
Chapter 1

Introduction

Let C be a nonempty subset of a metric space (X, d). A mapping T : C → C is said

to be nonexpansive if

d(Tx, Ty) ≤ d(x, y), for all x, y ∈ C.

We say that x ∈ X is a fixed point of T if

Tx = x.

We denote the set of all fixed points of T by F (T ) = {x ∈ X : x = Tx}. The problem of

finding a point x ∈ X such that Tx = x is called a fixed point problem and the solution

x is called fixed point (or invariant point) of the operator T.

Let X be any set and let T : X → X a self-map. For any given x ∈ X, we define

T nx inductively by T 0x = x and T n+1x = T (T nx); we call T nx the nthiterate of x under

T .

Let (X, d) be a metric space, C ⊂ X be a closed subset of X and T : C → C be a

self-map possessing at least one fixed point p ∈ F (T ). For a given x0 ∈ X we consider

the sequence of iterates {xn}∞n=0 determined by the successive iteration method

xn = Txn−1 = T nx0, n = 1, 2, ... (1.1.1)

The sequence {xn} defined by (1.1.1) is known as the Picard iteration. The fixed

point theory is concerned with finding conditions on the structure that the set X must

be endowed as well as on the properties of the operator T : X → X, in order to obtain

results on:

1) the existence (and uniqueness) of fixed points;

2) the structure of the fixed point sets;

3) the approximation of fixed points.

The ambient spaces X involved in fixed point theorems cover a variety of spaces:

lattice, metric space, normed linear space, generalized metric space, uniform space, lin-

ear topological space etc., while the conditions imposed on the operator T are generally

metrical or compactness type conditions.

The following theorem is of fundamental importance in the metrical fixed point

theory. In 1922, S. Banach proved the famous theorem in fixed point theory for a

contraction as follows:



2

Theorem 1.1.1 (Contraction mapping principle). Let (X, d) be a complete metric space

and T : X → X be a given contraction (d(Tx, Ty) ≤ kd(x, y) for some k ∈ [0, 1)).

Then T has a unique fixed point p , and

T nx → p as n → ∞, for each x ∈ X.

There are various generalizations of the contraction mapping principle, roughly ob-

tained in two ways:

1) by weakening the contractive properties of the map and, possibly, by simultane-

ously giving to the space a sufficiently rich structure, in order to compensate the

relaxation of the contractiveness assumptions;

2) by extending the structure of the ambient space.

Fixed point theory is the most important tool to solve a problem in many branches

of science and a new technology. When the problem in science has transformed into

a mathematical model such that equality, inequality, equality system and inequality

system.

Many important nonlinear problems of applied mathematics can be described in a

unitary manner by the following scheme. For given object f , find another object x

satisfying two conditions:

(i) The object x belong to a given class X of objects.

(ii) The object x is in a certain relation R to the object f.

An object x satisfying these conditions will be called the solution of the given prob-

lem. This problem can be described by

{x ∈ X : xRf}. (1.1.2)

Example 1.1.2. Find a real solution of the equation x5 − x − 1 = 0. Here f ≡ f(x) =

x5 − x − 1, X = R and the relation R expresses the fact that x and f are related

by the given equation.

Example 1.1.3. The initial value problem for a first order ordinary differential equation

{

y′ = ϕ(t, y),

y(t0) = y0

fit the scheme (1.1.2).

Indeed, here we have f = (ϕ, t0, y0), X = C(I), where t0 ∈ I ⊂ R, x is the function

y : I → R and R is given by the previous system of conditions.

In turn, any problem of the form (1.1.2) can be written equivalently as a fixed point

problem

x = Tx (1.1.3)



3

where T : C → C is a corresponding operator, that allows us to use constructive fixed

point tools in obtaining the desired solution.

Consequently, the main aim of the present section is to illustrate, on some important

typical functional equations from applied mathematics, how we can convert them into

equivalent fixed point problems. This will, in part, motivate our interest in the study

of fixed point iteration procedures.

Efficiently finding roots of nonlinear equations is of major importance and has sig-

nificant applications in numerical mathematics. In contrast to the case of linear systems

of equations, direct methods for solving nonlinear equations are usually available only

for a few special cases. Consequently, we need to resort to iterative methods. According

to the mathematical importance of this problem, there exists a vast and dense literature

related to iterative methods. Basically, for the equation

F (x) = 0 (1.1.4)

where F : C ⊂ R
n → R

n is a given operator, we can consider several iterative methods

for computing approximate solutions of it.

One of the most used method is to write (1.1.4) equivalently in the form (1.1.3),

where T is a certain operator associated to F , in such a way that, by considering a

certain fixed point iteration scheme (usually the Picard iteration), we obtain a sequence

that converges to a solution of (1.1.4).

The operator T is usually called iteration function. There are several methods for

constructing iteration functions. If we restrict to real functions of a real single vari-

able, then one of the most used algorithms for obtaining T is the well-known Newton’s

method, which is based on the iteration function

Tx = x − F (x)

F ′(x)
.

Example 1.1.4. Consider the polynomial equation

x5 − x − 1 = 0 (1.1.5)

that can be written in the form (1.1.3) in many different ways. Here there are three of

them:

(i) x = x5 − 1;

(ii) x = 5
√

x + 1;

(iii) x = 4x5+1
5x4−1

.

It is easy to see that (1.1.5) has a unique solution in the interval [1,∞).

Denote:

T1(x) = x5 − 1;

T2(x) = 5
√

x + 1;

T3(x) =
4x5 + 1

5x4 − 1
, x ∈ [1,∞).
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Then the Picard iteration associated to T1 does not converge, whatever the initial

approximation x0 ∈ [1,∞), while in the case of T2 or T3, it does.

When the contractive conditions are slightly weaker, then the Picard iterations need

not converge to a fixed point of the operator T , and some other iteration procedures

must be considered.

The following classical iteration methods are often used to approximate a fixed point

of a mapping T .

Let (X, ‖.‖) be a real normed space and T : X → X a self-map, x0 ∈ X and

λ ∈ [0, 1]. The sequence {xn}∞n=0 given by

xn+1 = (1 − λ)xn + λTxn, n = 0, 1, 2, ... (1.1.6)

will be called the Krasnoselskij iteration procedure or, simply, Krasnoselskij iteration.

In 1953, W. Robert Mann [34] has defined an iteration as follows: Let C be a

compact convex subset of a Banach space X and T : C → C a continuous mapping,

xn+1 = αnxn + (1 − αn)Txn, n ≥ 1. (1.1.7)

where x1 ∈ C and {αn} is a sequence in [0,1]. He proved a weak convergence theorem

for a nonexpansive mapping under the control condition
∑

∞

n=1(1−αn) = ∞. For αn = λ

(constant), the iteration (1.1.7) reduces to Krasnoselskij iteration.

Due to the weak convergence of Mann iteration, in 1967, Halpern [18] introduced

the modified Mann iteration as follows: A sequence {xn} defined by x1 ∈ C and

xn+1 = (1 − αn)u + αnTxn, n ≥ 1, (1.1.8)

where u ∈ C is arbitrarily chosen and {αn} is a sequence in [0,1] is called the Halpern

Iteration. He proved, in a real Hilbert space, that the sequence {xn} converges strongly

to a fixed point of T where αn := n−a, a ∈ (0, 1).

In 1977, Lions [33] obtained a strong convergence provide that the sequence {αn} sat-

isfies the control conditions limn→∞ αn = 0,
∑

∞

n=1 αn = ∞ and limn→∞

αn−αn−1

α2
n

= 0.

However, both Halpern’s and Lion’s conditions imposed on the real sequence {αn} ex-

clude the result of Halpern from Hilbert spaces to uniformly smooth Banach spaces.

The concept of Halpern iteration has been widely used to approximate the fixed points

of nonexpansive mappings (see e.g., [2, 11, 25, 56, 57]).

In 1974, Shiro Ishikawa [21] has defined a new iteration which is a generalization of

Mann iteration by starting at x1 ∈ C and

xn+1 = αnxn + (1 − αn)T [βnxn + (1 − βn)Txn], n ≥ 1. (1.1.9)

He proved that if X is a Hilbert space and T is a lipschitzian pseudo-contractive mapping

then the sequence {xn} converges strongly to a fixed point of T under some suitable

conditions.

In the last four decades Mann, Halpern, and Ishikawa schemes have been successfully

used by various authors to approximate fixed points of various classes of operators in

Banach spaces (see e.g., [35, 25, 19, 47]).
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In 2000, Noor [35] introduced a three-step iteration method, which is called the Noor

iteration, is defined by x1 ∈ C and







zn = (1 − γn)xn + γnTxn,

yn = (1 − βn)xn + βnTzn,

xn+1 = (1 − αn)xn + αnTyn, for all n ∈ N,

(1.1.10)

where {αn}, {βn}, and {γn} are sequences in [0,1]. Clearly, Mann and Ishikawa iterations

are special cases of Noor iteration. In [35], the author first used Noor iteration to

approximate solutions of variational inclusion in a Hilbert space.

In 2005, Kim and Xu [25] generalized Wittmann’s result by introducing a modified

Halpern iteration in a Banach space as follows. Let C be a closed convex subset of a

uniformly smooth Banach space X and T : C → C be a nonexpansive mapping. For

any points u, x1 ∈ C, the sequence {xn} is defined by

xn+1 = βnu + (1 − βn)T (αnxn + (1 − αn)Txn), for n ≥ 1, (1.1.11)

where {αn} and {βn} are sequences in [0, 1]. They proved, under the following control

conditions:

(D1) lim
n→∞

αn = 0, lim
n→∞

βn = 0,

(D2)

∞
∑

n=1

αn = ∞,

∞
∑

n=1

βn = ∞ and

(D3)
∞
∑

n=1

|αn+1 − αn| < ∞,
∞
∑

n=1

|βn+1 − βn| < ∞,

that the sequence {xn} converges strongly to a fixed point of T.

In 2008, L-G. Hu [19] introduced a modified Halpern’s iteration as follows: For any

u, x0 ∈ C, the sequence {xn} is defined by

xn+1 = αnu + βnxn + γnTxn, n ≥ 0, (1.1.12)

where {αn}, {βn}, and {γn} are three real sequences in (0,1), satisfying αn+βn+γn = 1.

Clearly, the iterative sequence (1.1.12) is a natural generalization of the well-known

iterations (1.1.6),(1.1.7),(1.1.8) (see also [50] and [53] for subsequence comments).

In 2009, Y. Song and H. Li [47] introduced new algorithms for finding fixed points

of a nonexpansive mapping T generated as follows:

xn+1 = λn[αnu + (1 − αn)xn] + (1 − λn)Txn, (1.1.13)

and

xn+1 = λnxn + (1 − λn)T [αnu + (1 − αn)xn]. (1.1.14)

In 2010, Saejung extended the results of Halpern to a CAT(0) space as follows:

Suppose u, x1 ∈ C are arbitrarily chosen and {xn} is the iteratively generated by

xn+1 = αnu ⊕ (1 − αn)Txn, ∀n ≥ 1, (1.1.15)
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where {αn} is a sequence in (0,1) satisfying limn→∞ αn = 0,
∑

∞

n=1 αn = ∞, and
∑

∞

n=1 |αn − αn+1| < ∞ or limn→∞

αn

αn+1
= 1. Then {xn} converges to z ∈ F (T ) which is

the nearest point of F (T ) to u.

Base on the result in the literature, we found that there is no any result in a CAT(0)

space concerning to the convergence of a modified Halpern iteration for nonexpansive

mappings.

The purpose of this thesis is to extend the results of Kim and Xu, Hu, Song and Li

to CAT(0) spaces. Precisely, we will prove the following results. Let C be a nonempty

closed convex subset of a complete CAT(0) space and T : C → C be a nonexpansive

mapping such that F (T ) 6= ∅.
1) If {xn} is defined by

xn+1 = βnu ⊕ (1 − βn)(αnxn ⊕ (1 − αn)Txn)

where {αn}, {βn} satisfy the following conditions:

(A1) limn→∞ αn = 0 and
∑

∞

n=1 |αn+1 − αn| < ∞,

(A2) limn→∞ βn = 0,
∑

∞

n=1 βn = ∞, and
∑

∞

n=1 |βn+1 − βn| < ∞,

then {xn} converges to a point z ∈ F (T ) which is nearest to u.

2) If {xn} is defined by

xn+1 = βnxn ⊕ (1 − βn)(αnu ⊕ (1 − αn)Txn)

where {αn}, {βn} satisfy the following conditions:

(B1) limn→∞ αn = 0;

(B2)
∑

∞

n=1 αn = ∞;

(B3) 0 < lim infn→∞ βn ≤ lim supn→∞
βn < 1.

then {xn} converges to a point z ∈ F (T ) which is nearest to u.

3) If {xn} is defined by

xn+1 = λnxn ⊕ (1 − λn)T (αnu ⊕ (1 − αn)xn)

where {αn}, {λn} satisfy the following conditions:

(C1) limn→∞ αn = 0,

(C2)
∑

∞

n=1 αn = ∞, and

(C3) 0 < lim infn→∞ λn ≤ lim supn→∞
λn < 1.

then {xn} converges to a point z ∈ F (T ) which is nearest to u.

4) If {xn} is defined by

xn+1 = λn(αnu ⊕ (1 − αn)xn) ⊕ (1 − λn)Txn

where {αn}, {λn} satisfy the following conditions:
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(D1) limn→∞ αn = 0,

(D2)
∑

∞

n=1 αn = ∞, and

(D3) 0 < lim infn→∞ λn ≤ lim supn→∞
λn < 1.

then {xn} converges to a point z ∈ F (T ) which is nearest to u.

This thesis is divided into 6 chapters. Chapter 1 is an introduction to the research

problems. In Chapter 2, we collect some basic concepts and results which are needed in

later chapters. In Chapter 3, we generalize a lemma of Suzuki and apply it to prove the

strong convergence of the modified Halpern iterations in Chapter 4. Finally, in Chapter

5 we prove the strong convergence of the modified Noor iterations in CAT(0) spaces

and the conclusion is in Chapter 6.


