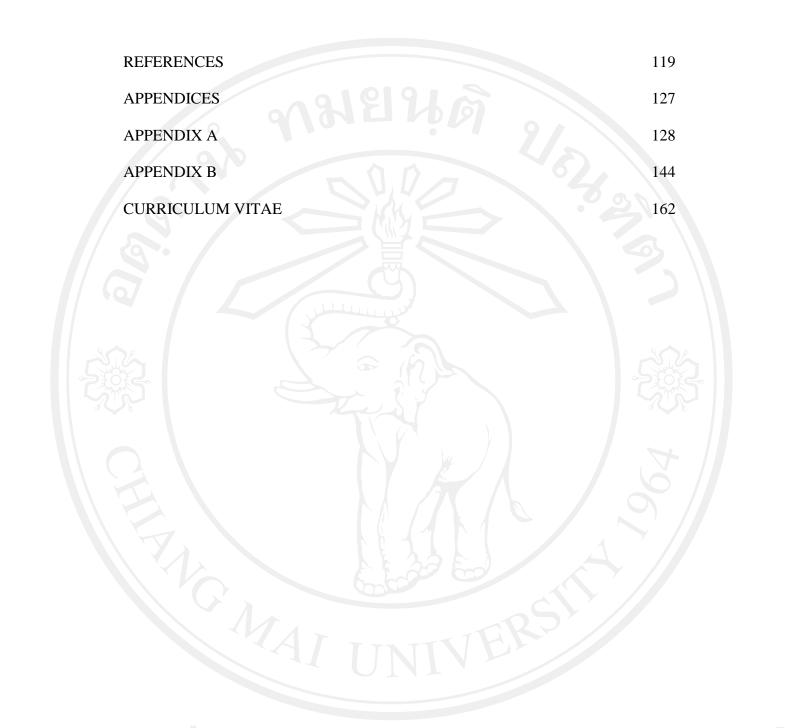
TABLE OF CONTENTS


	Page
ACKNOWLEDGEMENTS	ili
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
ABBREVIATION AND SYMBOLS	xxiii
CHAPTER 1 INTRODUCTION	1
1.1 Principles, Theory, Rationale	2
1.2 Research objective	04
1.3 Usefulness of the research	4
CHAPTER 2 LITERATURE REVIEW	5
2.1 Arc spray process	5
2.2 Cored wires for used in arc spray	6
2.3 Nanocored wires for used in arc spray	7
2.4 Post-spraying treatment of the coating	8
CHAPTER 3 EXPERIMENTAL	9
3.1 Materials and apparatus	9
3.1.1 Materials Chiang Mail	¹⁰ ersity
3.1.2 Apparatus	10
3.2 Characterization of original plunger and wear test	

3.2.1 Worn surface analysis of used original plunger	11
3.2.2 Plunger characterization	12
3.2.2.1 Roughness	12
3.2.2.2 Microstructure	12
3.2.2.3 Thickness	13
3.2.2.4 Porosity	14
3.2.2.5 Hardness	14
3.2.2.6 Abrasive wear test	14
3.3 Characterization of coating materials	15
3.3.1 Morphology and size	15
3.3.2 Microstructure	16
3.3.3 Chemical compositions	17
3.3.4 Phase compositions	017
3.4 Preparation of coating and collection of in-flight particle and	splat18
3.4.1 Substrate preparation	18
3.4.2 Preparation of coating	18
3.4.2.1 86WC-4Cr-10Co coating	18
3.4.2.2 Cored wire coatings	19
3.4.3 Collection of in-flight particles	20
3.4.4 Collection of splat	20
3.5 Characterization of in-flight particle	21
3.5.1 Morphology and size	21
3.5.2 Microstructure	22
3.5.3 Chemical compositions	22

3.5.4 Phase compositions	22
3.6 Characterization of splat	22
3.6.1 Morphology and size	23
3.6.2 Chemical compositions	23
3.6.2 Splat diameter, degree of flattening and degree of splat	23
3.7 Characterization of coatings	24
3.7.1 Sample preparation	24
3.7.1.1 Preparation sample for OM and SEM	24
3.7.1.2 Preparation sample for TEM	25
3.7.2 Roughness	25
3.7.3 Thickness	26
3.7.4 Microstructure	26
3.7.5 Chemical composition	26
3.7.6 Porosity	26
3.7.7 Hardness	27
3.7.8 Phase composition	27
3.8 Wear test of coatings	27
3.8.1 Sliding wear test	27
3.8.2 Abrasive wear test	28
3.9 Preparation of pump plunger coating	29
3.9.1 Coating procedure for pump plunger	29
3.9.2 Coating spray by cored wires	30
3.9.3 Finishing of the coating	30
3.10 Testing of coated pump plunger under simulation condition	31

3.10.1 Construction of the plunger test unit and data collection	31
program	
3.10.2 Test conditions and operation	32
3.10.3 Analysis of worn surface	33
3.10.3.1 Analysis of plunger worn surface by optical	33
microscope	
CHAPTER 4 RESULTS AND DISCUSSION	35
4.1 Characterization of original plunger and wear test	35
4.1.1 Worn surface analysis of used pump plunger	35
4.1.2 Characteristics of the original plunger	41
4.1.2.1 Roughness	41
4.1.2.2 Thickness	41
4.1.2.3 Microstructure	42
4.1.2.4 Porosity	43
4.1.2.5 Hardness	45
4.1.2.6 Abrasive wear test	46
4.2 Characteristics of starting materials	48
4.2.1 WC-Cr-Ni cored wires	48
4.2.2 WC-Cr Fe cored wires	53
4.2.3 W-Cr-Fe nanocomposite cored wires	58
4.2.4 Summary of characteristic of starting material coatings	63
4.3 Characteristics of in-flight particles	65
4.3.1 In-flight particles from WC-Cr-Ni cored wire	65
4.3.2 In-flight particles from WC-Cr-Fe cored wire	69

4.3.3 In-flight particles from W-Cr-Fe nanocomposite cored wire	73
4.3.4 Summary of characteristic of in-flight particles	76
4.4 Characteristic of splats	80
4.4.1 Splat from WC-Cr-Ni cored wire	80
4.4.2 Splat from WC-Cr-Fe cored wire	81
4.4.3 Splat from W-Cr-Fe cored nanocomposite wire	83
4.4.4 Summary characteristic of splats	85
4.5 Characteristics of the coatings	87
4.5.1 Roughness	87
4.5.2 Thickness	88
4.5.3 Microstructure	88
4.5.4 Chemical composition	92
4.5.5 Porosity	98
4.5.6 Hardness	98
4.5.7 Phase compositions	99
4.5.8 Summary characteristic of coatings	101
4.6 Wear test of coatings	105
4.6.1 Sliding wear test	105
4.6.2 Abrasive wear test	107
4.6.3 Summary wear test of coating	113
4.7 Testing of coated pump plunger under simulated conditions	114
4.7.1 Pump pressure measurement	114ersity
4.7.2 Characterization of plunger coating worn surface	115
CHAPTER 5 CONCLUSIONS	117 E U

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES	
Table	Page
3.1 Nominal chemical compositions of powder and cored wire by supplier	16
3.2 Spray parameters of HVOF process	19
3.3 Recommended arc spray parameters	20
4.1 Roughness of the worn area compared with the unworn area of used plunger	37
4.2 Decreasing of plunger diameter	38
4.3 Chemical compositions of sand particles collected crude oil as	40
analyzed by EDS-SEM.	
4.4 Thickness of original plunger coating	42
4.5 Porosity of original plunger coating	44
4.6 Hardness of original plunger coating	46
4.7 Chemical compositions of WC-Cr-Fe cored wire filler by EDS analysis.	56
4.8 Chemical compositions of W-Cr-Fe nanocomposite filler analyzed by	61
EDS-SEM	
4.9 Comparison of cored wires characteristics	64
4.10 Chemical compositions of WC-Cr-Ni in-flight particle	67
4.11 Chemical compositions of WC-Cr-Fe in-flight particle	71
4.12 Chemical compositions of W-Cr-Fe nanocomposite in-flight particle	75
4.13 Chemical compositions of WC-Cr-Ni splat	81
4.14 Chemical compositions of WC-Cr-Fe splat	82

4.15 Chemical compositions of W-Cr-Fe nanocomposite splat	83
4.16 Characteristics of in-flight particles and splat	87
4.17 Characteristic of coatings	88
4.18 Chemical compositions of 86WC-4Cr-10Co coating	93
4.19 Chemical compositions of WC-Cr-Ni coating by area analysis	93
4.20 Chemical compositions of WC-Cr-Ni coating by point analysis	94
4.21 Chemical compositions of WC-Cr-Fe coating by area analysis	95
4.22 Chemical compositions of WC-Cr-Fe coating by point analysis	96
4.23 Chemical compositions of W-Cr-Fe nanocomposite coating by area analysis	97
4.24 Chemical compositions of W-Cr-Fe nanocomposite coating	97
4.25 Sliding and abrasive wear of coating	105
4.26 Characterization of worn surface of plunger coatings	116

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
3.1 Schematic flow chart preparation and characterization of coating	9
3.2 Schematic for the cutting and preparation of sample for characterization of	13
microstructure	
3.3 OM image of cross-section of plunger at 100X magnification	13
3.4 Schematic diagram showing cutting procedure of plunger for wear test	15
3.5 Installation of substrates on holder wheel and lathe machine	18
3.6 Schematic diagram shows collection methods (a) in-flight particle	21
collection and (b) splat collection	
3.7 Coating sample preparation	24
3.8 FIB image showing cross-section of the coating for preparation sample	25
for TEM	
3.9 Spraying procedures for pump plunger	30
3.10 Schematic diagram of test unit	32
3.11 Measurement of plunger diameter by CMM technique	33
3.12 Schematic diagram for measurement of plunger worn surface	34 CHSI
4.1 Reciprocal pump Model TXT 6121 & 6122 size 2 ³ / ₄ "	³⁶ e
[http://www.dresser-rand.com]	

4.2 Cross-section of reciprocal pump Model TXT 6121 & 6122 size 2 ³ / ₄ "	36
[http://www.dresser-rand.com]	
4.3 Worn and unworn areas of used plunger	37
4.4 SE-SEM micrograph of sand particles in natural gas and crude oil at	39
(a) 100X and (b) 400X magnifications	
4.5 (a) SEM micrograph shows of sand particles collected from crude oil and	40
(b) EDS spectrum of sand particle	
4.6 Cross-section of original plunger image at x100 magnification	41
by optical microscope.	
4.7 SE-SEBM micrograph showing original plunger coating and original	43
plunger core at (a) 100X and (b) 1000X magnification.	
4.8 (a) BSE-SEM micrograph shows cross-section of original plunger coating	44
and (b) EDS spectrum of original plunger coating	
4.9 (a) BSE-SEM micrograph of cross-section original plunger core and	45
(b) EDS spectrum of original plunger core	
4.10 Abrasive wear of original plunger coating	47
4.11 Worn surface from the abrasive test on the plunger coating	47
4.12 SE-SEM micrograph show example of cored wire	48
4.13 BSE-SEM micrograph of cross-section WC-Cr-Ni cored wires	49
4.14 (a) SE-SEM micrograph of WC-Cr-Ni shell and (b) EDS spectrum	50
of WC-Cr-Ni shell.	
4.15 SE-SEM micrograph of WC-Cr-Ni fillers at (a) 500X, (b) 1000X, and	51000
(c) 5000X	
4.16 Size distribution of filler particle of WC-Cr-Ni cored wires	₅₂ / e

4.17 (a) BSE-SEM micrograph of WC-Cr-Ni filler and (b) spectrum	n EDS of filler 52	
4.18 X-ray diffraction patterns of filler of WC-Cr-Ni	53	
4.19 BSE-SEM micrograph shows cross-section of WC-Cr-Fe core	ed wires 53	
4.20 (a) BSE-SEM micrograph and (b) spectrum EDS of WC-Cr-F	e shell 54	
4.21 SE-SEM micrograph of WC-Cr-Fe fillers at (a) 500X, (b) 100	0X, and 55	
(c) 5000X magnifications		
4.22 Size distribution of filler particle of WC-Cr-Fe cored wires	56	
4.23 (a) SEM micrograph of WC-Cr-Fe fillers (b) and (c) spectrum	EDS of 57	
the area 1 and area 2		
4.24 X-ray diffraction patterns of the filler particle of WC-Cr-Fe co	ored wire 58	
4.25 BSE-SEM micrograph of cross-section W-Cr-Fe nanocompos	ite cored wires 59	
4.26 (a) BSE-SEM micrograph and (b) EDS spectrum of W-Cr-Fe	59	
nanocomposite shell		
4.27 SE-SEM micrograph show morphology of W-Cr-Fe nanocom	posite 60	
filler at (a) 500X, (b) 1000X, and (c) 5000X magnification		
4.28 Size distribution of filler particle of W-Cr-Fe nanocomposite of	cored wire 61	
4.29 (a) BSE-SEM micrograph and (b) EDS spectrums of area 1, 2	and 3 of 62	
W-Cr-Fe nanocomposite filler		
4.30 X-ray diffraction patterns of the filler of W-Cr-Fe nanocompo	site cored weire63	
4.31 Graph showing distribution of fillers size	64	
4.32 X-ray diffraction patterns of: (a) WC-Cr-Ni; (b) WC-Cr-Fe;	65	
(c) W-Cr-Fe nanocomposite fillers		
4.33 SE-SEM micrograph of in-flight particle from WC-Cr-Ni core	ed wire 66	
4.34 Size distribution of in-flight particle from WC-Cr-Ni cored wi	ire e 66	

xviii

4.35 BSE-SEM micrograph of cross-sectioned WC-Cr-Ni in-flight particle	67
4.36 EDS spectrum of WC-Cr-Ni in-flight particles taken from area1, area2	68
and area3, respectively (Fig. 4.35).	
4.37 X-ray diffraction patterns of WC-Cr-Ni in-flight particles	69
4.38 SE-SEM micrographs of WC-Cr-Fe in-flight particle at (a) 1000X and	70
(b) 3500X magnifications	
4.39 Size distribution of in-flight particles from WC-Cr-Fe core wire	70
4.40 BSE-SEM micrograph of cross-section WC-Cr-Fe in-flight particle	71
4.41 EDS Spectrums of WC-Cr-Fe in-flight particle taken from area1, area2	72
and area3 respectively (Fig. 4.40).	
4.42 X-ray diffraction patterns of WC-Cr-Fe in-flight particles	72
4.43 SE-SEM micrograph of W-Cr-Fe nanocomposite in-flight particle at	73
(a) 1000X and (b) 3500X magnification	
4.44 Size distributions of in-flight particles from W-Cr-Fe nanocomposite	74
cored wire	
4.45 BSE-SEM micrograph of cross-section W-Cr-Fe nanocomposite	74
in-flight particle	
4.46 EDS spectrum of W-Cr-Fe nanocomposite in-flight particle taken from	75
area 1 and 2 respectively from Fig. 4.45	
4.47 X-ray diffraction patterns of W-Cr-Fe nanocomposite in-flight particles	76
4.48 Graph showing distribution of in-flight particles size	77
4.49 In-flight particle morphology by SE-SEM (a-c) and cross sections by	78
BSE-SEM (d-f) of: (a,d) WC-Cr-Ni; (b,e) WC-Cr-Fe; (c,f) W-Cr-Fe nano-	
composite en la son e se r	

4.50 XRD patterns of in-flight particles: (a) WC-Cr-Ni; (b) WC-Cr-Fe;	79
(c) W-Cr-Fe nanocomposite	
4.51 FIB images of pore and solid in-flight particles	80
4.52 SE-SEM micrograph of disc shape WC-Cr-Ni splat	80
4.53 SEM micrograph of disc shape WC-Cr-Ni splat and (b) EDS spectrum	81
4.54 SE-SEM micrographs of flower and contiguous shape WC-Cr-Fe splat	82
4.55 (a) SEM micrograph of flower shape WC-Cr-Fe splat and (b) EDS spectrum	83
4.56 (a) SEM micrograph of contiguous shape WC-Cr-Fe splat and	84
(b) EDS spectrum	
4.57 SE-SEM micrograph of disc shape W-Cr-Fe nanocomposite splat	84
4.58 (a) SEM micrograph of disc shape W-Cr-Fe nanocomposite splat and	85
(b) EDS spectrum	
4.59 FIB micrographs showing solid and pore splat	86
4.60 BSE-SEM micrograph of 86WC-4Cr-10Co Coating. (a)100X, (b) 500X,	89
(c) 1000X, (d) 3000X, (e) 3500X at the interface between coating and	
substrate, and (f) 5000X magnification, respectively	
4.61 BSE-SEM micrographs show cross-section of WC-Cr-Ni coating at 100X,	90
1000X, and 3500X	
4.62 BSE-SEM micrograph show cross-section of WC-Cr-Fe coating at 100X,	91
1000X, and 3500X magnification	
4.63 BSE-SEM micrographs show cross-section of W-Cr-Fe nanocomposite	92
coating at 100X, 1000X, and 3500X	
4.64 (a) SEM micrograph of 86WC-4Cr-10Co coating and (b) EDS spectrum	93
4.65 (a) BSE-SEM micrograph of WC-Cr-Ni coating and (b) EDS spectrum of	94

area analysis	
4.66 (a) SEM micrograph of WC-Cr-Ni coating and (b) spectrum EDS of point	94
analysis	
4.67 (a) BSE-SEM micrograph of WC-Cr-Fe coating and (b) EDS spectrum	95
of area analysis	
4.68 (a) SEM micrograph of WC-Cr-Fe coating and (b) EDS spectrum of point	96
analysis	
analysis	
4.69 (a) BSE-SEM micrograph of W-Cr-Fe nanocomposite coating and	97
(b) EDS-spectrum of area analysis	
4.70 (a) BSE-SEM micrograph of W-Cr-Fe nanocomposite coating and	98
(b) EDS spectrum of point analysis	
4.71 X-ray diffraction patterns of WC-Cr-Ni coating	99
4.72 X-ray diffraction patterns of WC-Cr-Fe coating	100
4.73 X-ray diffraction patterns of W-Cr-Fe nanocomposite coating	101
4.74 BSE-SEM micrographs illustrate coating microstructure at different	103
magnifications: (a, b, c) WC-Cr-Ni; (d, e, f) WC-Cr-Fe; (g, h, i) W-Cr-Fe	
nanocomposite	
4.75 X-ray patterns of coatings :(a) WC-Cr-Ni;(b) WC-Cr-Fe; (c) W-Cr-Fe	104
nanocomposite	
4.76 TEM-SADP micrographs showing amorphous and nanostructure of	104
W-Cr-Fe nanocomposite coating	
w-CI-Fe hanocomposite coating	
4.77 OM image shows wear track of WC-Cr-Ni coating at 100X magnification	105
4.78 OM image shows wear track of WC-Cr-Fe coating at 100X magnification	106
4.79 OM image shows wear track of W-Cr-Fe nanocomposite coating at 100X	107

magnification		
4.80 Abrasive wear rate of 86WC-4Cr-10Co co	ating	10
4.81 Worn surface of 86WC-4Cr-10Co coating	following abrasive wear test	10
4.82 Abrasive wear test of WC-Cr-Ni coating		10
4.83 SEM micrograph shows worn surface of V	C-Cr-Ni coating following	10
abrasive wear test		
4.84 Abrasive wear test of WC-Cr-Fe coating		11
4.85 SEM micrograph shows worn surface abra	sive wear test of WC-Cr-Fe	11
coating		
4.86 Graph showing abrasive wear test of W-C	-Fe nanocomposite coating	11
4.87 SEM micrograph shows worn surface abra	sive wear test of W-Cr-Fe	11
nanocomposite coating		
4.88 SEM micrograph showing low and high m	agnification of sliding wear scar	11
of coatings		
4.89 SEM micrograph shows abrasive wear sca	r of coatings: (a) WC-Cr-Ni	11
(b) WC-Cr-Fe and (c) W-Cr-Fe nanocomp	osite coating	
4.90 Plot of pressure and test distance of the plu	inger coating	11
(WC-Cr-Ni cored wire) test in simulation	conditions	
4.91 OM image shows the typical worn surface	of the plunger coating	11
(WC-Cr-Ni cored wire) under simulated co	ndition test at 100000m distance	

ABBREVIATIONS AND SYMBOLS

°C	:	degree Celsius
μm	:	micrometer
Al	:	aluminum
ASTM	:	American Society for Testing and materials
BSE-SEM	:	backscattered electron-scanning electron microscope
Во	U	boron
С	:	carbon
Cr	:	chromium
Cm	:	centimeter
EDS	:	energy dispersive spectroscopy
Fe	:	iron
FIB		Focus Iron Beam
g	A	gram
hr		hour
HV	:	Vickers hardness
Kg	19	kilogram
m	1	meter
mg	by	milligram ang Mai University
min	÷h	minute reserved
Mo 5	:	molybdenum

Ν	:	Newton
Nb	:	niobium
Ni	:	nickel
0	:	oxygen
rpm	:	revolution per minute
Si	:	silicon
SiC	:	silicon carbide
SEM	:	scanning electron microscope
SE-SEM	:	secondary electron-scanning electron microscope
TEM	.e	transmission electron microscope
TiC	:	titanium carbide
W	:	tungsten
WC	:	tungsten carbide
XRD	:	x-ray diffraction

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved