CONTENTS

Acknowledgement	с
Abstract in Thai	d
Abstract in English	h
List of Tables	n
List of Figures	0
Statement of Originality in Thai	u
Statement of Originality in English	v
Chapter 1 Introduction	1
1.1 Literature review	1
1.2 Thesis aims	6
1.3 Scope of study	6
1.4 Location and accessibility	8
1.5 Physiographic description	9
Chapter 2 Geological Setting	11
2.1 Metamorphic and sedimentary rock	11
2.2 Igneous rock	16
2.3 Major Structure	17
Chapter 3 Methodology	19
3.1 Sample selection	19
3.2 Petrographic study	20
3.3 Whole rock chemical analyses	20
3.4 U-Pb zircon geochronology analyses	24

Chapter 4 Occurrence, Lithology and Petrography	26
4.1 Occurrence	26
4.2 Lithology and Petrography	38
Chapter 5 Geochemistry	73
5.1 Element Mobility	73
5.2 Magmatic affinity	74
5.3 Tectonic setting of eruption	113
5.4 Modern analogs	123
Chapter 6 Geochronology	129
6.1 Introduction	129
6.2 Ages of rocks	130
6.3 Summary	133
Chapter 7 Conclusion and Discussion	136
7.1 The felsic to mafic volcanic/hypabyssal rocks in the area of	136
Nakhon Sawan and Uthai Thani Provinces	
7.2 Tectonic evolution of Thailand	144
References	146
List of Publications	163
Appendix A ght s reserved	164
Appendix A	164
Appendix B	197
Appendix C	198
Appendix D	202
Curriculum Vitae	217

Page

LIST OF TABLES

Table 5.1	Whole-rock XRF major-element analyses of the studied	79
	least-altered Group I rocks	
Table 5.2	Low-abundance trace elements and REE compositions for	81
	the studied least-altered Group I rocks by ICP-MS analysis	
Table 5.3	Whole-rock XRF major-element analyses of the studied	89
	least-altered Group II rocks	
Table 5.4	Low-abundance trace elements and REE compositions for	90
	the studied least-altered Group II rocks	
Table 5.5	Whole-rock XRF major-element analyses of the studied	95
	least-altered Group III rocks	
Table 5.6	Low-abundance trace elements and REE compositions for	96
	the studied least-altered Group III rocks by ICP-MS analysis	
Table 5.7	Whole-rock XRF major-element analyses of the studied	102
	least-altered Group IV rocks	
Table 5.8	Low-abundance trace elements and REE compositions for	103
	the studied least-altered Group IV rocks by ICP-MS analysis	
Table 5.9	Whole-rock XRF major-element analyses of the studied	110
	least-altered Group V rocks	
Table 5.10	Low-abundance trace elements and REE compositions for	111
A	the studied least-altered Group V rocks by ICP-MS analysis	
Table 6.1	Laser ablation ICP-MS U-Pb isotopic and trace element data	132
	for zircons from the two representative study rocks	

LIST OF FIGURES

Figure 1.1	Distribution of pre-Cretaceous mafic volcanic rocks in Thailand	2
Figure 1.2	Road map of the study area	7
Figure 1.3	Photograph of an isolated small hill of rhyolitic tuff at Khao	9
	Phanom Set, Tha Tako District, Nakhon Sawan Province	
Figure 1.4	Photograph of a mountain range of hypabyssal rock at Khao	10
	Lug Chang, Krok Phra District, Nakhon Sawan Province	
Figure 2.1	Geological map of the study area	12
Figure 2.2	Photograph of limestone that is in contact with rhyolitic rock at	15
	Khao Lo, Tha Tako District, Nakhon Sawan Province	
Figure 4.1	Geological map showing the study subareas	27
Figure 4.2	Map of the Tha Tako Area, Nakhon Sawan province showing	28
	location of samples for petrography and geochemical analysis	
Figure 4.3	Map of the Krok Phra Area, Nakhon Sawan province showing	29
	location of samples for petrography and geochemical analysis	
Figure 4.4	Map of the Chum Ta Bong Area, Uthai Thani province showing	30
	location of samples for petrography and geochemical analysis	
Figure 4.5	Photograph showing an outcrop of rhyodacitic/dacitic tuff	31
	(Group I rocks)	
Figure 4.6	Photograph showing an outcrop of andesitic/basaltic tuff and in situ	31
A	microdiorite/microgabbro float rocks (Group I, III, and IV rocks)	
Figure 4.7	Photograph showing an outcrop of volcanic braccia where clasts of	33
	Group I and Group III andesite and Group III diorite were collected	
Figure 4.8	Photograph showing an outcrop of pyroclastic breccia (Group I rocks)	33
Figure 4.9	Photograph showing in situ float of volcanic clasts (Group I rocks)	34
Figure 4.10	Photograph showing an outcrop of weathered rhyolitic tuff	34
Figure 4.11	Photograph showing an outcrop of Group V rhyodacite/dacite	35
Figure 4.12	Photograph showing an outcrop of Group IV microdiorite/microgabbro	35

Figure 4.13	Photograph showing an outcrop of Group IV microdiorite/microgabbro	36
Figure 4.14	Photograph showing an outcrop of Group IV microdiorite/microgabbro	36
Figure 4.15	Photograph showing an outcrop of Group II diorite/gabbro	37
Figure 4 16	Photograph showing an outcrop of Group II diorite/gabbro	37
Figure 4.17	Photograph showing an outcrop of Group II diorite/gabbro	38
Figure 4.18	Photomicrographs of Group Lrhyodacite/dacite displaying sieve	<i>1</i> 0
11guic 4.10	taxtura with plagicalese phonogrusts sit in trachutic groundmass	40
F' 4 10	Distance with plagioclase phenoclysis sit in trachytic groundinass	4.1
Figure 4.19	Photomicrographs of Group I rhyodacite/dacite showing	41
	swallow tail plagioclase and spherulite	
Figure 4.20	Photomicrographs of Group I rhyodacite/dacite illustrating embayed	42
	quartz and spherulitic groundmass	
Figure4.21	Photomicrographs of Group I rhyodacite/dacite illustrating	44
	sieve texture plagioclase phenocrysts	
Figure 4.22	Photomicrographs of Group I rhyodacite/dacite illustrating euhedral	45
	outline amphibole phenocrysts	
Figure 4.23	Photomicrographs of Group I andesite/basalt illustrating a	47
	phenocrysts/microphenocrysts assemblage	
Figure 4.24	Photomicrographs of Group I andesite/basalt illustrating an embayed	49
	outline and a sieve texture and trachytic groundmass	
Figure 4.25	Photomicrographs of Group I andesite/basalt illustrating a subhedral	50
	clinopyroxene and void-infilling sericite	
Figure 4.26	Photomicrographs of Group I diorite/gabbro illustrating a seriate	51
0	texture, sericite-altered plagioclase and secondary quartz	
Figure 4.27	Photomicrographs of Group II diorite/gabbro illustrating a seriated	54
	texture and zoned plagioclase, with an embayed outline	
Figure 4.28	Photomicrographs of Group II diorite/gabbro (sample number LS-021)	55
	illustrating zircon as inclusions in an anhedral biotite	
Figure 4.29	Photomicrographs of Group III microdiorite/microgabbro illustrating	57
	plagioclase, orthopyroxene and clinopyroxene crystals	

Figure 4.30	Photomicrographs of Group III microdiorite/microgabbro between	58
	crossed polars showing ophitic/subophitic textures	
Figure 4.31	Photomicrographs of Group III andesite/basalt showing a preferred	61
	orientation of elongate plagioclase phenocrysts	
Figure 4.32	Photomicrographs of Group IV microdiorite/microgabbro showing a	63
	minerals assemblage	
Figure 4.33	Photomicrographs of Group IV microdiorite/microgabbro showing	64
	a minerals assemblage	
Figure 4.34	Photomicrographs of Group IV andesite/basalt showing isolated	66
	plagioclase phenocrysts that sit in felty groundmass, and sericite	
	and chlorite in voids	
Figure 4.35	Photomicrographs of Group IV andesite/basalt showing a seriate	68
	texture, plagioclase, unidentified mafic minerals and opaque minerals	
Figure 4.36	Photomicrographs of Group V rhyodacite/dacite displaying plagioclase	70
	glomerocrysts in glassy groundmass	
Figure 4.37	Photomicrographs of Group V rhyodacite/dacite showing plagioclase	71
	glomerocrysts in glassy groundmass	
Figure 5.1	Plot of Zr/TiO ₂ against Nb/Y for the studied least-altered felsic	75
	to mafic volcanic/hypabassal rocks	
Figure 5.2	Chondrite - normalized REE patterns for the studied least-altered	76
	Group I, Group II, Group III, Group IV and Group V rocks	
Figure 5.3	N - MORB - normalized patterns for the studied least-altered	77
6	Group I, Group II, Group III, Group IV and Group V rocks	
Figure 5.4	FeO*/MgO variation diagrams for immobile major and	84
	trace elements of the studied least-altered felsic to mafic	
	volcanic/hypabassal Group I rocks	
Figure 5.5	Zr variation diagrams for immobile major and trace elements of the	85
	studied least-altered felsic to mafic volcanic/hypabassal Group I rocks	
Figure 5.6	Chondrite-normalized REE patterns for the least-altered Group I rocks	87

Figure 5.7	N - MORB - normalized patterns for the studied least-altered	87
	Group I rocks	
Figure 5.8	FeO*/MgO variation diagrams for immobile major and trace elements	91
	of the studied least-altered mafic hypabassal Group II rocks	
Figure 5.9	Zr variation diagrams for immobile major and trace elements of the	92
	studied least-altered mafic hypabassal Group II rocks	
Figure 5.10	Chondrite-normalized REE patterns for the least-altered Group II rocks	93
Figure 5.11	N - MORB - normalized patterns for the studied least-altered	93
	Group II rocks	
Figure 5.12	FeO*/MgO variation diagrams for immobile major and trace elements	97
	of the studied least-altered, Group III rocks	
Figure 5.13	Zr variation diagrams for immobile major and trace elements of the	98
	studied least-altered, Group III rocks	
Figure 5.14	Chondrite-normalized REE patterns for the least-altered	100
	Group III rocks	
Figure 5.15	N - MORB - normalized patterns for the studied least-altered	100
	Group III rocks	
Figure 5.16	FeO*/MgO variation diagrams for immobile major and trace elements	105
	of the studied least-altered Group IV rocks	
Figure 5.17	Zr variation diagrams for immobile major and trace elements of	106
	the studied least-altered Group IV rocks	
Figure 5.18	Chondrite-normalized REE patterns for the least-altered	108
6	Group IV rocks	
Figure 5.19	N - MORB - normalized patterns for the studied least-altered	108
	Group IV rocks	
Figure 5.20	Chondrite-normalized REE patterns for the least-altered	112
	Group V rocks	
Figure 5.21	N - MORB - normalized patterns for the studied least-altered	112
	Group V rocks	

Figure 5.22	Plots of Y and Nb against Zr for the studied least-altered felsic to	114
	mafic volcanic/hypabassal rocks	
Figure 5.23	Zr/Y-Ti/Y tectonic discrimination diagram for the studied least-	115
	altered mafic volcanic/hypabassal rocks	
Figure 5.24	Zr/Y –Zr discrimination diagram for the studied least-altered	115
	felsic to mafic volcanic/hypabassal rocks	
Figure 5.25	Ti-Zr tectonic discrimination diagram for the studied least-altered	116
	mafic volcanic/hypabassal rocks	
Figure 5.26	Ti/Y – Nb/Y tectonic discrimination diagram for the studied least-	116
	altered mafic volcanic/hypabassal rocks	
Figure 5.27	Ti-V tectonic discrimination diagram for the studied least-altered	117
	felsic to mafic volcanic/hypabassal rocks	
Figure 5.28	Cr-Y tectonic discrimination diagram for the studied least-altered	117
	mafic volcanic/hypabassal rocks	
Figure 5.29	Ti- Zr-Y tectonic discrimination diagram for the studied least-altered	118
	mafic volcanic/hypabassal rocks	
Figure 5.30	Nb-Zr-Y tectonic discrimination diagram for the studied least-altered	118
	mafic volcanic/hypabassal rocks	
Figure 5.31	Ternary Hf-Th-Ta tectonic discrimination diagram for the studied	119
	least-altered mafic volcanic/hypabassal rocks	
Figure 5.32	Y-La-Nb tectonic discrimination diagram for the studied least-	119
Δ	altered mafic volcanic/hypabassal rocks	
Figure 5.33	Nb-Y tectonic discrimination diagram for the studied least- altered	120
	felsic volcanic/hypabassal rocks	
Figure 5.34	Rb-(Y+Nb) tectonic discrimination diagram for the studied least-	120
	altered felsic volcanic/hypabassal rocks	
Figure 5.35	$TiO_2 - 100(FeO*/FeO*+MgO)$ discrimination diagram for the	122
	studied least-altered mafic hypabassal Group II rocks	

Figure 5.36	Plots of chondrite-normalized REE and N-MORB normalized	124
	muti-element patterns for the representatives of Group I rocks	
	and their modern analog	
Figure 5.37	Plots of chondrite-normalized REE and N-MORB normalized	125
	muti-element patterns for the representatives of Group II rocks	
	and their modern analog	
Figure 5.38	Plots of chondrite-normalized REE and N-MORB normalized	126
	muti-element patterns for the representatives of Group III rocks	
	and their modern analog	
Figure 5.39	Plots of chondrite-normalized REE and N-MORB normalized	127
	muti-element patterns for the representatives of Group IV rocks	
	and their modern analog	
Figure 5.40	Plots of chondrite-normalized REE and N-MORB normalized	128
	muti-element patterns for the representatives of Group V rocks	
	and their modern analog	
Figure 6.1	Sample locations for the representative volcanic and hypabyssal	131
	rocks selected for the U-Pb zircon age dating from the study area	
Figure 6.2	Reverse Concordia plot of laser ablation ICP-MS zircon U-Pb	134
8	measurement for Group I rhyodacite/ dacite rock sample KK-19	
Figure 6.3	Reverse Concordia plot of laser ablation ICP-MS zircon U-Pb	134
	measurement for Group II granodiorite/diorite rock sample LS-020	
Figure 6.4	Graph plot of zircon age of rock samples	135
Figure 7.	Schematic diagrams showing tectonic evolution of Shan-Thai	145
	and Indochina terranes	

ข้อความแห่งการริเริ่ม

- ศึกษาลักษณะการเกิด และความสัมพันธ์ในภาคสนามของหินภูเขาไฟ/หินอัคนีแทรกซอน ระดับตื้นสีเข้มถึงสีจางกับหินข้างเคียงในจังหวัดนครสวรรค์ และอุทัยธานี ประเทศไทย
- หินภูเขาไฟ/หินอัคนีแทรกซอนระดับตื้นสีเข้มถึงสีจางจังหวัดนครสวรรค์ และอุทัยธานี ประเทศไทย มีอายุจากยูเรเนียม-ตะกั่วในเซอร์คอน 345.5 ± 3.4 ล้านปีสำหรับหินกลุ่ม I และ 225.4 ± 1.9 ล้านปีสำหรับหินกลุ่ม II
- หินภูเขา ใฟ/หินอัคนี้แทรกซอนระดับตื้นสีเข้มถึงสีจางจังหวัดนครสวรรค์ และอุทัยธานี ประเทศไทยเกิดขึ้นในอาจเกิดจากการประทุในสภาพแวดล้อมแบบเหนือเขตการมุดตัวใต้พื้น ทวีป (หินกลุ่ม II, III และIV) และ สภาพแวดล้อมแบบภายหลังการชนกัน (หินกลุ่ม I และ V) อาศัยการเปรียบเทียบรูปแบบของธาตุหายาก และรูปแบบ N-MORB กับหินยุคใหม่
- การศึกษานี้เป็นส่วนหนึ่งของข้อมูลที่ใช้ในการบ่งบอกวิวัฒนาการทางเทคโทนิกของประเทศ ไทย และการสำรวจแหล่งแร่

G_{MAI}

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- To ascertain occurrences and field relationship to other rock types of the felsic to mafic volcanic/ hypabyssal rocks in Nakhon Sawan and Uthai Thani Provinces, Thailand.
- 2. The U-Pb zircon ages for the felsic to mafic volcanic/ hypabyssal rocks in Nakhon Sawan and Uthai Thani Provinces, Thailand 345.5 ± 3.4 Ma for Group I rocks and 225.4 ± 1.9 Ma for Group II rocks.
- 3. The studied the felsic to mafic volcanic/ hypabyssal rocks in Nakhon Sawan and Uthai Thani Provinces, Thailand might have been formed in an active continental margin (Groups II, III and IV rocks) and a post-orogenic setting (Groups I and V rocks) on the basis of their modern analogs, in terms of REE and N-MORB normalized patterns.
- 4. This study is a part of informative data in depicting the tectonic evolution of Thailand and exploration of mineral resources in Thailand.

VG MAI

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved