CHAPTER 4

Results

4.1 Rainfall and average soil moisture

The relationship between rainfall and average soil moisture in each month during June 2009 – January 2012 is shown in Figs. 4.1a – e. Rainfall ranged from 0 – 323.3 mm. Maximum soil moisture (%) of all study sites were ranged from 34.05 - 37.63 % during rainy season. While minimum soil moisture (%) of all study sites were ranged from 6.46 – 16.48 %.

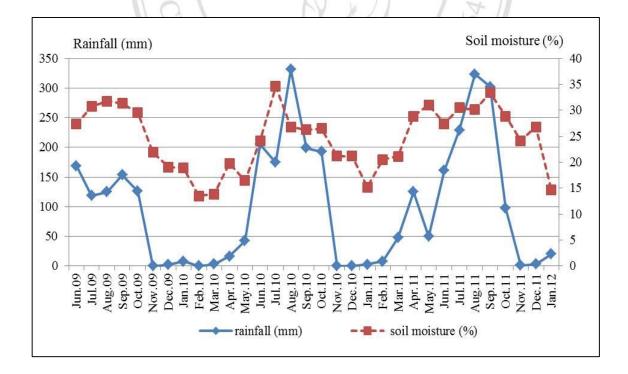


Figure 4.1a Rainfall (mm) and average soil moisture (%) during June 2009 – January 2012 in control site

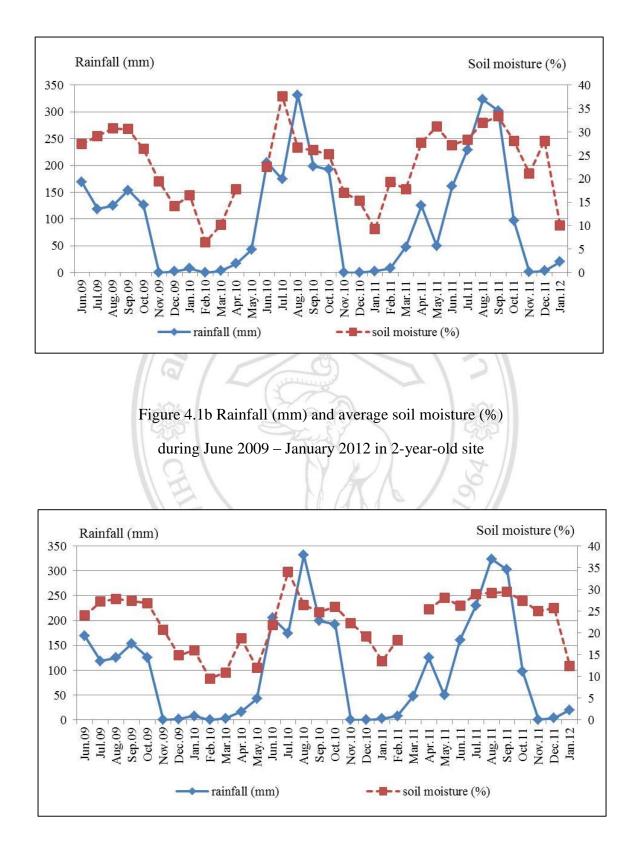


Figure 4.1c Rainfall (mm) and average soil moisture (%) during June 2009 – January 2012 in 7-year-old site

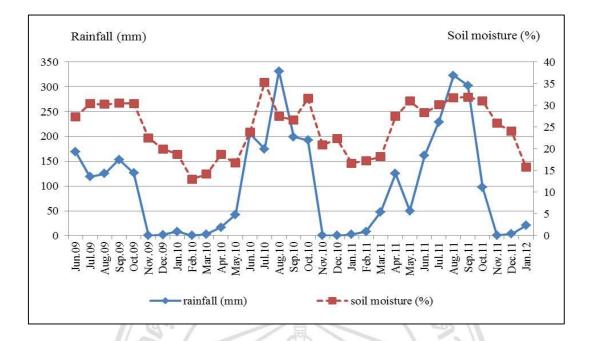


Figure 4.1d Rainfall (mm) and average soil moisture (%)

during June 2009 – January 2012 in 11-year-old site

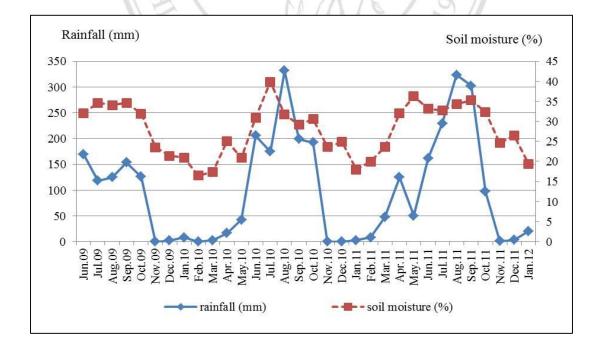


Figure 4.1e Rainfall (mm) and average soil moisture (%) during June 2009 – January 2012 in natural site

4.2 Litterfall and rainfall

The highest amount of litterfall was found in the natural forest site followed by 11-yearold, 7-year-old, control, and 2-year-old site. The pattern of litterfall dry mass and rainfall in 32 months (June 2009 –January 2012) is shown in Fig.4.2. The amount of litterfall increased at the beginning of cool-dry season from November until March. In the second year (June 2010 – May 2011), the natural forest site had the highest peak in February 2011 and tended to produce more litterfall, but in the other study sites tended to be the same pattern of litterfall. The pattern of the litterfall in two years in restored forest site was quite similar, except in the 2-year-old site. Data from the 2-year-old site from April – September 2010 are drop to zero, because a forest fire occurred around the second week of March 2010.

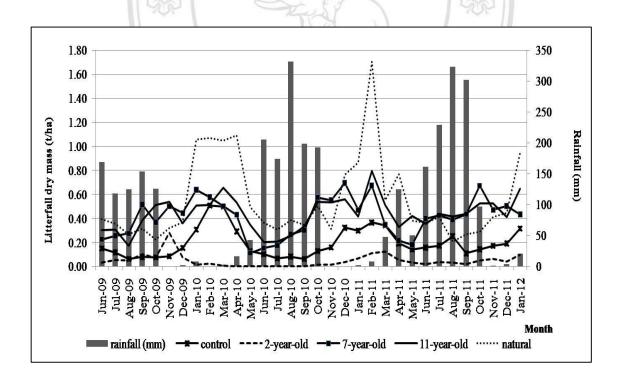


Figure 4.2 The total litterfall (t/ha/month) of all study sites with rainfall (mm)

during June 2009 – January 2012

In the first year of collection from June 2009 to May 2010, the ranged of litterfall in the control, 2, 7, 11-year-old and the natural site were 0.06 - 0.51, 0 - 0.13, 0.11 - 0.64, 0.17 - 0.65 and 0.27 - 1.07 t/ha/month, respectively (Table 4.1a). In the second year of collection from June 2010 to May 2011 the ranges were 0.06 - 0.34, 0 - 0.13, 0.17 - 0.69, 0.20 - 0.80, and 0.31 - 1.71 t/ha/month, respectively (Table 4.1b). The annual litterfall in the first year of 2, 7, 11-year-old and the natural site 2.46, 0.71, 4.85, 5.13 and 7.01 (t/ha/yr), respectively, and in the second year were 2.27, 0.46, 4.60, 5.09 and 7.26 (t/ha/yr), respectively. Moreover, additional data in the third year were collected from June 2011 to January 2012. High amounts of litter in most study sites (control, 2, 11-year-old and natural sites) were found in January 2012: 0.32, 0.11, 0.65 and 0.95 t/ha, respectively, except in the 7-year-old site in October (Table 4.1c). However, there was a fire in the 2-year-old plot in early March 2010, so the amount of the litterfall in this plot was low from February to September 2010. Moreover, total litterfall collected from June 2009 until January 2012 (32 months) in control, 2, 7, 11-year-old and natural site were 6.24, 1.54, 13.18, 13.98 and 17.62 t/ha, respectively.

			1.0	1.				1	Y				
				M	Ame	ount of	litter (t	/ha)					_
Study site	ຄືຢ	âr	Aug.	Sep.	Oct.	Nov.	Dec.		Feb.	Mar.	Apr.	May.	Total
	Cor	vri	pht [©]	2009	ov C	hia	ng	Mai	Ur	2010	rsitv		-
control	0.15	0.12	0.06	0.08	0.08	0.09	0.16	0.31	0.51	0.50	0.29	0.13	2.46
control	cd	cd	b	с	d	d	b	e cS	в	b	bc	b	2.46
2-year-old	0.03	0.06	0.05	0.10	0.07	0.28	0.08	0.02	0.02	0.00	0.00	0.00	0.71
_)	d	d	b	c	d	c	b	d	c	c	с	c	0.71
7-year-old	0.23	0.26	0.28	0.52	0.37	0.50	0.44	0.64	0.58	0.50	0.43	0.11	4.95
	bc	bc	a	а	b	ab	а	b	b	b	b	b	4.85
11-year-old	0.30	0.31	0.17	0.39	0.51	0.54	0.36	0.51	0.51	0.65	0.53	0.35	5 12
year old	ab	ab	ab	b	a	а	а	bc	b	b	b	b	5.13
natural	0.39	0.35	0.27	0.31	0.23	0.32	0.37	1.05	1.07	1.05	1.09	0.49	7.01
	а	а	а	b	с	bc	а	a	a	а	а	а	7.01

Table 4.1a The amount of litterfall dry mass in year1 during June 2009 - May 2010

Note: Value are means \pm SD (n=18). Means followed by different letters on the same column indicate significant differences among study sites at *P*<0.05 based on Tukey's test

					А	mount c	of litter (t	/ha)					
Study site	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	Total
				2010						2011			-
control	0.10	0.07	0.08	0.06	0.13	0.16	0.32	0.30	0.37	0.34	0.19	0.14	2.27
	b	с	с	b	b	bc	25	b	cđ	ab	bc	с	
2-year-	0.00	0.00	0.00	0.00	0.02	0.02	0.04	0.07	0.11	0.13	0.05	0.03	0.46
old	c	c	c	Ъ	b	c	DC	с	d	b	c	c	
7-year-	0.15	0.17	0.27	0.30	0.57	0.55	0.69	0.47	0.67	0.35	0.22	0.18	4.60
old	b	b	ab	a	a	a	a	b	bc	ab	b	bc	
11-year-	0.20	0.20	0.25	0.33	0.54	0.53	0.56	0.42	0.80	0.51	0.33	0.42	5.09
old	b	ab	ь	a	a	a	ab	b	b	a	b	a	
natural	0.37	0.31	0.39	0.35	0.50	0.31	0.77	0.87	1.71	0.55	0.77	0.38	7.26
	а	a	a	а	a	b	a	a	а	a	a	ab	

Table 4.1b The amount of litterfall dry mass in year2 during June 2010 - May 2011

Note: Value are means \pm SD (n=18). Means followed by different letters on the same column indicate significant differences among study sites at *P*<0.05 based on Tukey's test.

Table 4.1c The amount of litterfall dry mass in year3 during June 2011 – January 2012

		5		Amount	of litter (t/h	a)	2 '	
	ายส	nsi	1290	nei	າລະແ	25 61	A 1411	
Study site	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.
	Conv	right() hy	Chiar	a Mai	Lini	voreity	
	copy	igin	Wy	2011	5 Iviai	On	versity	2012
		- n i	o h	1 6	r o s	o r	Ved	
control	0.16 c	0.17 b	0.25 bc	0.11 c	0.14 bc	0.17 b	0.19 bc	0.32 de
2-year-old	0.02 c	0.04 b	0.03 d	0.02 c	0.05 c	0.06 b	0.04 c	0.11 e
7-year-old	0.40 b	0.43 a	0.39 ab	0.44 a	0.67 a	0.47 a	0.50 a	0.43 cd
11-year-old	0.35 a	0.44 a	0.42 a	0.44 a	0.53 a	0.52 a	0.41 ab	0.65 bc
natural	0.36 b	0.41 a	0.21 c	0.27 b	0.29 b	0.41 a	0.45 a	0.95 a

Note: Value are means \pm SD (n=18). Means followed by different letters on the same column indicate significant differences among study sites at *P*<0.05 based on Tukey's test.

4.3 Litter component

The average different components of litter: leaf, branch, flower/fruit and the others (t/ha/yr) in the study sites, and percentage of litter component are shown in Table 4.2. Leaf litter was the major component of all study sites overall the year. (Fig.4.3). Leaf component in control, 2, 7 and 11-year-old and natural site were 2.10, 0.47, 4.07, 4.27 and 4.51 t/ha/yr, respectively.

Percentage of leaf tended to be lower from control site to natural site. In contrast, other component such as fruit/flower, branch and small fractions in natural site higher than other site followed by 11, 7, 2-year-old and control site.

งหยนุติ

0.4	Leaf	Branch	Flower/fruit	Other	Total
Site	(%)	(%)	(%)	(%)	(%)
control	2.1 (89.4)	0.1 (5.5)	0.1 (4.3)	0.02 (0.8)	2.4 (100)
2-year-old	0.5 (81.4)	0.1 (15.2)	0.01 (2.6)	0.005 (0.8)	0.6 (100)
7-year-old	4.1 (81.2)	0.6 (12.4)	0.2 (4.7)	0.08 (1.7)	5.0 (100)
11-year-old	4.3 (80.8)	0.7 (14.0)	0.2 (4.2)	0.05 (1.0)	5.3 (100)
natural C	4.5 (70.1)	1.2 (19.3)	0.6 (8.5)	0.13 (2.1)	6.4 (100)
А	ľ	ight	s res	erve	d

Table 4.2 Litter in different component (t/ha/yr) and percentage

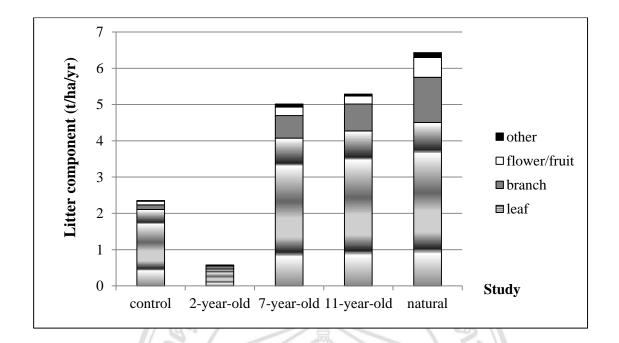


Figure 4.3 Mean litter of 3 years in different component (t/ha/yr)

4.4 Carbon through litterfall

The highest amount of organic carbon was found in natural site (38.72 g/100g), in contrast lowest amount of organic carbon was found in 7-year-old site (32.97 g/100g) (Table 4.3).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม

Litter carbon (litterC) in Year1 and Year2 ranged from 0.25 - 2.71 tC/ha/yr and 0.16 - 2.81 tC/ha/yr, respectively. LitterC in natural site was higher than other sites significantly. Among restored forest site, the high value of litter carbon was found in oldest site (11-year-old) next to 7-year-old, control and 2-year-old site (Table 4.3). The pattern of litter in terms of carbon similar to the pattern of litterfall which was collected in the study sites (Fig. 4.5).

Moreover, in the third year of collection from June 2011 - January 2013 (8 months), the total litterfall and litter carbon ranged from 0.55 - 5.63 t/ha and 0.19 - 2.00 tC/ha. However, in the third collection was not covered in one year. So, annual litter and litterC in the third year were calculated by multiplying average litterfall with 12. Mean annual litterfall over 3 years are shown in Table 4.4. The amount of litterfall was highest in the natural forest but not different significantly with the old restored forest sites (7 and 11-year-old). LitterC was the same trend as litterfall which ranged from 0.20 to 2.49 tC/ha.

	OC	Y	ear1	Y	ear2	Y	ear3
Study site	g/100g	Litter (t/ha/yr)	LitterC (tC/ha/yr)	Litter (t/ha/yr)	LitterC (tC/ha/yr)	Litter (t/ha/yr)	LitterC (tC/ha/yr)
control	33.29 <u>+</u> 1.95 b	2.46	0.82 cd	2.27	0.75 cd	2.27	0.76
2-year-old	34.74 <u>+</u> 2.13 ab	0.71	0.25 d	0.46	0.16 d	0.55	0.19
7-year-old	32.97 <u>+</u> 2.74 b	4.85	1.60 bc	4.60	1.52 bc	5.59	1.84
11-year-old	35.50 <u>+</u> 1.50 ab	5.13	1.82 ab	5.09	1.81 b	5.63	2.00
natural	38.72 <u>+</u> 0.39 a	7.01	2.71 a	7.26	2.81 a	5.02	1.94

Table 4.3 Annual litterfall (t/ha/yr) and litterC (tC/ha/yr)

Note: Values in column 1 is mean of OC \pm SD (n= 3). In Column 3 and 5 are means of carbon in litter in year1 and year2 followed by different letters on the same column indicate significant differences at *P*<0.05 among study sites.

Site	Mean annual litterfall (t/ha/yr)	LitterC (tC/ha/yr)
control	2.33 <u>+</u> 0.11 b	0.78 <u>+</u> 0.04 c
2-year-old	0.57 <u>+</u> 0.13 c	0.20 <u>+</u> 0.05 d
7-year-old	5.01 <u>+</u> 0.51 a	1.65 <u>+</u> 0.17 b
11-year-old	5.28 <u>+</u> 0.30 a	1.88 <u>+</u> 0.11 b
natural	6.43 <u>+</u> 1.23 a	2.49 <u>+</u> 0.48 a

Table 4.4 Mean litterfall (t/ha/yr) in all study sites over 3 years and litterC (tC/ha/yr)

Note: Values are mean \pm SD (n = 3) with different superscripts within columns are significantly different among study site at *P*<0.05 based on Tukey's test.

4.5 Litter accumulation and carbon in litter

Highest amount of litter accumulation was highest in natural forest (5.89 t/ha) but not significantly higher than 7-year-old (5.26 t/ha) and 11-year-old (4.89 t/ha). While the lowest amount of litter accumulation was found in 2-year-old site (1.94 t/ha). Carbon in litter was highest in natural forest next to 11, 7, control and 2-year-old were 2.28, 1.74, 1.73, 1.09 and 0.67 tC/ha (Table 4.5).

Table 4.5 Litter accumulation (t/ha) and carbon in litter (tC/ha)

ad site 181	Litter accumulation	Carbon in litter
Convright	(t/ha)	(tC/ha)
control	3.27 <u>+</u> 1.6 b	1.09 <u>+</u> 0.53 c
2-year-old	1.94 <u>+</u> 1.4 c	$0.67 \pm 0.50 \; \mathbf{d}$
7-year-old	5.26 <u>+</u> 1.5 a	1.73 <u>+</u> 0.49 b
11-year-old	4.89 <u>+</u> 1.5 a	1.74 <u>+</u> 0.53 b
natural	5.89 <u>+</u> 1.8 a	2.28 <u>+</u> 0.78 a

Note: Values are mean \pm SD (n = 27) with different superscripts within columns are significantly different among study site at *P*<0.05 based on Tukey's test.

4.6 Relationship between total litterC (tC/ha) and age since planted

The relationship between total litterC and age since planted was determined and are shown in Fig. 4.4. The equation derived from the data to describe the relationship was $y = 0.90741\ln(x) - 0.3187$ ($R^2 = 0.9757$).

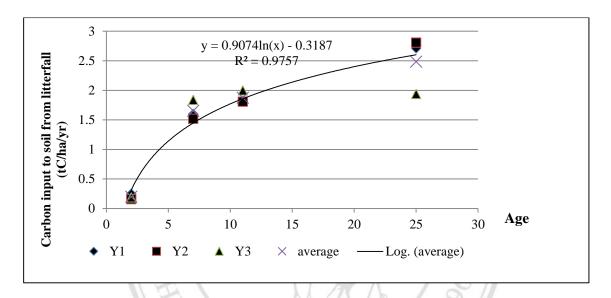


Figure 4.4 Relationship between total litterC (tC/ha/yr) and age since planted

4.7 Leaf litter decomposition of mixed three species

Ficus subincisa leaves decomposed the fastest (c80% in 5 months), *Erythrina subumbrans* leaves decomposed at a moderate rate (c50% in 5 months) and *Castanopsis diversifolia* leaves decomposed the slowest (c20% in 5 months) (Figs. 4.5a - d).

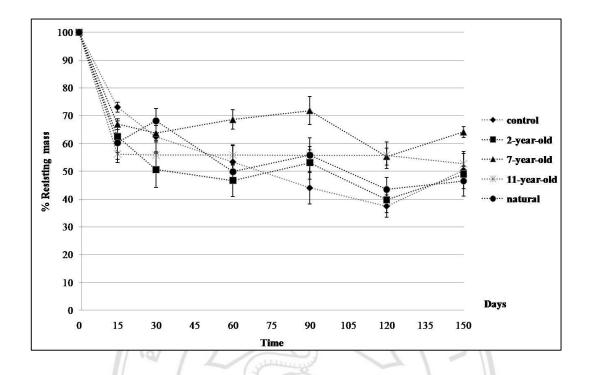


Figure 4.5a Percentage of resisting mass of Erythrina subumbrans

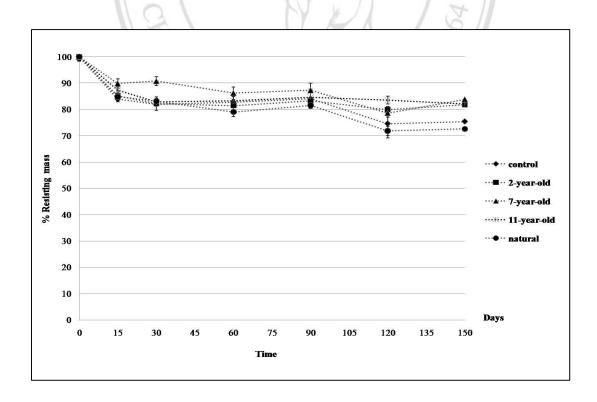


Figure 4.5b Percentage of resisting mass of Castanopsis diversifolia

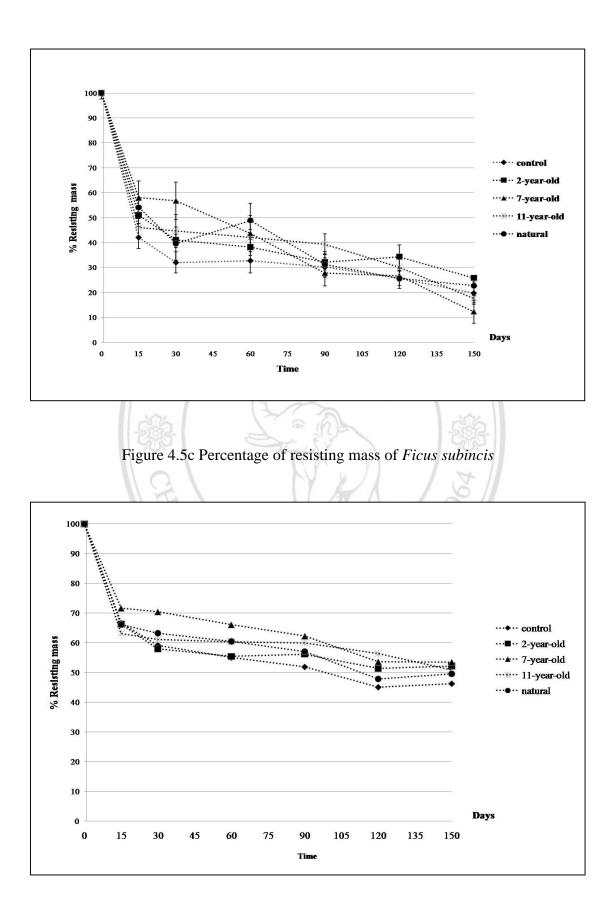


Figure 4.5d Percentage of resisting mass of mix three species

K values of three species in all study sites were shown in Table 4.6. *K* value of *Erythrina* subumbrans ranged 1.05 - 2.12, *Castanopsis diversifolia* ranged 0.41 - 0.87, *Ficus* subincisa ranged 1.21 - 4.15 and mix species ranged 1.46 - 1.87. *K* value in each species were not significantly different among study sites but high k value was found in *Ficus* subincisa compared with *Erythrina* subumbrans and *Castanopsis* diversifolia. The highest k value was found in 11-year-old site (4.15) site whereas the lowest k value was found in 7-year-old site (0.41). Moreover, k value of mix species ranged 1.46 - 1.87 and were not differ among study sites at P < 0.05.

	5.	「「「」	13	
	14/2	kunning k	712	
Study	Erythrina	Castanopsis		1
site	subumbrans	diversifolia	Ficus subincisa	Mix species
control	AB 2.12 <u>+</u> 0.48 a	C 0.87 <u>+</u> 0.27 a	A 3.27 <u>+</u> 0.69 a	AB 1.87 <u>+</u> 0.21 a
2-year-old	AB 1.67 <u>+</u> 0.09 a	C 0.47 <u>+</u> 0.03 a	A 2.42 <u>+</u> 0.44 ab	B 1.51 <u>+</u> 0.05 a
7-year-old	AB 1.05 <u>+</u> 0.11 a	B 0.41 <u>+</u> 0.04 a	AB 1.21 <u>+</u> 0.45 b	A 1.46 <u>+</u> 0.07 a
11-year-		MALININ	FR	
old	B 1.88 <u>+</u> 0.50 a	C 0.46 <u>+</u> 0.04 a	A 4.15 <u>+</u> 0.25 a	B1.59 <u>+</u> 0.10 a
natural	B 1.66 <u>+</u> 0.19 a	B 0.66 <u>+</u> 0.06 a	A 3.27 <u>+</u> 0.49 a	B 1.63 <u>+</u> 0.07 a

Table 4.6 K values of three species in all study sites

กมยนต์

Note: Value are means \pm SD (n= 12). Means followed by different letters on the same column on the right indicate significant differences at p < 0.05 among study sites and different letters on the same row on the left indicate significant differences at P<0.05 among three species.

rights reserved

Carbon nitrogen ratio (C:N) in three species were determined and showed in Table 4.7.

C:N ratio was much higher for C. diversifolia than for the other 2 species.

F. subincisa and E. subumbrans had similar C:N ratios

Table 4.7 Carbon nitrogen ratio in three species at beginning, middle

(2 months) and late phase (5 months)

Trythrina subumbrans	C:N 20:1	C:N	C:N
	20:1		
		15:1	15:1
Castanopsis diversifolia	35:1	21:1	23:1
Ficus subincisa	22:1	15:1	15:1
Erythrina subumbrans	20:1	13:1	13:1
Castanopsis diversifolia	35:1	22:1	24:1
Ficus subincisa	22:1	15:1	14:1
Erythrina subumbrans	20:1	16:1	14:1
Castanopsis diversifolia	35:1	23:1	21:1
Ficus subincisa	22:1	17:1	14:1
Erythrina subumbrans	20:1	16:1	14:1
Castanopsis diversifolia	35:1		21:1
Ficus subincisa	22:1	16:1	15:1
Erythrina subumbrans	20:1	lai 14:1 iver	Sity 14:1
Castanopsis diversifolia	35:1	20:1	e d _{21:1}
Ficus subincisa	22:1	15:1	15:1
	Ficus subincisa Trythrina subumbrans Castanopsis diversifolia Ficus subincisa Trythrina subumbrans Castanopsis diversifolia Ficus subincisa Trythrina subumbrans Castanopsis diversifolia Ficus subincisa	Ficus subincisa22:1Trythrina subumbrans20:1Castanopsis diversifolia35:1Ficus subincisa22:1Trythrina subumbrans20:1Castanopsis diversifolia35:1Ficus subincisa22:1Trythrina subumbrans20:1Castanopsis diversifolia35:1Ficus subincisa22:1Trythrina subumbrans20:1Castanopsis diversifolia35:1Ficus subincisa22:1Trythrina subumbrans20:1Castanopsis diversifolia35:1Ficus subincisa22:1Trythrina subumbrans20:1Castanopsis diversifolia35:1	Ficus subincisa22:115:1Trythrina subumbrans20:113:1Castanopsis diversifolia35:122:1Ficus subincisa22:115:1Trythrina subumbrans20:116:1Castanopsis diversifolia35:123:1Ficus subincisa22:117:1Trythrina subumbrans20:116:1Castanopsis diversifolia35:1-Ficus subincisa22:116:1Castanopsis diversifolia35:1-Ficus subincisa22:116:1Castanopsis diversifolia20:114:1Castanopsis diversifolia35:120:1

4.8 Litter decomposition of mixed species using big bag

Decomposition of natural leaf litter in each study site was investigated during May 2011 to February 2012 over 4 periods were conducted. The early rainy season (May 2011), rainy season (August 2011), cool season (November 2011) and cool dry season (February 2012) from the starting date: 0, 103, 187 and 286 days. In each period, 10% of wet weight of each litter bag from all study sites was sub-sampled. The mass remaining of all study sites decreased rapidly from the beginning period to rainy season (Aug. 2011). The mass decreased around 20 - 30 % over 103 days in all study sites. From rainy season (Aug. 2011) to cool season (Nov. 2011) mass remaining (%) was increased in the 11-year-old and natural site (Table 4.8). In contrast, litter mass of in the 2 and 7-year-old sites decreased. In the last period, litter mass decreased in all study sites. Especially in 7-year-old site, the mass decreased rapidly in all periods (Fig.4.6). Moreover, mass remaining (%) of 7-year-old site in the last period of was 30.57% significantly and less than that at other sites (P<0.05). Moreover mass remaining with trend line was also shown in Fig.4.6 and predicted mass remaining (%) in 1 year using equation from linear regression is also shown in Table 4.9.

`		AT A	227/	
	1	2 UN	3	4
Period -	0 day	103 days	187 days	286 days
\ a	Early rainy	Rainy	Cool	Cool dry
	(May.11)	(Aug.11)	(Nov.11)	(Feb.12)
Site	opyrign	by Chiai	ig Mai Univ	ersity
control	100	A 76.12 <u>+</u> 14.85 a	A 71.43 <u>+</u> 27.97 a	A 67.42 <u>+</u> 22.59 a
2-year-old	100	A 75.09 <u>+</u> 13.76 a	A 66.65 <u>+</u> 22.36 a	A 68.18 <u>+</u> 21.58 a
7-year-old	100	A 79.50 <u>+</u> 14.42 a	AB 57.55 <u>+</u> 18.52 a	B 30.57 <u>+</u> 25.75 b
11-year-old	100	A 69.13 <u>+</u> 20.66 a	A 71.51 <u>+</u> 34.69 a	A 61.66 <u>+</u> 18.46 a
natural	100	A 75.36 <u>+</u> 13.07 a	A 79.82 <u>+</u> 24.45 a	B 53.06 <u>+</u> 11.11 ab

Table 4.8 Mass	remaining (%)) in different	periods
----------------	---------------	----------------	---------

Note: Value are means \pm SD (n= 12). Means followed by different letters on the same column on the right indicate significant differences at *P*<0.05 among study sites and different capital letters on the same row on the left indicate significant differences at *P*<0.05 among periods.

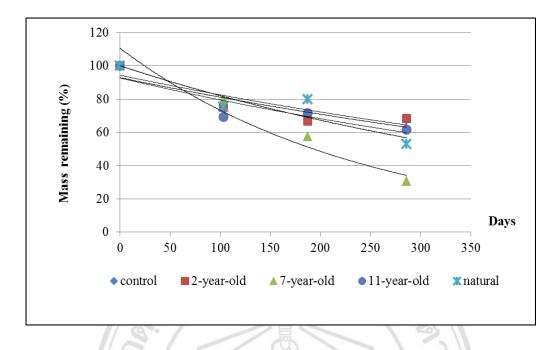


Figure 4.6 Litter mass remaining with trend line in different periods

control	N. A.	PS	(%) in 1 year
control	0.004		
control	$y = 94.287^{e-0.001x}$	0.87	65.45
2-year-old	$y = 92.863^{e-0.001x}$	0.78	64.47
7-year-old	$y = 110.53^{e-0.004x}$	0.94	25.67
11-year-old	$y = 92.608^{e-0.002x}$	0.80	44.63
natural	$y = 99.996^{e-0.002x}$	0.85	48.19

Table 4.9 Linear regression equation and R^2 of all study sites

Remaining mass in control, 2, 7, 11-year-old and natural site was calculated as 1.53, 0.37, 1.29, 2.36 and 3.10 t/ha/yr, respectively. In contrast, mass loss in control, 2, 7, 11year-old and natural site were 0.81, 0.20, 3.73, 2.93 and 3.33 t/ha/yr, respectively (Fig.4.7). And percentage of remaining and loss per year were shown in Fig. 4.8. Percentage of remaining and loss mass in control and the youngest sites were around 65:35. In 11-year-old and natural site were 50:50. But in 7-year-old site, percentage of loss mass was 74.33 while percentage of remaining mass was just 25.67.

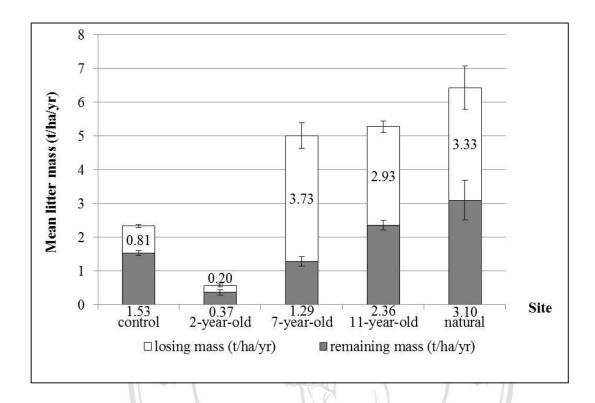


Figure 4.7 Litter mass remaining and loss (t/ha/yr)

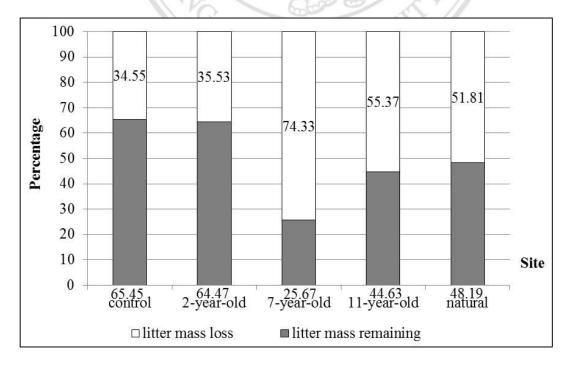


Figure 4.8 Percentage of mass remaining and loss

4.9 Carbon

Carbon content in litter was determined after collected in each period. Duration times were 0, 103, 187 and 286 days. Organic matter was determined and converted to organic carbon using 0.58. Carbon in litter decreased gradually from the beginning period to the last period. Significant differences among period were shown in Table 4.10. Highest carbon in litter of the beginning period was found in natural site next to 11, 2-year-old, control and 7-year-old were 38.72, 35.50, 34.74, 33.29 and 32.97 g/100g, respectively. After 286 days, highest carbon was also found in the natural site compared with 7, 2-year-old, control and 11-year-old site were 30.79, 29.54, 26.25, 25.70 and 25.37 g/100g, respectively.

			1 / 7 /	
	1	2	3	4
Period	0 day	103 days	187 days	286 days
\backslash	Early rainy	Rainy	Cool	Cool dry
	(May.11)	(Aug.11)	(Nov.11)	(Feb.12)
Site				2 '
control	A 33.29 <u>+</u> 1.95 b	AB 31.79 <u>+</u> 4.90 a	AB 25.89 <u>+</u> 1.98 ab	B 25.37 <u>+</u> 1.16 c
2-year-old	A 34.74 <u>+</u> 2.13 ab	A 32.92 <u>+</u> 4.18 a	B 25.55 <u>+</u> 1.93 ab	B 25.70 <u>+</u> 0.82 c
7-year-old	A 32.97 <u>+</u> 2.74 b	AB 25.52 <u>+</u> 3.95 a	B 22.39 <u>+</u> 4.02 b	AB 29.54 <u>+</u> 3.27 ab
11-year-old	A 35.50 <u>+</u> 1.50 ab	AB 29.97 <u>+</u> 3.71 a	B 26.33 <u>+</u> 2.16 ab	B 26.25 <u>+</u> 0.38 bc
natural	A 38.72 <u>+</u> 0.39 a	AB 35.21 <u>+</u> 2.92 a	B 31.72 <u>+</u> 3.89 a	B 30.79 <u>+</u> 0.90 a

Table 4.10 Carbon content (%) in litter in different periods

Note: Value are means \pm SD (n= 12). Means followed by different letters on the same column on the right indicate significant differences at p < 0.05 among study sites and different capital letters on the same row on the left indicate significant differences at P < 0.05 among periods.

4.10 Carbon remaining (%) in different period

Carbon remaining (%) from period by period was calculated using equation below.

Carbon remaining (%) = $(X_t/X_0) \times (C_t/C_0) \times 100$ X_0 = initial dry mass of litter X_t = remaining litter mass after time t C_0 = initial carbon in litter C_t = remaining carbon in litter after time t

Percentage of carbon remaining dropped from beginning period around 30 %. In restored forest and control site were not different among period of times (p < 0.05) but carbon remaining in natural site was quit fluctuated. After 103 days, carbon remaining was not different among study sites. After 187 days, carbon remaining in natural site was significantly higher than other sites. Highest carbon remaining in 2-year-old site next to control, 11-year-old, natural and 7-year-old site were 68.15, 66.08, 61.66, 51.48 and 40.36 %, respectively after 286 days (Table 4.11). Carbon remaining in different period and trend line was shown in Fig.4.10 and predicted mass remaining in 1 year of control, 2, 7, 11-year-old and natural site using regression equation were 63.46, 43.55, 31.17, 41.26 and 46.22 %, respectively (Table 4.12).

, Â	หลิกลิเ	แหก่จิทย่	າອັຫເຮີຍບ	าโหม
	ochio	51112110	1003000	4
\ Period	onvright	^{C)} by Chian	g Mai Univ	ersity
	opyright.	by Cillan	5 mai omi	crorey .
\land A	0 day	103 days	187 days	286 days
Site	Early rainy	Rainy	Cool	Cool dry
\backslash	(May.11)	(Aug.11)	(Nov.11)	(Feb.12)
control	100	A 71.19 <u>+</u> 14.11 a	A 64.06 <u>+</u> 9.88 b	A 66.08 <u>+</u> 22.13 ab
2-year-old	100	A 71.24 <u>+</u> 13.06 a	A 55.58 <u>+</u> 14.72 b	A 68.15 <u>+</u> 21.69 a
7-year-old	100	A 61.21 <u>+</u> 11.10 a	A 50.62 <u>+</u> 16.28 b	A 40.36 <u>+</u> 25.22 b
11-year-old	100	A 58.07 <u>+</u> 17.36 a	A 62.93 <u>+</u> 15.20 b	A 61.66 <u>+</u> 18.46 ab
natural	100	B 68.57 <u>+</u> 11.89 a	A 91.29 <u>+</u> 2.03 a	B 51.48 <u>+</u> 10.78 ab

0

Table 4.11 Carbon remaining (%) in different period

Note: Value are means \pm SD (n= 12). Means followed by different letters on the same column on the right indicate significant differences at p < 0.05 among study sites and different capital letters on the same row on the left indicate significant differences at p < 0.05 among periods.

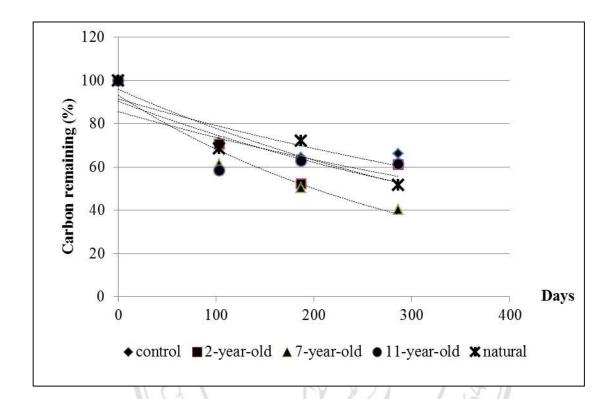


Figure 4.9 Carbon remaining with trend line in different periods

Table 4.12 Regression equation and R^2 of all study sites

0

12

site CO	Equation	R^2	Predicted carbon
Сор	yright [©] by Chia	ng Mai I	remaining (%) in 1 year
Control	$y = 91.421e^{-0.001x}$	0.75	63.46
2-year-old	$y = 90.368e^{-0.002x}$	0.68	43.55
7-year-old	$y = 93.18e^{-0.003x}$	0.96	31.17
11-year-old	$y = 85.615e^{-0.002x}$	0.54	41.26
natural	$y = 95.919e^{-0.002x}$	0.86	46.22

4.11 Nitrogen

Nitrogen of mixed litter mass at the different times was determined. At the beginning time, highest of nitrogen was found in 7-year-old next to natural, 11, 2-year-old and control site were 1.67, 1.66, 1.62, 1.30 and 1.24 (g/100g), respectively (Table 4.13). Among period of times, after 103 days nitrogen was decreased from beginning period in 11 and 7-year-old sites. In 2-year-old, control and natural sites nitrogen was not different among periods.

After 103 days, nitrogen in litter was not different among study sites. The negative relationship between nitrogen and duration times ($R^2 = 0.90$) was found and shown in Fig. 4.10.

	C.	1	- C\ Y //	
	1	AI 2UNI	VER3	4
Period -	0 day	103 days	187 days	286 days
\ <u>a</u>	0 day	Rainy	Cool	Cool dry
	Early rainy	(Aug.11)	(Nov.11)	(Feb.12)
Site	(May.11)	by Chian	g Mai Uni	versity
		- 1 - L	0	· · · · ·
control	A 1.24 <u>+</u> 0.11 c	A 1.14 <u>+</u> 0.17 a	A 1.03 <u>+</u> 0.03 b	A 1.01 <u>+</u> 0.03 a
2-year-old	A 1.30 <u>+</u> 0.14 bc	A 1.28 <u>+</u> 0.32 a	A 1.06 <u>+</u> 0.12 b	A 1.05 <u>+</u> 0.05 a
7-year-old	A 1.67 <u>+</u> 0.09 a	B 1.15 <u>+</u> 0.19 a	B 0.95 <u>+</u> 0.18 b	B 1.02 <u>+</u> 0.21 a
11-year-old	A 1.62 <u>+</u> 0.16 ab	B 1.22 <u>+</u> 0.11 a	B 1.03 <u>+</u> 0.11 b	B 1.04 <u>+</u> 0.01 a
natural	A 1.66 <u>+</u> 0.22 ab	A1.48 <u>+</u> 0.23 a	A 1.54 <u>+</u> 0.36 a	A 1.33 <u>+</u> 0.27 a

Table 4.13 Nitrogen (g/100 g) in litter in different periods

Note: Value are means \pm SD (n= 12). Means followed by different letters on the same column on the right indicate significant differences at *P*<0.05 among study sites and different letters on the same row on the left indicate significant differences at *P*<0.05 among periods.

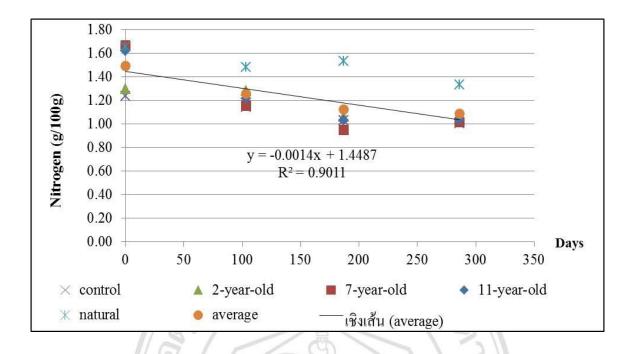


Figure 4.10 Relationship between nitrogen in litter and duration times

4.12 Carbon:Nitrogen

Carbon:nitrogen was determined during period of times. The positive relationship between carbon:nitrogen and duration times ($R^2 = 0.43$). Carbon:nitrogen from the first to the last period ranged from 19.79 – 26.90, 22.10 – 27.80, 20.65 – 25.51 and 23.11 – 29.03, respectively (Table 4.14 and Fig. 4.11).

	វ៉ាទិបក	2	188108	JO [4]
Period	0 day	103 days	187 days	286 days
	Early rainy	Rainy	Cool	Cool dry
Site	(May.11)	(Aug.11)	(Nov.11)	(Feb.12)
control	26.90	27.80	25.04	25.24
2-year-old	26.72	25.67	24.04	24.50
7-year-old	19.79	22.10	23.55	29.03
11-year-old	21.91	24.64	25.51	25.24
natural	23.35	23.74	20.65	23.11

Table 4.14 Carbon nitrogen ratio in different periods

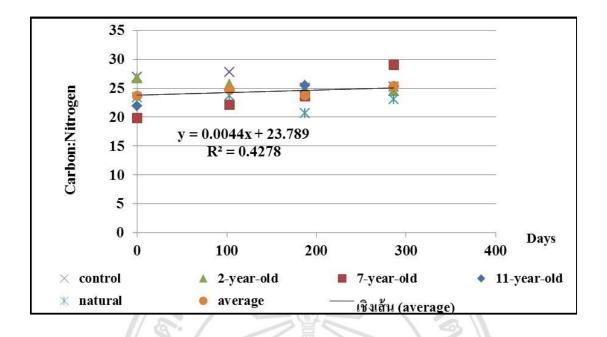


Figure 4.11 The relationship between carbon nitrogen ratio in litter and duration times

4.13 K value

K value was calculated. Over 286 days k value ranged from 1.08 - 2.85. K value in 7-year-old was higher significantly from other sites (Table 4.13).

MAI	UNIVERS
	Table 4.15 K value
ลิขสิทธิ์มหา	<u>วิทยาลัยเชียงใหม่</u>
CopyrighSite by	Chiang Mai University
control	1.20 <u>+</u> 0.88 b
2-year-old	1.08 ± 0.78 b
7-year-old	2.85 <u>+</u> 1.10 a
11-year-old	1.27 <u>+</u> 0.40 b
natural	1.12 <u>+</u> 0.29 b

Note: Value are means \pm SD (n= 12). Means followed by different letters on the same column on the right indicate significant differences at *P*<0.05 among study sites.

4.14 Soil profiles

Soil profile of each study site was dig from top soil down to 200 cm in depth. Topography of study site was recorded (Table 4.16). Each layer of soil was collected and analyzed (Fig. 4.12). Then the results from laboratory comprised with observed data using for described soil profile descriptions. Soil classification of each soil profile was determined using soil taxonomy USDA 11th edition, 2010 and also shown in Table 4.17.

Pedon	site	Elevation (m.asl.)	Slope (%)	Slope aspect	3	GPS	
1	control	1,332	10	ESE 99 ⁰	N18 ⁰	51'	410"
1	control	1,002	500		E098 ⁰	50'	881"
2	2-year-old	1,311	16	ENE 60 ⁰	N18 ⁰	51'	410"
2	2-year-olu	1,511	-10	EINE 00	E098 ⁰	50'	931"
3	7 year old	1 229	22	ENE 86 ⁰	N18 ⁰	51'	569"
3	7-year-old	1,228	LL	EINE 80	E098 ⁰	50'	968"
4	11-year-	1 222		NINUA 2520	N18 ⁰	51'	410"
4	old	1,332	9	NNW 352 ⁰	E098 ⁰	50'	881"
5		1 200	66	WEW 200	N18 ⁰	51'	893"
5	natural	1,288	14	WSW 266 ⁰	E098 ⁰	51'	717"

Table 4.16 Summary of study site topography

a dam Stable 4.17 Soil classification Copyright[©] by Chiang Mai University

Pedon	Site	Order	Suborder	Great group	Sub group	Soil family
1	control	Ultisols	Ustults	Haplustults	Typic Haplustults	Fine loamy
2	2-year-old	Ultisols	Ustults	Haplustults	Typic Haplustults	Fine
3	7-year-old	Ultisols	Ustults	Haplustults	Typic Haplustults	Fine loamy
4	11-year-old	Ultisols	Ustults	Haplustults	Typic Haplustults	Fine loamy
5	natural	Ultisols	Ustults	Haplustults	Typic Haplustults	Fine

Control

2-year-old

7-year-old

11-year-old

Natural

Figure 4.12 Soil profiles of each study site

4.14.1 Soil physical properties

Soil bulk density increased with depth but not significantly different among study sites. Soil bulk density from 0 - 200 cm. in depth in pedon 1 - 5 (control, 2, 7. 11-year-old and natural sites) were 0.78 - 1.12, 0.68 - 1.07, 0.75 - 1.14, 0.78 - 1.12 and 0.62 - 1.06 g/cm³, respectively. According to appendix C, soil bulk density among study sites were low (< 1.2 g/cm^3) (Tables 4.18a-b).

In all study sites, the pattern of percentage of sand, silt and sand seem to be similar. Percentage of sand tended to be decreased followed by soil depth in pedon 1 - 5. Percentage of silt was quite constantly. In pedon 1 - 4, percentage of silt was around 20 % but in pedon 5 (natural site) was around 15 %. Clay percentage of pedon 1 (control site) was quit constant around 25 % (Tables 4.18a-b and Fig. 4.13).

	1 126		1 8		1316	- 11
Soil depth	Bulk density	Sand	Silt	Clay	Texture	Texture class
(cm)	(g/cm^3)	(%)	(%)	(%)		
	GF	edon 1 (co	ontrol site)	I y	1 2	//
0-5	0.78	53.6	23.9	22.5	Sandy clay loam	Moderately fine-
510	0.85	51.8	22.3	25.9	Sandy clay loam	textured
1020	0.90	49.2	24	26.8	Sandy clay loam	
20-30	0.90	46.7	26.5	26.8	Sandy clay loam	
30-40	0.95	44.1	26.6	29.3	Clay loam	
40-60	0.92	46.7	25.7	27.6	Sandy clay loam	
60-80	0.91	43.4	27.3	29.3	Clay loam	
80-100	1.15	39	28.2	32.8	Clay loam	
100-150	1.12	39	30.8	30.2	Clay loam	2
150-200	1.12	46.7	29.1	24.2	Loam	Medium-textured
	Pe	don 2 (2-y	ear-old site	e)		
0-5	0.68	51.8	19.8	28.4	Sandy clay loam	Moderately fine-
5-10	0.79	39	21.5	39.5	Clay loam	textured
10-20	0.76	39	21.5	39.5	Clay loam	ea
20-30	0.82	33.9	23.1	43	Clay	Fine-textured
30-40	0.92	31.4	24	44.6	Clay	
40-60	1.12	31.4	24	44.6	Clay	
60-80	1.14	33.9	23.1	43	Clay	
80-100	1.12	31.4	28.1	40.5	Clay	
100-150	1.21	31.4	28.1	40.5	Clay	
150-200	1.07	28.8	32.4	38.8	Clay loam	Moderately fine- textured

Table 4 .18a Soil physical properties

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	erately -textured erately extured
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-textured erately
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-textured erately
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-textured erately
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	erately
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
80-100 0.96 41.6 23.3 35.1 Clay loam 100-150 0.92 39 23.3 37.7 Clay loam 150-200 1.14 40.6 21.7 37.7 Clay loam Pedon 4 (11-year-old site) Pedon 4 (11-year-old site) Mode 0-5 0.78 64.4 23.2 12.4 Sandy loam Mode 5-10 0.83 69 18.6 12.4 Sandy loam coarse 10-20 0.81 69 18.6 12.4 Sandy loam coarse 20-30 0.85 64.4 20.7 14.9 Sandy loam fine-t 30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mode 40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-t 60-80 1.02 44 23.3 32.7 Clay loam fine-t 80-100 1.04 44 23.3 32.7 Clay loam fine-t	
100-150 0.92 39 23.3 37.7 Clay loam 150-200 1.14 40.6 21.7 37.7 Clay loam Pedon 4 (11-year-old site) Pedon 4 (11-year-old site) Mode 0-5 0.78 64.4 23.2 12.4 Sandy loam Mode 5-10 0.83 69 18.6 12.4 Sandy loam coarse 10-20 0.81 69 18.6 12.4 Sandy loam coarse 20-30 0.85 64.4 20.7 14.9 Sandy loam Mode 30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mode 40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-4 60-80 1.02 44 23.3 32.7 Clay loam fine-4 80-100 1.04 44 23.3 32.7 Clay loam fine-4	
150-200 1.14 40.6 21.7 37.7 Clay loam Pedon 4 (11-year-old site) Pedon 4 (11-year-old site) Mode 0-5 0.78 64.4 23.2 12.4 Sandy loam Mode 5-10 0.83 69 18.6 12.4 Sandy loam Coarse 10-20 0.81 69 18.6 12.4 Sandy loam coarse 20-30 0.85 64.4 20.7 14.9 Sandy loam Mode 30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mode 40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-4 60-80 1.02 44 23.3 32.7 Clay loam fine-4 80-100 1.04 44 23.3 32.7 Clay loam fine-4 100-150 1.09 44 23.3 32.7 Clay loam fine-4	
Pedon 4 (11-year-old site) Mode 0-5 0.78 64.4 23.2 12.4 Sandy loam Mode 5-10 0.83 69 18.6 12.4 Sandy loam coarse 10-20 0.81 69 18.6 12.4 Sandy loam coarse 20-30 0.85 64.4 20.7 14.9 Sandy loam Mode 30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mode 40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-4 60-80 1.02 44 23.3 32.7 Clay loam fine-4 80-100 1.04 44 23.3 32.7 Clay loam fine-4 100-150 1.09 44 23.3 32.7 Clay loam fine-4	
5-10 0.83 69 18.6 12.4 Sandy loam coarse 10-20 0.81 69 18.6 12.4 Sandy loam coarse 20-30 0.85 64.4 20.7 14.9 Sandy loam source source	
5-10 0.83 69 18.6 12.4 Sandy loam coarse 10-20 0.81 69 18.6 12.4 Sandy loam coarse 20-30 0.85 64.4 20.7 14.9 Sandy loam source source	
10-20 0.81 69 18.6 12.4 Sandy loam 20-30 0.85 64.4 20.7 14.9 Sandy loam 30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mod 40-60 0.93 46.6 23.3 30.1 Sandy clay loam Mod 60-80 1.02 44 23.3 32.7 Clay loam fine-1 80-100 1.04 44 23.3 32.7 Clay loam 100-150 1.09 100-150	erately
20-30 0.85 64.4 20.7 14.9 Sandy loam 30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mode 40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-to 60-80 1.02 44 23.3 32.7 Clay loam fine-to 80-100 1.04 44 23.3 32.7 Clay loam fine-to 100-150 1.09 44 23.3 32.7 Clay loam fine-to	-textured
30-40 0.82 49.1 24.1 26.8 Sandy clay loam Mod 40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-4 60-80 1.02 44 23.3 32.7 Clay loam fine-4 80-100 1.04 44 23.3 32.7 Clay loam fine-4 100-150 1.09 44 23.3 32.7 Clay loam fine-4	
40-60 0.93 46.6 23.3 30.1 Sandy clay loam fine-to 60-80 1.02 44 23.3 32.7 Clay loam fine-to 80-100 1.04 44 23.3 32.7 Clay loam fine-to 100-150 1.09 44 23.3 32.7 Clay loam fine-to	
60-80 1.02 44 23.3 32.7 Clay loam 80-100 1.04 44 23.3 32.7 Clay loam 100-150 1.09 44 23.3 32.7 Clay loam	erately
80-100 1.04 44 23.3 32.7 Clay loam 100-150 1.09 44 23.3 32.7 Clay loam	extured
100-150 1.09 44 23.3 32.7 Clay loam	
150-200 1.12 41.6 18.2 40.2 Clay Fine	textured
Pedon 5 (natural site)	
0-5 0.62 56.9 20.6 22.5 Sandy clay loam Mod	erately
	extured
1020 0.80 51.8 15.6 32.6 Sandy clay loam	
20-30 0.90 51.8 15.6 32.6 Sandy clay loam	
40-60 0.90 44.1 13.2 42.7 Clay	extured
60-80 0.98 41.6 14.1 44.3 Clay	extured
80-100 0.93 44.1 10.6 45.3 Clay	extured
100-150 0.97 44.1 13.2 42.7 Clay	extured
150-200 1.06 41.6 13.1 45.3 Clay	extured

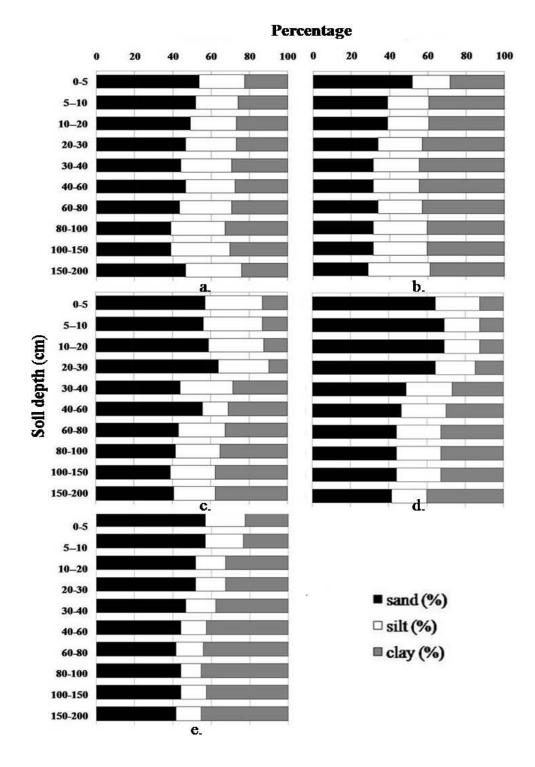


Figure 4.13 Soil texture

4.14.2 Soil chemical properties

4.14.2.1 Soil pH

According to appendix C, soil in pedon 1 (control site) and pedon 2 (2-year-old site) were very strongly acid (4.5 - 5.0). Upper soil in pedon 3 (7 – year-old site) (0- 30 cm.) was strongly acid (5.4 – 5.7) while lower than 30 cm. was very strongly acid (5.4 – 5.7). Soil pH in pedon 4 (11- year-old site) was very extremely acid (4.8 - 5.3) whereas in pedon 5 (natural site) was ranged from extremely acid to very strongly acid (Tables 4.19a –b).

4.14.2.2 OM, N, P and K

OM, N, P and K decreased with depth. According appendix C, OM of top soil (first 5cm. in depth) in all study sites was low, but in pedon 5 (natural site) was moderately low. Nitrogen in 0 - 30 cm. soil depth in old-restored plot: pedon 3 and pedon 4 (7 and 11 year-old) and pedon 5 (natural forest) were medium rate (2.0 - 5.0 g/kg). Phosphorus in first 5 cm. was indicate high in pedon 4 (32.33 g/kg), moderately high in pedon 3 (21.81 g/kg), medium in pedon 2 (13.84 g/kg), moderately low in pedon 1 (9.99 g/kg) and low in pedon 5 (4.82 g/kg) (Tables 4.19a-b).

Soil depth (cm)	рН 1:1	OM g/100g	OC g/100g	TotalN g/100g	P (mg/kg)	K (mg/kg)	
		Ped	on 1 (control	site)			
0-5	5.01	10.08	5.85	0.39	9.99	180.81	
5-10	4.79	7.16	4.15	0.26	6.31	114.19	
10-20	4.44	5.03	2.92	0.19	1.23	75.34	
20-30	4.39	4.39	2.55	0.16	0.88	64.23	
30-40	4.38	2.76	1.60	0.11	0.53	64.23	
40-60	4.61	2.76	1.60	0.11	0.26	47.58	
60-80	4.89	1.88	1.09	0.09	0.45	58.68	
80-100	4.82	0.74	0.43	0.03	0.18	25.38	
100-150	4.78	0.6	0.35	0.02	0.27	19.83	
150-200	4.81	0.47	0.27	0.02	0.36	5.13	
Pedon 2 (2-year-old site)							
0-5	4.76	6.86	3.98	0.28	13.84	286.28	
5-10	4.7	5.83	3.38	0.24	3.68	164.15	
10-20	4.79	5.26	3.05	0.21	2.28	103.09	
20-30	4.56	3.58	2.08	0.14	0.26	47.58	
30-40	4.53	2.53	1.47	0.10	0.26	42.03	
40-60	4.53	1.86	1.08	0.07	0.26	19.83	
60-80	4.58	1.41	0.82	0.05	0.09	13.96	
80-100	4.6	0.93	0.54	0.03	0.91	3.17	
100-150	4.52	0.87	0.50	0.02	0.27	8.72	
150-200	4.8	0.7	0.41	0.02	0.55	3.17	
0		Pedor	n 3 (7-year-old	d site)	·		
0-5	5.75	7.71	4.47	0.38	21.81	397.3	
5-10	5.41	6.75	3.92	0.34	15.59	291.83	
10-20	5.44	6.18	3.58	0.31	17.61	208.56	
20-30	5.49	5.51	3.20	0.27	8.59	108.64	
30-40	5.3	3.47	2.01	0.16	1.93	80.89	
40-60	5.01	3.09	1.79	0.14	1.58	108.64	
60-80	4.85	2.5	1.45	0.11	0.96	108.64	
80-100	4.88	1.99	1.15	0.08	0.79	103.09	
100-150	4.97	1.56	0.90	0.10	1.18	136.40	
150-200	4.96	1.4	0.81	0.01	0.55	30.93	

Soil depth (cm)	рН 1:1	OM g/100g	OC g/100g	TotalN g/100g	P (mg/kg)	K (mg/kg)
		Pedo	n 4 (11-year-ol	d site)		
0-5	4.65	8.97	5.20	0.37	32.33	180.81
5-10	5.12	7.71	4.47	0.31	47.83	97.54
10-20	4.42	7.12	4.13	0.28	24.18	80.89
20-30	5.4	5.62	3.26	0.24	5.61	91.99
30-40	4.45	4.69	2.72	0.17	2.98	42.03
40-60	4.31	3.12	1.81	0.08	1.4	30.93
60-80	4.31	2.35	1.36	0.08	1.14	36.48
80-100	4.41	1.16	0.67	0.05	0.09	36.48
100-150	4.95	0.86	0.50	0.04	0.7	8.72
150-200	5.24	0.69	0.40	0.02	0.55	8.72
	1-59	Ped	on 5 (natural s	<u>site)</u>	-202	
0-5	4.52	11.59	6.72	0.42	4.82	158.6
5-10	4.52	9.91	5.75	0.39	4.12	75.34
10-20	4.46	6.99	4.05	0.27	1.84	42.03
20-30	6.79	5.55	3.22	0.36	15.68	119.74
30-40	4.49	3.27	1.90	0.11	0.79	42.03
40-60	4.38	2.13	1.24	0.10	0.26	14.27
60-80	4.36	1.48	0.86	0.06	0.82	14.27
80-100	4.64	1.09	0.63	0.04	0.55	19.83
100-150	4.56	0.78	0.45	0.04	0.45	3.17
150-200	4.67	0.73	0.42	0.02	0.36	3.17

Table 4.19b Soil chemical properties

Copyright[©] by Chiang Mai University All rights reserved

4.14.2.3 CEC and percentage base saturation

According to Appendix C, CEC of first 5 cm. depth of soil in pedon 1, 2, 4 and 5 were moderately high (15 - 20 cmol+/kg) while in pedon 3 was high. Base saturation (%) in the same depth of pedon 1, 4 and 5 were low (< 35 %) but in pedon 2 and 3 were medium (35 - 75%) (Tables 4.20a – b).

Soil depth (cm)	K (cmol+/kg)	Ca (cmol+/kg)	Mg (cmol+/kg)	Na (cmol+/kg)	Sum of base (cmol+/kg)	CEC (cmol+/kg)	Base saturation (%)		
			Pedon 1 (co	ontrol site)					
0-5	0.46	3.00	0.93	0.06	4.45	15.49	28.70		
5-10	0.29	0.52	0.24	0.06	1.11	12.73	8.72		
10-20	0.19	0.00	0.05	0.09	0.34	9.87	3.42		
20-30	0.16	0.03	0.02	0.11	0.32	8.81	3.69		
30-40	0.16	0.07	0.02	0.08	0.33	7.22	4.57		
40-60	0.12	0.18	0.10	0.14	0.54	6.79	7.96		
60-80	0.15	0.58	0.23	0.07	1.02	5.09	20.12		
80-100	0.07	0.08	0.08	0.08	0.30	2.97	10.10		
100-150	0.05	0.20	0.07	0.04	0.36	2.23	16.30		
150-200	0.01	0.11	0.15	0.17	0.45	2.55	17.69		
Pedon 2 (2-year-old site)									
0-5	0.73	3.63	1.12	0.06	5.55 5	15.49	35.81		
5-10	0.42	0.43	0.14	0.24	1.22	13.27	9.21		
10-20	0.26	2.57	0.11	0.07	3.02	12.84	23.51		
20-30	0.12	0.49	0.04	0.08	0.73	11.35	6.46		
30-40	0.11	0.19	0.02	0.05	0.36	5.94	6.12		
40-60	0.05	0.25	0.02	0.11	0.43	6.05	7.06		
60-80	0.04	0.09	0.03	0.10	0.25	4.88	5.20		
80-100	0.01	0.12	0.07	0.06	0.26	3.93	6.50		
100-150	0.02	0.14	0.10	0.08	0.34	3.93	8.71		
150-200	0.01	0.09	0.09	0.06	0.24	5.09	4.67		
	0.0.	6	Pedon 3 (7-y	ear-old site)		.?'	E.		
0-5	1.02	9.74	3.32	0.08	14.16	20.59	68.76		
5-10	0.75	6.28	1.97	0.07	9.07	18.78	48.30		
10-20	0.53	5.19	0.73	0.07	6.52	17.40	37.48		
20-30	0.28	4.62	0.85	0.08	5.84	16.34	35.74		
30-40	0.21	2.06	0.68	0.03	2.98	11.57	25.73		
40-60	0.28	0.97	0.51	0.07	1.83	10.40	17.62		
60-80	0.28	0.63	0.48	0.05	1.44	9.02	15.96		
80-100	0.26	0.68	0.64	0.07	1.65	8.17	20.18		
100-150	0.35	0.40	0.50	0.10	1.34	6.15	21.78		
150-200	0.08	0.21	0.41	0.15	0.84	4.56	18.40		

Table 4.20a CEC and percentage base saturation

Soil depth (cm)	K (cmol+/kg)	Ca (cmol+/kg)	Mg (cmol+/kg)	Na cmol+/kg	Sum of base (cmol+/kg)	CEC cmol+/kg	Base saturation (%)
			Pedon 4 (11-	year-old site	<u>)</u>		
0-5	0.46	2.58	0.62	0.08	3.75	19.74	19.00
5-10	0.25	0.49	0.15	0.09	0.98	16.13	6.06
10-20	0.21	0.20	0.06	0.09	0.56	14.33	3.90
20-30	0.24	0.06	0.04	0.02	0.36	13.80	2.58
30-40	0.11	0.04	0.02	0.09	0.26	13.80	1.89
40-60	0.08	0.00	0.01	0.12	0.21	11.57	1.82
60-80	0.09	0.15	0.02	0.07	0.34	8.70	3.85
80-100	0.09	0.22	0.01	0.07	0.40	7.43	5.38
100-150	0.02	0.28	0.06	0.08	0.43	4.88	8.86
150-200	0.02	0.06	0.05	0.07	0.21	3.29	6.28
	110		Pedon 5 (r	atural site)		110	
0-5	0.41	0.89	0.45	0.07	1.82	16.77	10.83
5-10	0.19	0.04	0.07	0.10	0.41	14.64	2.78
10-20	0.11	0.06	0.04	0.09	0.30	10.82	2.76
20-30	0.31	0.04	0.07	0.29	0.70	9.34	7.45
30-40	0.11	0.03	0.01	0.06	0.21	7.22	2.92
40-60	0.04	0.01	0.03	0.11	0.18	5.52	3.35
60-80	0.04	0.01	0.02	0.06	0.12	4.03	3.06
80-100	0.05	0.01	0.01	0.11	0.18	3.82	4.69
100-150	0.01	0.00	0.01	0.07	0.09	2.55	3.48
150-200	0.01	0.01	0.01	0.07	0.10	1.91	5.33

Table 4.20b CEC and percentage base saturation

^{14.14.3} Soil fertility กริบหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University

Score of each parameter were defined and sum of them were used for estimating soil fertility level according to Appendix C. The first 30 cm in depth of soil in pedon 1, 2 and 5 were indicated as medium fertility and lower than 30 cm in depth was indicated as low fertility. In pedon 3, first 5 cm in depth was high, while 5 - 100 cm in depth was medium and lower than that was low (Tables 4.21a-b).

Soil depth (cm)	O.M. (g/kg)	P (mg/kg)	K (mg/kg)	CEC (cmol+/kg)	Base saturation (%)	Score	Fertility level		
			Pedon 1 (cor	ntrol site)					
0-5	100.80 (3)	9.99 (1)	180.81 (3)	15.49 (2)	28.70(1)	10	medium		
5-10	71.60(3)	6.31 (1)	114.19 (3)	12.73(2)	8.72(1)	10	medium		
10-20	50.30(3)	1.23 (1)	75.34 (2)	9.87(1)	3.42(1)	8	medium		
20-30	43.90(3)	0.88 (1)	64.23 (2)	8.81(1)	3.69(1)	8	medium		
30-40	27.60 (2)	0.53 (1)	64.23 (2)	7.22(1)	4.57(1)	7	low		
40-60	27.60 (2)	0.26(1)	47.58 (1)	6.79(1)	7.96(1)	6	low		
60-80	18.80 (2)	0.45 (1)	58.68 (1)	5.09(1)	20.12(1)	6	low		
80-100	7.40 (1)	0.18(1)	25.38 (1)	2.97(1)	10.10(1)	5	low		
100-150	6.00 (1)	0.27 (1)	19.83 (1)	2.23(1)	16.30(1)	5	low		
150-200	4.70 (1)	0.36 (1)	5.13 (1)	2.55(1)	17.69(1)	5	low		
Pedon 2 (2-year-old site)									
0-5	68.60 (3)	13.84 (2)	286.28 (3)	15.49 (2)	35.81 (2)	12	medium		
5-10	58.30 (3)	3.68 (1)	164.15(3)	13.27(2)	9.21(1)	10	medium		
10-20	52.60 (3)	2.28 (1)	103.09(3)	12.84(2)	23.51(1)	10	medium		
20-30	35.80 (3)	0.26 (1)	47.58 (2)	11.35(2)	6.46(1)	9	medium		
30-40	25.30 (2)	0.26 (1)	42.03(2)	5.94 (1)	6.12(1)	7	low		
40-60	18.60 (2)	0.26(1)	19.83 (1)	6.05(1)	7.06(1)	6	low		
60-80	14.10(1)	0.09 (1)	13.96(1)	4.88(1)	5.20(1)	5	low		
80-100	9.30(1)	0.91 (1)	3.17(1)	3.93(1)	6.50(1)	5	low		
100-150	8.70(1)	0.27 (1)	8.72(1)	3.93(1)	8.71(1)	5	low		
150-200	7.00(1)	0.55 (1)	3.17(1)	5.09(1)	4.67(1)	5	low		
			Pedon 3 (7-ye	ar-old site)					
0-5	77.10 (3)	21.81 (2)	397.30 (3)	20.59 (3)	68.76 (2)	13	high		
5-10	67.50 (3)	15.59 (2)	291.83 (3)	18.78(2)	48.30(2)	12	medium		
1020	61.80 (3)	17.61 (2)	208.56 (3)	17.40(2)	37.48(2)	12	medium		
20-30	55.10 (3)	8.59 (1)	108.64 (3)	16.34(2)	35.74(2)	rsity	medium		
30-40	34.70 (2)	1.93 (1)	80.89 (2)	11.57(2)	25.73(1)	8	medium		
40-60	30.90 (2)	1.58 (1)	108.64 (3)	10.40(2)	17.62(1)	9	medium		
60-80	25.00 (2)	0.96(1)	108.64 (3)	9.02 (1)	15.96(1)	8	medium		
80-100	19.90 (2)	0.79 (1)	103.09 (3)	8.17(1)	20.18(1)	8	medium		
100-150	15.60 (2)	1.18(1)	136.40 (3)	6.15 (1)	21.78(1)	8	medium		
150-200	14.00(1)	0.55(1)	30.93 (1)	4.56(1)	18.40(1)	5	low		

Table 4.21a Soil fertility

Table 4.21b Soil fertility

Soil depth (cm)	O.M. (g/kg)	P (mg/kg)	K (mg/kg)	CEC (cmol+/kg)	Base saturation (%)	Score	Fertility level	
Pedon 4 (11-year-old site)								
0-5	89.70 (3)	32.33 (3)	180.81 (3)	19.74 (2)	19.00(1)	12	medium	
5-10	77.10(3)	47.83(3)	97.54 (3)	16.13(2)	6.06(1)	12	medium	
10-20	71.20 (3)	24.18 (2)	80.89 (2)	14.33(2)	3.90(1)	10	medium	
20-30	56.20 (3)	5.61 (1)	91.99 (3)	13.80(2)	2.58(1)	10	medium	
30-40	46.90 (3)	2.98 (1)	42.03 (1)	13.80(2)	1.89(1)	8	medium	
40-60	31.20 (2)	1.40(1)	30.93 (1)	11.57(2)	1.82(1)	7	low	
60-80	23.50 (2)	1.14 (1)	36.48 (1)	8.70(1)	3.85(1)	7	low	
80-100	11.60(1)	0.09 (1)	36.48 (1)	7.43(1)	5.38(1)	5	low	
100-150	8.60(1)	0.70(1)	8.72 (1)	4.88(1)	8.86(1)	5	low	
150-200	6.90(1)	0.55 (1)	8.72 (1)	3.29(1)	6.28(1)	5	low	
		21	Pedon 5 (1	natural site)	X			
0-5	115.9 (3)	4.82 (1)	158.6 (3)	16.77 (2)	10.83 (1)	10	medium	
5-10	99.1 (3)	4.12 (1)	75.34 (2)	14.64 (2)	2.78 (1)	9	medium	
10-20	69.9 (3)	1.84 (1)	42.03 (1)	10.82 (2)	2.76 (1)	8	medium	
20-30	55.5 (3)	15.68 (2)	119.74 (3)	9.34 (1)	7.45 (1)	10	medium	
30-40	32.7 (2)	0.79 (1)	42.03 (1)	7.22 (1)	2.92 (1)	6	low	
40-60	21.3 (2)	0.26(1)	14.27 (1)	5.52 (1)	3.35 (1)	6	low	
60-80	14.8 (1)	0.82 (1)	14.27 (1)	4.03 (1)	3.06 (1)	5	low	
80-100	10.9 (1)	0.55 (1)	19.83 (1)	3.82 (1)	4.69 (1)	5	low	
100-150	7.8 (1)	0.45 (1)	3.17 (1)	2.55 (1)	3.48 (1)	SI5	low	
150-200	7.3 (1)	0.36 (1)	3.17 (1)	1.91 (1)	5.33 (1)	e ⁵ d	low	

4.15 Soil sampling using soil auger

4 soil pits from each study site was conducted in July 2012. Each soil layer: 0-5, 5-10, 10-20, 20-30, 30-40, 40-60, 60-80, 80-100, 100-150 and 150 -200 cm in depth were collected soil auger. Soil samples from 4 points were mixed and sub-sampled into 3 replicates. Soil chemical parameters: pH, N, P, K, CEC and organic matter were analyzed. ร้ งามยนติ

4.15.1 Soil pH

Soil pH in each site from different soil depths (0 -200 cm) were determined. The differences among study sites in the same depth was investigated and shown in Table 4.22. Soil pH of 11-year-old site from 0 - 100 cm in depth tended to be lower than other sites and pH ranged from 3.97 – 4.93. In contrast, 0- 20 cm in depth pH in 7-year-old was higher than other sites significantly. Below 60 cm, pH in control site was significantly higher other sites (Table 4.22).

			and a present of	A W / H	
Soil depth (cm)	control	2-year-old	7-year-old	11-year-old	natural
0-5	4.79 <u>+</u> 0.02 c	4.96 <u>+</u> 0.03 b	5.16 <u>+</u> 0.03 a	4.53 <u>+</u> 0.03 d	4.50 <u>+</u> 0.06 d
5-10	4.55 <u>+</u> 0.15 b	4.68 <u>+</u> 0.03 b	4.99 <u>+</u> 0.02 a	4.03 <u>+</u> 0.02 c	4.53 <u>+</u> 0.03 b
10-20	4.57 <u>+</u> 0.03 b	4.54 <u>+</u> 0.01 b	4.74 <u>+</u> 0.03 a	4.17 <u>+</u> 0.10 c	4.31 <u>+</u> 0.05 c
20-30	4.43 <u>+</u> 0.01 ab	4.49 <u>+</u> 0.01 a	4.48 <u>+</u> 0.02 a	4.14 <u>+</u> 0.05 c	4.37 <u>+</u> 0.03 b
30-40	4.43 <u>+</u> 0.05 a	4.41 <u>+</u> 0.02 a	4.35 <u>+</u> 0.01 a	4.04 <u>+</u> 0.04 b	4.41 <u>+</u> 0.00 a
40-60	4.38 <u>+</u> 0.02 b	4.44 <u>+</u> 0.02 ab	4.44 <u>+</u> 0.02 a	3.97 <u>+</u> 0.03 c	4.41 <u>+</u> 0.02 ab
60-80	4.62 <u>+</u> 0.03 a	4.48 <u>+</u> 0.02 c	4.55 <u>+</u> 0.02 b	3.97 <u>+</u> 0.01 d	4.54 <u>+</u> 0.03 b
80-100	4.91 <u>+</u> 0.06 a	4.51 <u>+</u> 0.03 c	4.61 <u>+</u> 0.02 b	4.07 <u>+</u> 0.02 d	4.61 <u>+</u> 0.01 b
100-150	5.03 <u>+</u> 0.07 a	4.47 <u>+</u> 0.05 d	4.63 <u>+</u> 0.04 bc	4.52 <u>+</u> 0.06 cd	4.67 <u>+</u> 0.03 b
150-200	5.17 <u>+</u> 0.16 a	4.63 <u>+</u> 0.01 a	4.74 <u>+</u> 0.03 a	4.68 <u>+</u> 0.03 a	5.72 <u>+</u> 1.74 a

Table 4.22 Soil pH in different soil depth from 0 - 200 cm in all study sites

Note: Value are means \pm SD (n= 3). Means followed by different letters on the same row on the right indicate significant differences at *P*<0.05 among study sites.

4.15.2 Soil nitrogen (N)

In natural forest site, soil nitrogen (N) in 0 - 10 cm in depth was higher than other sites significantly (Table 4.23). Below 20 until 200 cm in depth, in 7-year-old site was highly significant than other sites. In all study sites, nitrogen was decreased with soil depth.

Soil depth	18		in the second se	231	
(cm)	control	2-year-old	7-year-old	11-year-old	natural
0-5	0.358 <u>+</u> 0.073 b	0.281 <u>+</u> 0.003 b	0.309 <u>+</u> 0.019 b	0.347 <u>+</u> 0.018 b	0.499 <u>+</u> 0.03
5-10	0.222 <u>+</u> 0.005 c	0.225 <u>+</u> 0.005 c	0.263 <u>+</u> 0.006 b	0.217 <u>+</u> 0.008 c	0.382 <u>+</u> 0.01
10-20	0.182 <u>+</u> 0.011 b	0.165 <u>+</u> 0.009 b	0.230 <u>+</u> 0.010 a	0.175 <u>+</u> 0.012 b	0.240 <u>+</u> 0.018
20-30	0.128 <u>+</u> 0.003 b	0.132 <u>+</u> 0.006 b	0.176 <u>+</u> 0.012 a	0.116 <u>+</u> 0.010 b	0.159 <u>+</u> 0.015
30-40	0.118 <u>+</u> 0.005 bc	0.084 <u>+</u> 0.006 d	0.148 <u>+</u> 0.006 a	0.104 <u>+</u> 0.007 c	0.127 <u>+</u> 0.01
40-60	0.073 <u>+</u> 0.010 bc	0.056 <u>+</u> 0.010 c	0.124 <u>+</u> 0.007 a	0.073 <u>+</u> 0.003 bc	0.082 <u>+</u> 0.003
60-80	0.042 <u>+</u> 0.005 c	0.029 <u>+</u> 0.003 d	0.108 <u>+</u> 0.008 a	0.053 <u>+</u> 0.003 bc	0.055 <u>+</u> 0.003
80-100	0.019 <u>+</u> 0.008 c	0.023 <u>+</u> 0.002 bc	0.100 <u>+</u> 0.022 a	0.030 <u>+</u> 0.002 bc	0.048 <u>+</u> 0.002
100-150	0.023 <u>+</u> 0.004 c	0.010 <u>+</u> 0.002 c	0.076 <u>+</u> 0.009 a	0.022 <u>+</u> 0.002 c	0.036 <u>+</u> 0.000
150-200	0.018 <u>+</u> 0.002 c	0.011 <u>+</u> 0.001 d	0.060 <u>+</u> 0.001 a	0.018 <u>+</u> 0.002 c	0.030 <u>+</u> 0.00

Table 4.23 Soil N (g/100g) in different soil depth from 0 - 200 cm in all study sites

Note: Value are means \pm SD (n= 3). Means followed by different letters on the same row on the right indicate significant differences at *P*<0.05 among study sites.

4.15.3 Soil phosphorus (P)

Soil phosphorus was tended to decrease with soil depth. The first 10 cm in depth, soil phosphorus in 11-year-old site was higher than others. Below 80 cm in depth, soil phosphorus in 7 year-old site was higher than other sites significantly (Table 4.24).

	0	91210	NOP 01		
Soil depth (cm)	control	2-year-old	7-year-old	11-year-old	natural
0-5	8.03 <u>+</u> 0.18 bc	13.32 <u>+</u> 0.61 b	32.25 <u>+</u> 7.86 a	31.60 <u>+</u> 2.64 a	4.92 <u>+</u> 0.46 c
5-10	4.15 <u>+</u> 0.60 c	7.74 <u>+</u> 0.91 c	26.99 <u>+</u> 2.24 b	40.57 <u>+</u> 5.29 a	2.60 <u>+</u> 0.00 c
10-20	1.61 <u>+</u> 0.48 c	3.91 <u>+</u> 1.13 c	16.88 <u>+</u> 2.74 a	10.23 <u>+</u> 2.54 b	1.30 <u>+</u> 0.20 c
20-30	1.23 <u>+</u> 0.38 c	2.04 <u>+</u> 0.56 bc	6.46 <u>+</u> 0.34 a	3.13 <u>+</u> 1.28 b	0.87 <u>+</u> 0.06 c
30-40	1.06 <u>+</u> 0.06 a	0.91 <u>+</u> 0.13 a	5.71 <u>+</u> 4.28 a	1.71 <u>+</u> 0.39 a	0.73 <u>+</u> 0.21 a
40-60	0.87 <u>+</u> 0.15 b	0.73 <u>+</u> 0.27 b	2.84 <u>+</u> 0.31 a	2.32 <u>+</u> 0.42 a	0.47 <u>+</u> 0.15 b
60-80	0.67 <u>+</u> 0.06 b	0.58 <u>+</u> 0.18 b	2.47 <u>+</u> 0.49 a	1.26 <u>+</u> 0.19 b	0.63 <u>+</u> 0.06 b
80-100	0.67 <u>+</u> 0.35 bc	0.41 <u>+</u> 0.18 c	1.90 <u>+</u> 0.31 a	1.13 <u>+</u> 0.15 b	0.47 <u>+</u> 0.06 c
100-150	0.13 <u>+</u> 0.06 b	0.41 <u>+</u> 0.13 ab	0.82 <u>+</u> 0.35 a	0.61 <u>+</u> 0.15 ab	0.47 <u>+</u> 0.15 ab
150 200	$0.10 \pm 0.00 c$	0.53±0.15 ab	0.58+0.10 a	0.26 ± 0.20 hc	0.43+0.06 ab

Table 4.24 Soil phosphorus (mg/kg) in 0 - 200 cm in all study sites

618181

150-200 0.10 ± 0.00 c 0.53 ± 0.15 ab 0.58 ± 0.10 a 0.26 ± 0.20 bc 0.43 ± 0.06 abNote: Value are means \pm SD (n= 3). Means followed by different letters on the same row on the
right indicate significant differences at P<0.05 among study sites

Copyright[©] by Chiang Mai University All rights reserved

4.15.4 Potassium (K)

Soil potassium of all sites was tended to decrease with soil depth. In the first 10 cm was high in 7-year-old and 2-year-old sites. Below 10 cm, soil potassium in 7-year-old site was higher than other sites significantly (Table 4.25).

	110		la '	4	
Soil depth (cm)	control	2-year-old	7-year-old	11-year-old	natural
• · · · ·	10.1			159.46+0.97	
0-5	170.10 <u>+</u> 11.63 b	247.27 <u>+</u> 10.37 a	245.80 <u>+</u> 4.45 a	bc	140.97 <u>+</u> 7.41 c
		Summer	175.16 <u>+</u> 11.03		
5-10	110.69 <u>+</u> 9.79 b	158.93 <u>+</u> 24.29 a	a	82.09 <u>+</u> 8.63 b	98.61 <u>+</u> 10.09 b
	532	7 %	139.12 <u>+</u> 10.14	582	
10-20	96.53 <u>+</u> 5.83 b	91.90 <u>+</u> 7.51 b	a	77.05 <u>+</u> 15.26 b	67.23 <u>+</u> 13.06 b
20-30	55.34 <u>+</u> 0.88 c	90.89 <u>+</u> 10.14 b	115.77 <u>+</u> 9.99 a	42.29 <u>+</u> 6.73 c	48.41 <u>+</u> 11.13 c
	11521	_		6/	66.71+36.77
30-40	56.93 <u>+</u> 8.30 ab	54.33 <u>+</u> 6.87 b	103.07 <u>+</u> 7.51 a	33.81 <u>+</u> 1.79 b	ab
	I FT.	11	106.63+18.72		
40-60	72.99 <u>+</u> 13.06 b	41.13 <u>+</u> 6.64 c	39 Ea	23.36 <u>+</u> 1.76 c	34.29 <u>+</u> 3.27 c
60-80	24.88+9.19 b	34.53+32.33 b	96.47+14.07 a	22.56+5.03 b	28.54+1.57 b
00-80	24.00 <u>+</u> 9.19 D	34.33 <u>+</u> 32.33 D	90.47 <u>+</u> 14.07 a	22.30 <u>+</u> 3.03 D	20.34 <u>+</u> 1.37 D
80-100	32.20 <u>+</u> 8.92 b	14.22 <u>+</u> 4.65 c	76.67 <u>+</u> 4.90 a	13.70 <u>+</u> 1.68 c	25.92 <u>+</u> 2.40 bc
100-150	11.86+0.88 b _	12.19+5.49 b	39.60+4.03 a	17.62+1.94 b	12.85+4.15 b
100 150	11.00 0.00 0	12.17 1.5.47 0	<u>57.00 - 4.05 a</u>	17.02-1.94 0	12.05 - 4.15 0
150-200	6.29 <u>+</u> 0.00 c	11.74 <u>+</u> 3.85 bc	21.33 <u>+</u> 4.03 a	16.50 <u>+</u> 0.97 ab	11.28 <u>+</u> 3.14 bc

Table 4.25 Soil potassium (mg/kg) in 0 - 200 cm in all study sites

Note: Value are means \pm SD (n= 3). Means followed by different letters on the same row on the right indicate significant differences at *P*<0.05 among study sites.

All rights reserved

4.15.5 Cation exchange capacity (CEC)

CEC in soil was decreased with soil depth. In the first 20 cm in depth, CEC from soil in natural site was significantly higher than other sites. Below 60 cm in depth, in 7-year-old site was higher than other sites. The amount of CEC in different soil depths (0 -200 cm) ranged from 1.90 - 24.23 cmol(+)/kg (Table 4.26).

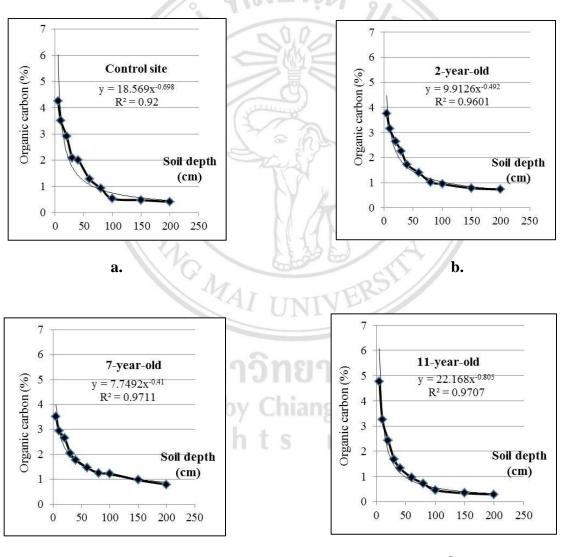
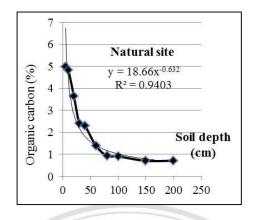

CEC cmol(+)/kg Site control 2-year-old 7-year-old 11-year-old natural 17.83<u>+</u>0.35 **b** 0-5 17.03+0.44 **b** 16.45+0.69 **b** 18.11+0.83 **b** 24.23+0.73 **a** 5-10 14.27<u>+</u>0.24 **b** 14.25<u>+</u>0.25 **b** 11.99<u>+</u>0.52 c 18.77<u>+</u>0.95 **a** 15.65<u>+</u>0.35 **b** 10-20 10.88<u>+</u>2.68 **b** 11.93+0.26 ab 13.81+0.35 ab 10.51<u>+</u>0.64 **b** 14.50<u>+</u>0.70 **a** 20-30 9.78+0.18 ab 10.92+0.89 a 11.49<u>+</u>0.35 a 7.94+0.10 **b** 11.31<u>+</u>1.42 **a** 30-40 9.96+0.51 ab 7.66+1.46 bc 10.48<u>+</u>0.93 **a** 6.43+0.05 c 9.80<u>+</u>0.72 **ab** 40-60 5.37+0.38 c 8.03+0.40 ab 5.55+1.66 bc 9.98+0.87 a 7.25+0.44 **bc** 60-80 4.89<u>+</u>0.42 **b** 5.39<u>+</u>1.63 **b** 8.73<u>+</u>0.42 a 3.91<u>+</u>0.24 **b** 5.25<u>+</u>0.46 **b** 80-100 4.57<u>+</u>0.11 **b** 3.33<u>+</u>0.38 **b** 4.43<u>+</u>1.43 **b** 8.28<u>+</u>0.78 a 2.43<u>+</u>0.60 **b** 100-150 3.30<u>+</u>0.18 b 3.81<u>+</u>0.34 **b** 4.06<u>+</u>0.52 b 6.45<u>+</u>0.62 **a** 1.70<u>+</u>0.05 **c** 2.82<u>+</u>0.32 **b** 150-200 2.89<u>+</u>0.14 **b** 4.13<u>+</u>0.24 **a** 4.75<u>+</u>0.45 **a** 1.90<u>+</u>0.19 c

Table 4.26 Cation exchange capacity cmol(+)/kg in different sites

Note: Value are means \pm SD (n= 3). Means followed by different letters on the same row on the right indicate significant differences at *P*<0.05 among study sites.


4.15.6 Organic carbon (OC)

Organic carbon calculated from organic matter using 0.58. In the first 0-5 cm on top soil, natural and 11-year-old sites were higher than other sites significantly. In the top soil layer (0 - 40 cm) high amounts of organic carbon were found in the natural site, but below 40 cm in depth, high amount of carbon were found in 7-year-old site. The negative regression correlation between soil depth and organic carbon is shown in Figs 4.14 a- e.

d.

Figures 4.14 a-e. Organic carbon (%)

81 e.

4.15.7 Soil organic carbon

Highest soil organic carbon in total 200 cm in depth was found in 2-year-old but it was not higher significantly than 7–year-old and natural site. Soil carbon stock in 200 cm of depth were 205.88, 254.40, 251.14, 161.82 and 244.96 tC/ha. Whereas, in 100 cm of depth were 156.10, 168.12, 160.16, 127.41 and 172.99 tC/ha., respectively (Table 4.27).

Table 4.27 Soil carbon stock in 0 - 100, 100 - 200 and total 200 cm. in depth

ลิส	ສິກຂົາ	เหาวิทร	ເງລັບເນ	รัตเกโห	11
QU0	CHIOL	Soil orga	nic carbon (tC/	'ha)	
Soil depth (cm)	wright [©]	by Chia	ng Mai I	Iniversit	have a second seco
COP	control	2-year-old	7-year-old	11-year-old	natural
A	- ri	ohts	T A S I	Prve	d
0 - 100	156.10 c	🗢 168.12 ab	160.16 bc	127.41 d	172.99 a
100 -200	49.78 c	86.28 a	90.98 a	34.41 d	71.97 b
0 - 200	205.88 b	254.40 a	251.14 a	161.82 c	244.96 a

Note: Value are means \pm SD (n= 3). Means followed by different letters on the same row on the right indicate significant differences at *P*<0.05 among study sites.

4.16 Model

Simulated soil carbon mass using fullCAM started from 2010 to 2020. Simulated soil carbon in control (non-planted site), restored forest site and natural forest site were increasing yearly. The high rate of carbon mass was found in natural forest next to 7, 11 year-old site and control site. The difference of C mass was quite high in the several years after starting simulation, after that it was gradually increased and then constant (Table 4.28 and Figs.4.15).

	//	N	- 1	100	- 67		
con	trol	7-yea	ar-old	11-ye	ar-old	nati	ıral
С	df	С	df	C	df	С	df
0.90	6	1.72	1	1.93	7	3.13	
1.57	0.67	3.08	1.36	2.47	0.54	5.10	1.97
1.86	0.29	3.61	0.53	2.72	0.25	6.05	0.95
2.07	0.21	4.01	0.4	2.98	0.26	6.75	0.7
2.24	0.17	4.33	0.32	3.22	0.24	7.30	0.55
2.38	0.14	4.59	0.26	3.45	0.23	7.76	0.46
2.5	0.12	4.83	0.24	3.67	0.22	8.18	0.42
2.62	0.12	5.04	0.21	3.88	0.21	8.56	0.38
2.72	0.1	5.24	0.2	4.09	0.21	8.91	0.35
2.82	0.1	5.43	0.19	4.30	0.21	9.25	0.34
2.92	0.1	5.62	0.19	4.49	0.19	9.57	0.32
0.06		0.14		0.16		0.23	
2.92	ana	5.62	<u>0</u> 07	4.49	วังแร	9.57	ใหม่ไ
qu	CHIC	חמכ	191	10.10	1010	000	un
Co		(C) I	av Ch	i and	Mail	- Inite	rsity
AÍ							e d
	C 0.90 1.57 1.86 2.07 2.24 2.38 2.5 2.62 2.72 2.82 2.92 0.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C df C 0.90 1.72 1.57 0.67 3.08 1.86 0.29 3.61 2.07 0.21 4.01 2.24 0.17 4.33 2.38 0.14 4.59 2.5 0.12 4.83 2.62 0.12 5.04 2.72 0.1 5.24 2.82 0.1 5.43 2.92 0.1 5.62	C df C df 0.90 1.72 1.57 0.67 3.08 1.36 1.86 0.29 3.61 0.53 2.07 0.21 4.01 0.4 2.24 0.17 4.33 0.32 2.38 0.14 4.59 0.26 2.5 0.12 5.04 0.21 2.62 0.12 5.04 0.21 2.72 0.1 5.24 0.2 2.82 0.1 5.43 0.19 0.06 0.14 2.92 5.62	C df C df C 0.90 1.72 1.93 1.57 0.67 3.08 1.36 2.47 1.86 0.29 3.61 0.53 2.72 2.07 0.21 4.01 0.4 2.98 2.24 0.17 4.33 0.32 3.22 2.38 0.14 4.59 0.26 3.45 2.5 0.12 4.83 0.24 3.67 2.62 0.12 5.04 0.21 3.88 2.72 0.1 5.24 0.2 4.09 2.82 0.1 5.43 0.19 4.30 2.92 0.1 5.62 0.19 4.49	C df C df C df C df 0.90 1.72 1.93 1.93 1.57 0.67 3.08 1.36 2.47 0.54 1.86 0.29 3.61 0.53 2.72 0.25 2.07 0.21 4.01 0.4 2.98 0.26 2.24 0.17 4.33 0.32 3.22 0.24 2.38 0.14 4.59 0.26 3.45 0.23 2.5 0.12 5.04 0.21 3.88 0.21 2.82 0.1 5.43 0.19 4.30 0.21 2.82 0.1 5.43 0.19 4.30 0.21 2.82 0.1 5.62 0.19 4.49 0.19 0.06 0.14 0.16 2.92 5.62 4.49 0.19 0.16 2.92 5.62 4.49 0.19 0.00 0.01 2.010 2011 2012 2013 2014 2015 2017 2018 2019	C df C df C df C 0.90 1.72 1.93 3.13 1.57 0.67 3.08 1.36 2.47 0.54 5.10 1.86 0.29 3.61 0.53 2.72 0.25 6.05 2.07 0.21 4.01 0.4 2.98 0.26 6.75 2.24 0.17 4.33 0.32 3.22 0.24 7.30 2.38 0.14 4.59 0.26 3.45 0.23 7.76 2.5 0.12 4.83 0.24 3.67 0.22 8.18 2.62 0.12 5.04 0.21 3.88 0.21 8.56 2.72 0.1 5.43 0.19 4.30 0.21 9.91 2.82 0.1 5.62 0.19 4.49 0.19 9.57 0.06 0.14 0.16 0.23 2.57 0.23 2.92 5.62 4.49 9.57

Table 4.28 Simulated C mass of soil (tC/ha) from 2010 – 2020

Figure 4.15 Simulated soil carbon mass (tC/ha) in all study sites