microwave plasma simulation	
	in this thesis	98
3.18	The mesh generated 2D geometry of the inside volume of this system	99
3.19	Thermodynamics equilibrium modeling diagram	102
4.1	Electric field in the oven cavity	106

xvi

4.2 107 Electron temperature 4.3 Post Gas temperature 109 4.4 Plasma flame characteristic 109 4.5 Variation of H₂ evolution with carrier gas flow rate and type of feedstock 114 Variation of CO evolution with carrier gas flow rate 4.6 and type of feedstock 114 Variation of CH₄ evolution with carrier gas flow rate 4.7 115 and type of feedstock Variation of CO₂ evolution with carrier gas flow rate 4.8 and type of feedstock 115 Variation of H₂ evolution with residence time and type of feedstock 4.9 116 4.10 Variation of CO evolution with residence time and type of feedstock 117 4.11 Variation of CH₄ evolution with residence time and type of feedstock 117 4.12 Variation of CO₂ evolution with residence time and type of feedstock 118 4.13 H₂ concentration in product gas of waste paper, compared experimental result with thermodynamic equilibrium modeling 125 4.14 CO concentration in product gas of waste paper, compared experimental 125 result with thermodynamic equilibrium modeling CO₂ concentration in product gas of waste paper, compared experimental 4.15result with thermodynamic equilibrium modeling 126 4.16 CH₄ concentration in product gas of waste paper, compared experimental

result with thermodynamic equilibrium modeling 126

4.17 H₂ concentration in product gas of biomass, compared experimental result with thermodynamic equilibrium modeling 127 4.18 CO concentration in product gas of biomass, compared experimental result with thermodynamic equilibrium modeling 127 4.19 CO₂ concentration in product gas of biomass, compared experimental result with thermodynamic equilibrium modeling 128 4.20 CH₄ concentration in product gas of biomass, compared experimental result with thermodynamic equilibrium modeling 128 4.21 H₂ concentration in product gas of RDF, compared experimental result with thermodynamic equilibrium modeling 129 4.22 CO concentration in product gas of RDF, compared experimental result with thermodynamic equilibrium modeling 129 4.23 CO₂ concentration in product gas of RDF, compared experimental result with thermodynamic equilibrium modeling 130 4.24 CH₄ concentration in product gas of RDF, compared experimental result with thermodynamic equilibrium modeling 130

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved

ABBREVIATION AND SYMBOLS

Symbol	Meaning	Unit
2D	Two dimensional geometry	-
AC	Alternating current	-
AEDP	Alternative energy development plan	-
ASTM	American society for testing and materials	-
CFB	Circulating fluidized bed	-
DC	Direct current	-
DSC	Differential scanning calorimeter	1 -
FDTD	Finite difference time domain based	-
FT-IR	Fourier transform Infrared spectrometer	-
GC	Gas Chromatography	-
GHG	Green house gas	-
ICTAC	International confederation for thermal analysis and Calorimetry	-
MIP	Microwave induced plasma	-
MS	Mass spectrometer	n.
MWP	Microwave plasma	sity
RE	Renewable energy	a d
RF	Radio frequency	
RMSE	Root mean square error	-
TE	Transverse electric	-

xix

TGA	Thermogravimetric analysis	-
TM	Transverse magnetic	-
WTE	Waste-to-energy	-
A_{f}	Ash content in feedstock	% w/w
с	Speed of light in free space (3x10 ⁸)	m/s
C_{f}	Carbon content in feedstock	% w/w
D _e	Electron diffusivity	m ² /s
D_{ε}	Electron energy diffusivity	m ² /s
E	Electric field	V/m
$ec{E}$	electric field intensity	V/m
f	frequency	Hz
h_f^O	enthalpy of formation of gases	kJ/kmol
H/C	Hydrogen to carbon molar ratio	~// -
k_0	Free space wave number	·// -
<i>m</i> _{char}	Mass of obtained char	kg
m_{f}	Original mass of feedstock	kg
mgas	Mass of gas products	kg
m _{liquid}	Mass of liquid	kg
m _{solid}	Mass of solid	kg
n	Number of electrons	
n	Order of reaction	
n _e	Electron density	1/m ³
$n_{arepsilon}$	Electron density	1/m ³
Ν	Number of data	-

<i>O/C</i>	Oxygen to carbon molar ratio	-
P_{gas}	Pressure of gas products	Pa
P^0	Standard pressure	Pa
Q_{gas}	Volume of product gas generated	Nm ³
Q tatal	Volume of total gas generated	Nm ³
R	Universal gas constant (8.31446)	J/mol.K
R _ε	Energy loss or gain due to inelastic collisions	$V/m^3 \cdot s$
R _e	Electron rate expression	$1/m^3 \cdot s$
t	Time	s
Т	Temperature	К
T _e	Electron temperature	eV
Vi	Stoichiometric number of gases species i involving reaction	// -
Vgas	Gas volume	1
W_{f}	Mass of final residual	kg
Wi	Initial mass of the raw material	kg
W _t	Mass of oxidized material	kg
X _i	Mole fraction of species i in the ideal gas mixture	mol
X _i	Value from model prediction	mol
Y _{char}	Char yield	%
Y _{gas}	Gas yield	Nm ³ /kg

Greek letters

arepsilon'	relative permittivity or dielectric constant of a material	-
ε"	relative dielectric loss of a material	-
Ē	mean electron energy	eV
ε ₀	free space permittivity (8.854×10^{-12})	F/m
Er	relative permittivity	
ε	electrical permittivity	- 11
80	permittivity of vacuum	25 -
μ	the magnetic permeability	51 -
μ'	relative permeability of a material	e.// -
μ_e	electron mobility which is either a scalar or tensor	$m^2/V \cdot s$
μ_r	relative permeability	// -
μ_{ε}	electron mobility which is either a scalar or tensor	$m^2/V \cdot s$
η_{C}	carbon conversion efficiency	%
$\Delta g^{O}_{f,T,i}$	standard Gibbs function of formation	kJ/kmol
	at given temperature T of the gas species i	
ΔG_{T}^{O}	standard Gibbs function of reaction	kJ/kmol
	at given temperature T	
α	conversion	ved
σ	electrical conductivity of a material	s/m
ω	angular wave frequency	rad/s