TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	XV
CHARPTER 1 INTRODUCTION	
1.1 Statement and Significances of the Problems	1
1.2 Location of the Study Area	3
1.3 Purposes and Scopes	4
1.4 Methods and Materials	6
1.5 Theory	7
1.5.1 Principles and Theories of Groundwater Movement	14
1.5.2 Numerical Solution of Groundwater Flow Equation	20
1.5.3 Model Calibration	23
1.5.4 Model Uncertainties	25
1.6 Literature Review	31
1.6.1 Hydrogeology of the Bang Pakong River Basin	31

1	.6.2 Groundwater Flow in the Bang Pakong River Basin	33
1	.6.3 Recent Application of The Stochastic Modeling in	
	Hydrogeology	34
CHARPTER 2 HYD	ROGEOLOGY OF THE BANG PAKONG RIVER BASIN	36
2.1 F	Physical Settings	36
	2.1.1 Topography	36
	2.1.2 Hydrology	38
2	2.1.3 Climate	39
	2.1.4 Landuse	42
2.2 (Geologic Setting	42
2.3 H	Hydrogeologic Setting	50
2	2.3.1 Hydrogeology of the Study Area	50
2	2.3.2 Groundwater Usage	62
CHARPTER 3 MOD	DEL DEVELOPMENT	66
3.1 N	Methodology	66
3.2 I	Data Collection and Processing	67
3.3 (Conceptual Model Development	69
3	3.3.1 Defining the Model Domain	70
lansuk	3.3.2 Preparing a Water Budget	74
3.4 0	Converting a Conceptual Model to a Numerical Model	78
opyright [©]	3.4.1 Selecting Model Code	79 Sity
	3.4.2 Model Setup	80
3.5 H	Boundary Conditions	93 E C

3.5.1 Setting and Simulating Boundaries	93
3.5.2 Initial Conditions	95
3.6 Steady-State Model Execution and Calibration	96
3.6.1 Model Execution	99
3.6.2 Model Calibration	99
3.7 Uncertainty Analysis Using Monte Carlo Simulation	104
CHARPTER 4 RESULTS AND DISCUSSIONS	107
4.1 Steady- State Model Calibration Results	107
4.1.1 Initial Model Execution	107
4.1.2 Model Calibration Using PEST	108
4.2 Parameter Sensitivity Analysis	118
4.3 Uncertainty Analysis of the Model	123
CHARPTER 5 CONCLUSIONS AND RECOMMENDATIONS	128
5.1 Conclusions	128
5.2 Recommendations	131
REFERENCES	133
APPENDICES	141
APPENDIX A Information of Groundwater Monitoring Wells and	
Data Collections	142
APPENDIX B The Results of Model Calibration Using PEST	154
APPENDIX C The Distribution of Parameter in Monte Carlo	
Simulations reserved	168 E

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xii

LIST OF TABLES

Table	Page
2-1A Characteristic of the river and main tributaries in sub-basin.	39
2-1B Characteristics of the sub-basin (DGR, 2006).	40
2-1C Hydrological data in the Bang Pakong river basin (DGR, 2006).	40
2-2 Landuse catergory of the Bang Pakong river basin.	43
2.3 Summarizes the hydraulic properties for each hydrogeologic material	58
2-4A Estimation of amount of groundwater abstraction.	63
2-4B Number of wells drilled and estimation of pumping discharged in each	
province on 2006.	64
3-1 Summary of necessary model data and material requirements and sources.	71
3-2 Annual groundwater recharge (mm/y) with the hydrologic budget	
approach used in the model.	78
3-3 List of packages is chosen for use in this study.	80
3-4 Summary of the model setup used in this study.	83
3-5 The hydraulic conductivities for each unit were used in the model,	
based on the pumping test data.	87
3-6 Summary of the boundary conditions used in the model.	98
3-7 List of the initial parameters values used in steady-state and parameter	
estimation with PEST for this study.	101
3-8 Initial control setting used in parameter estimation (PEST) for	
steady-state calibration.	104

4-1 Final parameter values and its sensitivity after calibration using PEST.	111
4-2 Water budget at calibration target.	118
4-3 Water budget calculation from Monte Carlo analysis.	125

ลิ<mark>่อสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
Location map of the study area (Bang Pakong river basin).	5
1-2 Flowchart showing steps for evaluation of model uncertainty in	
prediction groundwater potential.	8
1-3 Pressure distribution and head loss in flow through a sand column.	15
1-4 Flow into dimensional finite difference grid.	17
1-5 A cross-section showing local and regional groundwater flow system.	20
1-6 A FDM discretized hypothetical aquifer system.	22
1-7 Flowchart for estimating parameter with PEST.	26
1-8 Showing generates a random parameter value within each probability	
segment.	29
2-1 Geographic features and boundaries of the Bang Pakong river basin.	37
2-2 Distribution of average rainfall and average evaporation for the period	
30 years (1977-2006) from 35 stations in the Bang Pakong river basin.	41
2-3 Land use map of the Bang Pakong river basin.	44
2-4A Geologic map of the study area.	51
2-4B Illustration of two-dimensional of stratigraphical section of the	
study area, cross-section number C-C´and M-M´.	52
2-5A Distribution of the sedimentary and hydrogeological units in	
the study area.	60

2-5B Schematic cross-section of the aquifer system of the study area.	61
2-6 Pizometric head maps, regional groundwater flow direction during	
the month of May (dry season) and September (rainy season) 2006.	63
2-7 Distribution of groundwater wells drills on the study area.	65
3-1 Flowchart showing steps for evaluation of the groundwater modeling	
process in this study.	68
3-2 Pictorial conceptual model of the study area.	70
3-3 Simplified of hydrostratigraphic units into a conceptual model.	76
3-4 Three-dimensional finite difference grid used in MODFLOW.	78
3-5 Block-centered finite difference grid, (a) Schematic diagram of a	
full three-dimensional block-centered model, (b) Example of two	
dimensional finite difference grids with no-flow boundaries are	
designated at the mountain range and along the streamlines.	82
3-6 The uniform finite difference grids and IBOUND design of the model.	84
3-7 Spatial distribution of the hydrogeological parameters (K) in the six	
layers of the constructed model.	88
3-8 Map of groundwater recharge (m/d) estimated with the water budget	
approach (1977-2006), illustrating the spatial distribution of the	
recharge zone using in this model.	89
3-9 Map of evapotranspiration rate (m/d), illustrating the spatial	
distribution of the evaoptranspiration zone using in this model.	90
3-10 The spatial distribution of pumping wells (m^3/d) in this model.	92
3-11 Location of main rivers and 19 point stations for input data in this model.	93
3-12 Lateral boundaries condition of the groundwater system used in this model	. 97

3-13 The location of observation wells used to measure the hydraulic	
heads for steady-state and transient-state in the model.	100
4-1 Field-observed heads vs. model-calculated heads using initial	
parameters value.	109
4-2 Field-observed heads vs. model-calculated heads after calibration using	
PEST algorithm.	111
4-3 Progression of the sum of square of weighted residuals during automated	d
model calibration by PEST.	5 114
4-4 Steady-state hydraulic head distribution after calibration.	115
4-5 Steady-state hydraulic head distribution after calibration	117
4-6 Sensitivity analysis of hydraulic conductivity group.	119
4-7 Sensitivity analysis of recharge rate group.	120
4-8 Sensitivity analysis of evapotranspiration rate group.	120
4-9 Sensitivity analysis of general head conductance group.	121
4-10 Sensitivity analysis of river bed conductance group.	121
4-11 Resulting of all parameter groups on sensitivity analysis at the	
calibration target (i.e., steady state condition).	122
4-12 Showing how PEST adjusts the all parameters with each iteration to	
Minimize the objective function.	123
4-13 The predicted water budget (Inflow) resulting from range in uncertainty	у
analysis on calibrated model.	124 SI
4-14 Observation wells having high uncertainty in prediction (red symbol)	127