
Chapter 2

Basic Concepts and Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary

results used throughout the thesis.

2.1 Basic Definitions

2.1.1 Metric Spaces

In calculus we study functions defined on the real line R. A little reflection shows that

in limit processes and many other considerations we use the fact that on R we have

available a distance function, call it d, which associates a distance d(x, y) = |x−y| with

every pair of points x, y ∈ R.

Definition 2.1.1. (Metric space, metric). A metric space is a pair (X, d), where X is a

set and d is a metric on X (or distance function on X), that is a function defined on

X × X such that for all x, y, z ∈ X we have:

(M1) d is real valued, finite and nonnegative.

(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x) (Symmetry).

(M4) d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

For fixed x, y ∈ X, we call the nonnegative number d(x, y) the distance from x to y.

Properties (M1) to (M4) are the axioms of a metric. The name “triangle inequality” is

motivated by elementary geometry as shown in Figure 2.1.

Figure 2.1: Triangle inequality in the plane

From (M4) we obtain by induction the generalized triangle inequality

d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + ... + d(xn−1, xn). (2.1.1)

Instead of (X, d) we may simply write X if there is no danger of confusion.
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Example 2.1.2. Real line R. This is the set of all real numbers, taken with the usual

metric defined by

d(x, y) = |x − y|. (2.1.2)

Example 2.1.3. Euclidean plane R2. The metric space R2, called the Euclidean plane,

is obtained if we take the set of ordered pairs of real numbers, written

x = (ξ1, ξ2), y = (η1, η2), etc., and the Euclidean metric defined by

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2, (2.1.3)

see Figure 2.2. Another metric space is obtained if we choose the same set as before

but another metric d1 defined by

d1(x, y) = |ξ1 − η1| + |ξ2 − η2|. (2.1.4)

Figure 2.2: Euclidean metric and the metric d1

Example 2.1.4. Euclidean space Rn, unitary space Cn, complex plane C. The previous

examples are special cases of n−dimensional Euclidean space Rn. This space is obtained

if we take the set of all ordered n−tuples of real numbers, written

x = (ξ1, ..., ξn), y = (η1, ..., ηn)

etc., and the Euclidean metric defined by

d(x, y) =
√

(ξ1 − η1)2 + ... + (ξn − ηn)2. (2.1.5)

n-dimensional unitary space C
n is the space of all ordered n-tuples of complex numbers

with metric defined by

d(x, y) =
√

|ξ1 − η1|2 + ... + |ξn − ηn|2. (2.1.6)

When n = 1 this is the complex plane C with the usual metric defined by

d(x, y) = |x − y|. (2.1.7)
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Example 2.1.5. Sequence space ℓp. Let 1 ≤ p < ∞ be a fixed real number. By

definition, each element in the space ℓp is a sequence x = {ξ1, ξ2, ...} of numbers such

that |ξ1|p + |ξ2|p + ... converges; thus

∞
∑

j=1

|ξj|p < ∞ (2.1.8)

and the metric is defined by

d(x, y) =

(

∞
∑

j=1

|ξj − ηj |p
)1/p

(2.1.9)

where y = {ηj} and
∑ |ηj |p < ∞.

Example 2.1.6. Sequence space ℓ∞. This example and the next one give a first impres-

sion of how surprisingly general the concept of a metric space is. As a set X we take

the set of all bounded sequences of complex numbers; that is, every element of X is a

complex sequence

x = {ξ1, ξ2, ...}
such that for all j = 1, 2, ... we have

|ξj| ≤ cx

where cx is a real number which may depend on x, but does not depend on j. We

choose the metric defined by

d(x, y) = sup
j∈N

|ξj − ηj | (2.1.10)

where y = {ηj} ∈ X and N = {1, 2, ...}, and sup denotes the supremum. The metric

space thus obtained is generally denoted by ℓ∞, it is a sequence space because each

element of X is a sequence.

Example 2.1.7. Function space C[a, b]. As a set X we take the set of all real-valued

functions x, y, ... which are functions of an independent real variable t and are defined

and continuous on a given closed interval J = [a, b]. Choosing the metric defined by

d(x, y) = max
t∈J

|x(t) − y(t)|, (2.1.11)

where max denotes the maximum, we obtain a metric space which is denoted by C[a, b].

The letter C suggests “continuous”. This is a function space because every point of

C[a, b] is a function.

Example 2.1.8. Space B(A) of bounded functions. By definition, each element x ∈
B(A) is a function defined and bounded on a given set A, and the metric is defined by

d(x, y) = sup
t∈A

|x(t) − y(t)|. (2.1.12)

We write B[a, b] for B(A) in the case of an interval A = [a, b] ⊂ R.
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We shall now define the concept of completeness of a metric space, which will be

basic in our further work. We shall see that completeness does not follow from (M1)

to (M4), since there are incomplete (not complete) metric spaces. In other words,

completeness is an additional property which a metric space may or may not have.

Definition 2.1.9. A sequence {xn} in a metric space (X, d) is said to be a Cauchy

sequence if for each ǫ > 0, there exists a positive integer N such that d(xn, xm) < ǫ for

all m, n ≥ N .

The space (X, d) is said to be complete if every Cauchy sequence in (X, d) converges

(that is, has a limit which is an element of X).

We first consider important types of subsets of a given metric space X = (X, d).

Definition 2.1.10. Given a point x0 ∈ X and a real number r > 0, we define three types

of sets:

(i) B(x0, r) = {x ∈ X : d(x, x0) < r} (Open ball)

(ii) B(x0, r) = {x ∈ X : d(x, x0) ≤ r} (Closed ball)

(iii) S(x0, r) = {x ∈ X : d(x, x0) = r} (Sphere)

In all three cases, x0 is called the center and r the radius.

Definition 2.1.11. A subset G of a metric space X is said to be open if it contains a

ball about each of its points. A subset C of X is said to be closed if its complement in

X is open, that is, X − C is open.

The following is an important characterization of closed sets in a metric space.

Theorem 2.1.12. A subset C of a metric space X is closed if and only if

{xn} ⊂ C and lim
n→∞

xn = x ⇒ x ∈ C.

The following is a characterization of compactness.

Theorem 2.1.13. A subset C of a metric space X is compact if and only if any sequence

{xn} in C has a subsequence {xnk
} which converges to a point in C.

2.1.2 Banach Spaces and Hilbert Spaces

In this section, we state fundamental theorems relating to Banach spaces and Hilbert

spaces. We begin with the concept of vector spaces as follows:

Vector spaces play a role in many branches of mathematics and its applications. In

fact, in various practical (and theoretical) problems we have a set X whose elements

may be vectors in three-dimensional space, or sequences of numbers, or functions, and

these elements can be added and multiplied by constants (numbers) in a natural way,

the result being again an element of X. Such concrete situations suggest the concept

of a vector space as defined below. The definition will involve a general field K, but in

functional analysis, K will be R or C. The elements of K are called scalars; hence in

our case they will be real or complex numbers.
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Definition 2.1.14. A vector space (or linear space) over a field K is a nonempty set

X of elements x, y, ... (called vectors) together with two algebraic operations. These

operations are called vector addition and multiplication of vectors by scalars, that is,

by elements of K.

Vector addition

(1) x + y = y + x;

(2) x + (y + z) = (x + y) + z;

(3) there exists in X a unique element, denoted by 0 and called the zero element,

such that x + 0 = x for every x;

(4) to each element x in X there corresponds a unique element in X, denoted by −x

and called the negative of x, such that x + (−x) = 0.

Multiplication by scalars

(5) α(x + y) = αx + αy;

(6) (α + β)x = αx + βx;

(7) (αβ)x = α(βx);

(8) 1x = x.

The algebraic system X defined by these operations and axioms is called a linear

space. Depending on the numbers admitted as scalars (only the real numbers, or all

the complex numbers), we distinguish when necessary between real linear spaces and

complex linear spaces. A linear space is often called a vector space, and its elements are

spoken of as vectors.

A vector space X may at the same time be a metric space because a metric d is

defined on X. However, if there is no relation between the algebraic structure and

the metric, we cannot expect a useful and applicable theory that combines algebraic

and metric concepts. To guarantee such a relation between “algebraic” and “geometric”

properties of X we define on X a metric d in a special way as follows. We first introduce

an auxiliary concept, the norm (definition below), which uses the algebraic operations of

vector space. Then we employ the norm to obtain a metric d that is of the desired kind.

This idea leads to the concept of a normed space. It turns out that normed spaces are

special enough to provide a basis for a rich and interesting theory, but general enough

to include many concrete models of practical importance.

Definition 2.1.15. (Banach space). A normed space X is a vector space (or linear space)

with a norm defined on it. A Banach space is a complete normed space (complete in

the metric defined by the norm). Here a norm on a (real or complex) vector space X

is a real-valued function on X whose value at an x ∈ X is denoted by ‖x‖ and which

has the properties:
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(N1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

(N2) ‖αx‖ = |α|‖x‖;

(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖;

here x and y are arbitrary vectors in X and α is any scalar.

A norm on X defines a metric d on X which is given by

d(x, y) = ‖x − y‖ (2.1.13)

and is called the metric induced by the norm.

Example 2.1.16. Euclidean space R
n and unitary space C

n. These spaces were defined

in Example 2.1.4. They are Banach spaces with norm defined by

‖x‖ =

(

n
∑

j=1

|ξj|2
)1/2

=
√

|ξ1|2 + ... + |ξn|2 (2.1.14)

Example 2.1.17. Space ℓp. This space was defined in Example 2.1.5. It is a Banach

space with norm given by

‖x‖ =

(

∞
∑

j=1

|ξj|p
)1/p

. (2.1.15)

In fact, this norm induces the metric in Example 2.1.5:

d(x, y) = ‖x − y‖ =

(

∞
∑

j=1

|ξj − ηj |p
)1/p

.

Example 2.1.18. Space ℓ∞. This space was defined in Example 2.1.6 and is a Banach

space since its metric is obtained from the norm defined by

‖x‖ = sup
j

|ξj|

Example 2.1.19. Space C[a, b]. This space was defined in Example 2.1.7 and is a

Banach space with norm given by

‖x‖ = max
t∈J

|x(t)|,

where J = [a, b].

Definition 2.1.20. A subset C of a real vector space X is called convex if, for any pair

of points x, y in C, the closed segment with the extremities x, y is contained in C, that

is, the set {λx + (1 − λy) : λ ∈ [0, 1]} is contained in C. A subset C of a real normed

space is called bounded if there exists M > 0 such that ‖x‖ ≤ M , for all x ∈ C.
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Definition 2.1.21. A Banach space (X, ‖.‖) is said to be strictly convex if

x, y ∈ SX with x 6= y ⇒
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1.

We use SX to denote the unit sphere SX = {x ∈ X : ‖x‖ = 1} on Banach space X.

Definition 2.1.22. A Banach space (X, ‖.‖) is called uniformly convex if given any ǫ > 0,

there exists δ > 0 such that for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ǫ, we

have
1

2
‖x + y‖ < 1 − δ.

A function f : X → R is said to be linear if f(αx+y) = αf(x)+f(y) for all x, y ∈ X

and α ∈ R. In addition, if there is M > 0 such that |f(x)| ≤ M‖x‖ for all x ∈ X, we

say that f is a bounded linear functional. It is not difficult to see that the class of all

bounded linear functionals of X, denoted by X∗, is a Banach space equipped with the

norm defined by

‖f‖ = sup{|f(x)| : x ∈ BX} = sup{|f(x)| : x ∈ SX},
where BX = {x ∈ X : ‖x‖ ≤ 1} is the unit ball of X.

The most well-known theorem in Banach space theory is the Hahn-Banach theorem:

For each x ∈ X there exists f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x‖.

Definition 2.1.23. A sequence {xn} in a normed space X is said to be strongly convergent

(or convergent in the norm) if there exists a point x ∈ X such that lim
n→∞

‖xn − x‖ = 0.

In this case, we write either lim
n→∞

xn = x or xn → x.

Definition 2.1.24. (Inner product space, Hllbert space). An inner product space (or

pre-Hilbert space) is a vector space X with an inner product defined on X. A Hilbert

space is a complete inner product space (complete in the metric defined by the inner

product; see (2.1.17), below). Here, an inner product on X is a mapping of X ×X into

the scalar field K of X; that is, with every pair of vectors x and y there is an associated

scalar, which is written

〈x, y〉
and is called the inner product of x and y, such that for all vectors x, y, z and scalars α

we hvae

(IP1) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉

(IP2) 〈αx, y〉 = α〈x, y〉

(IP3) 〈x, y〉 = 〈y, x〉

(IP4) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0.
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An inner product on X defines a norm on X given by

‖x‖ =
√

〈x, x〉 (2.1.16)

and a metric on X given by

d(x, y) = ‖x − y‖ =
√

〈x − y, x− y〉. (2.1.17)

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach spaces.

In (IP3), the bar denotes complex conjugation. Consequently, if X is a real vector

space, we simply have

〈x, y〉 = 〈y, x〉.
From (IP1) to (IP3) we obtain the formula

〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 (2.1.18)

〈x, αy〉 = α〈x, y〉 (2.1.19)

〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉 (2.1.20)

which we shall use quite often. (2.1.18) shows that the inner product is linear in the

first factor. Since in (2.1.20) we have complex conjugates α and β on the right, we say

that the inner product is conjugate linear in the second factor.

Theorem 2.1.25. (Parallelogram Law) For any inner product space X, the following

holds:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X.

This name is suggested by elementary geometry, as we see from Figure 2.3.

Figure 2.3: Parallelogram with sides x and y in the plane

Example 2.1.26. Euclidean space Rn. The space Rn is a Hilbert space with inner

product defined by

〈x, y〉 = ξ1η1 + ... + ξnηn (2.1.21)

where x = (ξ1, ..., ξn) and y = (η1, ..., ηn).

In fact, from (2.1.21) we obtain

‖x‖ = 〈x, x〉1/2 = (ξ2
1 + ... + ξ2

n)1/2

and from this the Euclidean metric defined by

d(x, y) = ‖x − y‖ = 〈x − y, x − y〉1/2 = [(ξ1 − η1)
2 + ... + (ξn − ηn)2]1/2.
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Example 2.1.27. Unitary space Cn. The space Cn is a Hilbert space with inner product

given by

〈x, y〉 = ξ1η1 + ... + ξnηn. (2.1.22)

Example 2.1.28. Hilbert sequence space ℓ2. The space ℓ2 is a Hilbert space with inner

product defined by

〈x, y〉 =
∞
∑

j=1

ξjηj . (2.1.23)

2.1.3 CAT(0) Spaces

A metric space X is a CAT(0) space if it is geodesically connected, and if every geodesic

triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane. The

precise definition is given below. It is well-known that any complete, simply connected

Riemannian manifold having nonpositive sectional curvature is a CAT(0) space. Other

examples include Pre-Hilbert spaces, (see [5]), R−trees (see [26]), Euclidean buildings

(see [7]), the complex Hilbert ball with a hyperbolic metric (see [17]), and many others.

It is necessary to state that the results in CAT(0) spaces can be applied to any CAT(k)

space with k ≤ 0 since any CAT(k) space is a CAT(k′) space for every k′ ≥ k (see [5],

p. 165). For a thorough discussion of these spaces and of the fundamental role they

play in geometry, we refer the reader to Bridson and Haefliger [5].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [27] and [28]) as

follows:

Theorem 2.1.29. Let C be a bounded closed convex subset of a complete CAT(0) space

X. Suppose T : C → C is a nonexpansive mapping. Then the fixed point set of T is

nonempty, closed, and convex.

Since then the fixed point theory for single-valued and multivalued mappings in

CAT(0) spaces has been rapidly developed and many papers have appeared (see e.g.,

[12, 10, 32, 13, 44, 14, 20, 31, 41, 23, 24, 1] and the references therein). It is worth

mentioning that fixed point theorems in CAT(0) spaces (specially in R−trees) can be

applied to graph theory, biology and computer science (see e.g., [4, 43, 26, 15, 30]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a mapping

c : [0, l] → X such that

(1) c(0) = x,

(2) c(l) = y,

(3) d(c(t1), c(t2)) = |t1 − t2| for any t1, t2 ∈ [0, l].

In particular, c is an isometry. The image of c is called a geodesic (or metric) segment

joining x and y (see Figure 2.4). X is called a (uniquely) geodesic metric space if any

two points are connected by a (unique) geodesic.
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Figure 2.4: Geodesic path joining x and y

Proposition 2.1.30. (see [28]) Every normed vector space X is a geodesic space. It is a

uniquely geodesic if and only if the unit ball in X is strictly convex.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three

points x1, x2, x3 ∈ X (the vertices of △) and a geodesic segment between each pair of

vertices (see Figure 2.5). A comparison triangle for the geodesic triangle △(x1, x2, x3)

in (X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in the Euclidean plane E2 such that

dE2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.

Figure 2.5: Geodesic triangle

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the

following comparison axiom.

CAT(0): Let △ be a geodesic triangle in X and let △ be a comparison triangle

for △. Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all

comparison points x, y ∈ △,

d(x, y) ≤ dE2(x, y),

see Figure 2.6.
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Figure 2.6: Figure of comparison axiom

Similarly, one defines CAT(1) and CAT(−1) spaces by comparing geodesic triangles

in X with the comparison triangles in the standard 2-sphere S2, the set of all 3-tuples

(x1, x2, x3) of real numbers such that the sum x2
1 + x2

2 + x2
3 = 1 (S1 is a circle; S2 is the

surface of an ordinary ball of radius one in 3 dimensions), and the hyperbolic plane H2,

(the maximally symmetric,simply connected, 2-dimensional Riemannian manifold with

constant sectional curvature −1), respectively. In the case of CAT(1) we only consider

geodesic triangles of total perimeter length less than 2π.

Let (X, d) be a CAT(0) space, if x, y ∈ X and t ∈ [0, 1] then we use the notation

(1 − t)x ⊕ ty for the point z in [x, y] which satisfied

d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y) (see Figure 2.7).

Figure 2.7: A point in line segment

In fact, a geodesic space is a CAT(0) space if and only if it satisfies the (CN)

inequality (see [5], p. 163)

Lemma 2.1.31. A geodesic metric space (X, d) is a CAT(0) space if and only if for

z, x, y ∈ X and if m[x, y] is the midpoint of the segment [x, y] then

d(z, m[x, y])2 ≤ 1

2
d(z, x)2 +

1

2
d(z, y)2 − 1

4
d(x, y)2. (CN)

This is the (CN) inequality of Bruhat and Tits [8].
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Example 2.1.32. Standard examples of CAT(0) spaces.

• Euclidean space, En.

• Hyperbolic space, Hn.

• Hadamard manifold, i.e., complete, simply connected Riemannian manifolds of

non-positive sectional curvature.

• Trees.

• products of CAT(0) spaces.

• Gluing CAT(0) spaces in a certain way.

• Euclidean buildings.

Figure 2.8: The relation of each space
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2.1.4 Banach Limits

In this section, we study Banach limits (see also [51]), which is indispensable in the

proofs of our main results. Let S be a nonempty set and let B(S) be the Banach space

of all bounded real valued functions on S with supremum norm. Let X be a subspace

of B(S) and let µ be an element of X∗ (the dual space of X). Then, we denote by µ(f)

the value of µ at f ∈ X. If e(s) = 1 for every s ∈ S, sometimes µ(e) will be denoted

by µ(1). When X contains constants, a linear functional µ on X is called a mean on

X if ‖µ‖ = µ(1) = 1.

Theorem 2.1.33. Let X be a subspace of B(S) containing constants and let µ be a

linear functional on X. Then the following conditions are equivalent:

(1) ‖µ‖ = µ(1) = 1, i.e., µ is a mean on X;

(2) the inequalities

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

hold for each f ∈ X.

Let S = N. Then B(S) = ℓ∞. Let µ be a linear continuous functional on ℓ∞ and

let x = (x1, x2, ...) ∈ ℓ∞. Then, sometimes, we denote by µn(xn) the value µ(x).

Theorem 2.1.34. (the existence of Banach limits). There exists a linear continuous

functional µ on ℓ∞ such that ‖µ‖ = µ(1) = 1 and µn(xn) = µn(xn+1) for every

x = (x1, x2, ...) ∈ ℓ∞.

A linear continuous functional on ℓ∞ such that ‖µ‖ = µ(1) = 1 and

µn(xn) = µn(xn+1) for each x = (x1, x2, ...) ∈ ℓ∞ is called a Banach limit.

Theorem 2.1.35. Let µ be a Banach limit. Then,

lim inf
n→∞

xn ≤ µ(x) ≤ lim sup
n→∞

xn

for each x = (x1, x2, ...) ∈ ℓ∞. Specially, if xn → a, then µ(x) = a.

Remark 2.1.36. If µ is a linear functional on ℓ∞ satisfying

lim inf
n→∞

xn ≤ µ(x) ≤ lim sup
n→∞

xn

for each x = (x1, x2, ...) ∈ ℓ∞, then µ is a mean of ℓ∞.

2.2 Useful Lemmas

We now collect some elementary facts about CAT(0) spaces which will be used in our

results.

Lemma 2.2.1. (see [46], Proposition 2) Let (a1, a2, . . .) ∈ ℓ∞ be such that µn(an) ≤ 0

for all Banach limits µ and lim sup
n→∞

(an+1 − an) ≤ 0. Then lim sup
n→∞

an ≤ 0.
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Lemma 2.2.2. (see [41], Lemma 2.1) Let C be a closed convex subset of a complete

CAT(0) space X and T : C → C be a nonexpansive mapping. Let u ∈ C be fixed. For

each t ∈ (0, 1), the mapping St : C → C defined by

Stx = tu ⊕ (1 − t)Tx for x ∈ C (2.2.1)

has a unique fixed point zt ∈ C, that is,

zt = St(zt) = tu ⊕ (1 − t)T (zt). (2.2.2)

Lemma 2.2.3. (see [41], Lemma 2.2) Let C, T be as the preceding lemma. Then F (T ) 6=
∅ if and only if {zt} given by the formula (2.2.2) remains bounded as t → 0. In this

case, the following statements hold:

(i) {zt} converges to the unique fixed point z of T which is nearest to u;

(ii) d(u, z)2 ≤ µnd(u, xn)2 for all Banach limits µ and all bounded sequences {xn} with

limn→∞ d(xn, Txn) = 0.

Lemma 2.2.4. Let X be a CAT(0) space.

(i) (see [5], Proposition 2.4) Let C be a closed convex subset of X. Then, for every

x ∈ X there exists a unique point Px ∈ C such that d(x, Px) = inf{d(x, y) : y ∈
C}. The mapping P : X → C is called the nearest point (or metric) projection

from X onto C.

(ii) (see [13], Lemma 2.4) For each x, y, z ∈ X and t ∈ [0, 1], one has

d
(

(1 − t)x ⊕ ty, z
)

≤ (1 − t)d(x, z) + td(y, z) (see Figure 2.9a). (2.2.3)

(iii) (see [10]) For each x, y ∈ X and t, s ∈ [0, 1], one has

d
(

(1 − t)x ⊕ ty, (1 − s)x ⊕ sy
)

= |t − s|d(x, y) (see Figure 2.9b). (2.2.4)

(iv) (see [28], Lemma 3)For each x, y, z ∈ X and t ∈ [0, 1], one has

d
(

(1 − t)z ⊕ tx, (1 − t)z ⊕ ty
)

≤ td(x, y) (see Figure 2.9c). (2.2.5)

(v) (see [13], Lemma 2.5) For each x, y, z ∈ X and t ∈ [0, 1], one has

d
(

(1−t)x⊕ty, z
)2 ≤ (1−t)d(x, z)2+td(y, z)2−t(1−t)d(x, y)2 (see Figure 2.9d).

(2.2.6)

Lemma 2.2.5. (see [31, 48]) Let {xn} and {yn} be bounded sequences in a CAT (0) space

X, and let {αn} be a sequence in [0, 1] with 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. Suppose

that xn+1 = αnyn ⊕ (1 − αn)xn for all n ∈ N and

lim sup
n→∞

(d(yn+1, yn) − d(xn+1, xn)) ≤ 0. (2.2.7)

Then lim
n→∞

d(xn, yn) = 0.
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(a) (b) (c)

(d)

Figure 2.9: Geometry in CAT(0) space

Lemma 2.2.6. (see [55], Lemma 2.1) Let {αn}∞n=0 be a sequence of nonnegative real

numbers satisfying the property: αn+1 ≤ (1 − γn)αn + γnσn, n ≥ 0, where {γn}∞n=0 ⊂
(0, 1) and {σn}∞n=0 such that

(i) lim
n→∞

γn = 0 and
∞
∑

n=0

γn = ∞,

(ii) either lim sup
n→∞

σn ≤ 0 or
∞
∑

n=0

|γnσn| < ∞.

Then {αn}∞n=0 converges to zero.


