CONTENTS

	Page
Acknowledgements	d
Abstract in Thai	e
Abstract in English	f
List of Tables	1
List of Figures	n
List of Abbreviations	р
Statement of Originality in Thai	r
Statement of Originality in English	S
Chapter 1 Introduction	
1.1 Statement and significance of the problem	1
1.2 Objectives of the study	6
1.3 Conceptual framework	8
1.4 Definition of terms in this study	9
Chapter 2 Literature Reviews	
2.1 Air pollutions	11
2.2 Characterization of PM	13
0	16
2.3 Route of PM exposure	10

CONTENTS (CONT)

Page

2.4 Adverse health effects associated with PM exposure	18
2.5 PM and the children' s health	20
2.6 Oxidative induced by PM	21
2.7 Pulmonary function test	23
2.8 PM and pulmonary function	24
2.9 Exhaled breath condensate	25
2.10 Biomarkers in exhaled breath condensate	29
2.10.1 Hydrogen peroxide in EBC	31
2.10.2 Method of H ₂ O ₂ determination	33
2.10.3 Malondialdehyde in EBC	34
2.10.4 Method of MDA determination	35
Chapter 3 Research Methodology	
3.1 Methodology of part 1: To development a simple and portable EBC	37
collecting device and evaluate the use of developed device with	
a group of volunteer	
3.1.1 Development of EBC collecting device	37
3.1.2 To apply the developed EBC collecting device to	44
collect EBC samples of school children who exposed	
to PM_{10} .	
3.2 Methodology of part 2: To apply the developed EBC collecting	44
device to collect EBC sample of school children who exposed	
to PM_{10}	
3.2.1 Study design	44
3.2.2 Study site	44
3.2.3 Study subjects	47
3.2.4 Study period	47

CONTENTS (CONT)

3.2.5 Ethical clearance approval	48
3.2.6 Exposure assessment	48
3.2.7 Health outcomes assessment	51
3.2.8 Statistical analysis	64
Chapter 4 Results and Discussions	
4.1 Results of research part 1: To development a simple and portable	65
EBC collecting device and evaluate the use of developed device	
with a group of volunteer	
4.1.1 Description of the developed EBC collecting device	65
4.1.2 Determination of suitable periods and breathe patterns	66
of EBC sample from healthy subjects	
4.2 Discussion of part 1	70
4.3 Results of research part 2: Application of the developed EBC	72
evaluating the effects of PM_{10} exposure on collecting device to	
collect EBC samples from school children who expose to PM_{10}	
4.3.1 Analytical characteristics of H ₂ O ₂ and MDA in EBC	72
4.3.2 Subject characteristics	80
4.3.3 Exposure assessment	82
4.3.4 Health outcomes	87
4.3.5 Correlation analysis among PM10 exposure and health	101
Outcomes across 3 seasons	
4.4 Discussion of part 2	102

CONTENTS (CONT)

Page

Chapter 5 Conclusions 106 Study strengths 107 Study limitations 107 Future use of EBC 108 งามยนดิ 21824 23 ño, References 109 Appendices 130 Curriculum Vitae 140 AND MAI ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 2.1	Comparison of fine and coarse mode particles	
Table 2.2	Selected biomarkers in exhaled breath condensate that have	30
	been proposed to assess and monitor lung injury and disease	
Table 3.1	Details of EBC collecting in healthy subjects: a pilot study	43
Table 4.1	Basic characteristic of the healthy subjects : a pilot study	67
Table 4.2	Repeatability and reproducibility of H ₂ O ₂ measurement	74
Table 4.3	Percent recovery of H ₂ O ₂ in EBC samples	75
Table 4.4	Limit of detection and limit of quantification of H2O2	76
	measurement.	
Table 4.5	Repeatability and reproducibility of MDA measurement	77
Table 4.6	Percent recovery of MDA in. EBC samples	78
Table 4.7	Limit of detection and limit of quantification of MDA	79
	measurement.	
Table 4.8	Basic characteristic of the study subjects by school.	81
Table 4.9	Five-day means concentration of daily outdoor PM_{10} by	83
	school during study period	
Table 4.10	Five-day means concentration of daily outdoor PM10 by	84
ลอ	school during the different seasons	
Table 4.11	Five-day means concentration of daily classroom PM_{10} by	86
A	school during the study period	
Table 4.12	Five-day means concentration of daily classroom PM ₁₀ by	87
	school during the different seasons	
Table 4.13	Means predicted FVC of the school children by school	89
	during study period	

LIST OF TABLES (CONT)

Table 4.14	The predicted FVC of the subjects by school during the	90
	different seasons.	
Table 4.15	Means predicted FEV_1 of the subjects by school during	91
	study period	
Table 4.16	The predicted FEV_1 of the subjects by school during the	92
	different study periods.	
Table 4.17	Means FEV ₁ /FVC ratio of the school children by school	93
	during study period	
Table 4.18	The FEV1 /FVC ratio of the subjects by school during the	94
	different study periods.	
Table 4.19	Means exhaled H_2O_2 concentration of the school children by	96
	school during study period	
Table 4.20	Exhaled H ₂ O ₂ concentration of the subjects by school during	97
	the different study periods	
Table 4.21	Means exhaled MDA concentration of the school children by	98
	school during study period	
Table 4.22	Means exhaled MDA concentration of the school children by	99
	school during study period	
Table 4.23	Number of subjects with selected respiratory symptoms by	100
Co	school during study period	
Table 4.24	Comparison of risk of the selected respiratory symptoms	101
	among ST and SN school children	
Table 4.25	Correlation analysis among PM10 exposure and health	102
	outcomes across 3 seasons	

LIST OF FIGURES

Figure 1.1	Monthly means concentration of PM_{10} (µg/m ³) from 2005-	4
	2011 by air quality monitoring station in Chiang Mai	
	province.	
Figure 1.2	Major causes of illness, Chiang Mai population 2004-2008	5
Figure 1.3	Working diagram of the study	
Figure 1.4	Factors affecting respiratory health of school children	
Figure 2.1	Comparison of size of particles to a strand of hair and beach sand	14
Figure 2.2	Diagrammatic representation of the human respiratory tract	17
Figure 2.3	Representation of EBC collecting systems.	28
Figure 2.4	Schematic diagrams of a custom made EBC collecting	29
	devices	
Figure 2.5	The formation of hydrogen peroxide (H_2O_2) and other ROS.	32
Figure 3.1	Schematic diagram of the system used to collect EBC	38
Figure 3.2	The developed EBC collecting device	39
Figure 3.3	The mouthpiece with one-way valve	40
Figure 3.4	The flexible plastic tubing	40
Figure 3.5	The polypropylene collecting tube acting as sampling	41
Со	container. [©] by Chiang Mai University	
Figure 3.6	The stainless steel chamber	41
Figure 3.7	The second one-way valve	42
Figure 3.8	The rubber ring	42

LIST OF FIGURES (CONT)

Figure 3.9	Map of Chiang Mai province	46
Figure 3.10	Map of Chiang Mai city and study site	46
Figure 3.11	Portable air sampler used to monitored PM_{10} level at the	49
	courtyard of SN school	
Figure 3.12	Personal air sampler used to monitored PM10 level in	50
	classroom	
Figure 3.13	Personal air sampler used to monitored PM ₁₀ concentration	51
	in classroom	
Figure 3.14	School children were advised on and tested for pulmonary	52
	function by a trained technician	
Figure 3.15	Photograph of school children during EBC collection.	53
Figure 3.16	Flow chart the processes of H ₂ O ₂ measurement	59
Figure 3.17	Flow chart the processes of MDA measurement	63
Figure 4.1	Photograph of developed EBC collecting device used to	66
	collect EBC from the subject.	
Figure 4.2	The means of EBC volume by duration period and breathing	68
	pattern	
Figure 4.3	The EBC volume of each subject asked to breath at a normal	69
Co	frequency in 10 minutes and 20 minutes of duration period	
Figure 4.4	The EBC volume of each subjects asked to breath at a forced	69
AI	frequency in 10 minutes and 20 minutes of duration period	
Figure 4.5	Calibration curve H ₂ O ₂ standard solution	72
Figure 4.6	Calibration curve MDA standard solution	73
Figure 4.7	HPLC chromatogram of MDA analysis	80

LIST OF ABBREVIATIONS

ARDS	Adult respiratory distress syndrome
CM station	Chiang Mai city hall air monitoring station
СО	Carbon monoxide
COPD	Chronic obstructive pulmonary disease
EBC	Exhaled breath condensate
EIA	Enzyme immune assay
FEV ₁	Forced expired volume in first second
FVC	Force vital capacity
H ₂ O ₂	Hydrogen peroxide
HOCI	Hypochlorous acid
HPLC	High performance liquid chromatography
MDA	Malondialdehyde
MPO	Myeloperoxidase
MS	Mass spectrometry technique
NADPH	Nicotinamide adenine dinucleotide phosphate
NO ₂	Nitrogen dioxide
юн	Hydroxyl radical
O_2^-	Superoxide anion
O ₃	Ozone
PCD	The Pollution Control Department
PEFR	Peak expiratory flow rate
PFT	Pulmonary function test
PM	Particulate matter
PM_{10}	Particulate matter with an aerodynamic diameter less
	than 10 µM

LIST OF ABBREVIATIONS (CONT)

PM _{2.5}	Particulate matter with an aerodynamic diameter less
	than 2.5 µM
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
rpm	Revolution per minutes
SN school	Srinaeroo School
SO ₂	Sulfur dioxide
SPSS	Statistical Package for Social Science
ST school	Chiang Mai Rajabhat Demonstration School
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reacting substances
VOCs	Volatile organic carbons
WHO	World Health Organization
YP station	Yupparaj Wittayalai School air monitoring
THE REAL	MAI UNIVERSITY

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

ข้าพเจ้าขอรับรองว่าองค์ความรู้และเนื้อหาของวิทยานิพนธ์ฉบับนี้เป็นผลการวิจัยของข้าพเจ้า และไม่เคยได้รับการตีพิมพ์ หรือเป็นวิทยานิพนธ์ของปริญญาในระดับใดมาก่อน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

I hereby certify that to the best of my knowledge, the content of this thesis is my original work. This thesis has not been published or submitted for any degree or other publication.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved