
Chapter 3

A Generalization of Suzuki’s Lemma

Suppose that (X, d) is a metric space which contains a family L of metric segments

(isometric images of real line segments) such that distinct points x, y ∈ X lie on exactly

one member S[x, y] of L. Let α ∈ [0, 1], we use the notation αx ⊕ (1 − α)y to denote

the point of the segment S[x, y] with distance αd(x, y) from y, that is,

d(αx ⊕ (1 − α)y, y) = αd(x, y). (3.1.8)

We will say that (X, d, L) is of hyperbolic type if for each p, x, y ∈ X and α ∈ [0, 1],

d(αp ⊕ (1 − α)x, αp ⊕ (1 − α)y) ≤ (1 − α)d(x, y). (3.1.9)

It is proved in [29] that (3.1.9) implies

d(p, αx⊕ (1 − α)y) = αd(p, x) + (1 − α)d(p, y). (3.1.10)

It is well-known that Banach spaces are of hyperbolic type. Notice also that CAT(0)

spaces and hyperconvex metric spaces are of hyperbolic type (see [28] and [22]).

In 1983, Goebel and Kirk [16] proved that if {zn} and {wn} are sequences in a metric

space of hyperbolic type (X, d) and {αn} ⊂ [0, 1] which satisfy for all i, n ∈ N,

(i) zn+1 = αnwn ⊕ (1 − αn)zn,

(ii) d(wn+1, wn) ≤ d(zn+1, zn),

(iii) d(wi+n, xi) ≤ a < ∞,

(iv) αn ≤ b < 1,

(v)
∑

∞

n=1 αn = ∞,

then limn→∞ d(wn, zn) = 0. It was proved by Suzuki [48] that one obtains the same

conclusion if the conditions (i)-(v) are replaced by the conditions (S1)-(S4) as follows:
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(S1) zn+1 = αnwn ⊕ (1 − αn)zn,

(S2) lim supn→∞
(d(wn+1, wn) − d(zn+1, zn)) ≤ 0,

(S3) {zn} and {wn} are bounded sequences,

(S4) 0 < lim infn→∞ αn ≤ lim supn→∞
αn < 1.

Both Goebel-Kirk’s and Suzuki’s results have been used to prove weak and strong

convergence theorems for approximating fixed points of various types of mappings. The

purpose of this chepter is to generalize Suzuki’s result by relaxing the condition (S1),

namely, we can define zn+1 in terms of wn and vn such that limn→∞ d(zn, vn) = 0.

Precisely, we are going to prove the following lemma.

Lemma 3.1.7. Let {zn}, {wn} and {vn} be bounded sequences in a metric space of

hyperbolic type (X, d) and let {αn} be a sequence in [0, 1] with satisfy for all n ∈ N,

(C1) zn+1 = αnwn ⊕ (1 − αn)vn,

(C2) limn→∞ d(zn, vn) = 0,

(C3) lim supn→∞

(

d(wn+1, wn) − d(zn+1, zn)
)

≤ 0,

(C4) 0 < lim infn→∞ αn ≤ lim supn→∞
αn < 1.

Then limn→∞ d(wn, zn) = 0.

In the proof of lemma 3.1.7 we will need the following technical result.

Lemma 3.1.8. Let {zn}, {wn} and {vn} be sequences in a metric space of hyperbolic

type (X, d) and let {αn} be a sequence in [0, 1] with lim supn→∞
αn < 1. Put

r = lim sup
n→∞

d(wn, zn) or r = lim inf
n→∞

d(wn, zn).

Suppose that r < ∞, zn+1 = αnwn⊕ (1−αn)vn for all n ∈ N, limn→∞ d(zn, vn) = 0, and

lim sup
n→∞

(

d(wn+1, wn) − d(zn+1, zn)
)

≤ 0.

Then

lim inf
n→∞

|d(wn+k, zn) − (1 + αn + αn+1 + ... + αn+k−1)r| = 0

holds for all k ∈ N.

Proof. (This proof is patterned after the proof of [48, Lemma 1.1]). For each n ∈ N, let

un = αnwn ⊕ (1 − αn)zn, then by (3.1.9) we have

d(un, zn+1) ≤ (1 − αn)d(zn, vn) ≤ d(zn, vn). (3.1.11)

This implies

d(wn+1, zn+1) ≤ d(wn+1, wn) + d(wn, un) + d(un, zn+1)

≤ d(wn+1, wn) + d(wn, un) + d(zn, vn).
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Since d(wn, un) + d(un, zn) = d(wn, zn), we have

d(wn+1, zn+1) − d(wn, zn) ≤ d(wn+1, wn) + d(wn, un) + d(zn, vn) − d(wn, un) − d(un, zn)

= d(wn+1, wn) + d(zn, vn) − d(un, zn).

This fact and (3.1.11) yield,

d(wn+1, zn+1) − d(wn, zn) − d(zn, vn) ≤ d(wn+1, zn+1) − d(wn, zn) − d(un, zn+1)

≤ d(wn+1, wn) + d(zn, vn) − d(un, zn) − d(un, zn+1)

≤ d(wn+1, wn) + d(zn, vn) − d(zn+1, zn)

= d(wn+1, wn) − d(zn+1, zn) + d(zn, vn).

Since limn d(zn, vn) = 0, we have

lim sup
n→∞

(

d(wn+1, zn+1) − d(wn, zn)
)

≤ lim sup
n→∞

(

d(wn+1, wn) − d(zn+1, zn)
)

.

By using this fact we have, for j ∈ N,

lim sup
n→∞

(

d(wn+j, zn+j) − d(wn, zn)
)

= lim sup
n→∞

j−1
∑

i=0

(

d(wn+i+1, zn+i+1) − d(wn+i, zn+i)
)

≤
j−1
∑

i=0

lim sup
n→∞

(

d(wn+i+1, zn+i+1) − d(wn+i, zn+i)
)

≤
j−1
∑

i=0

lim sup
n→∞

(

d(wn+i+1, wn+i) − d(zn+i+1, zn+i)
)

≤ 0.

Put a = (1 − lim supn αn)/2. We note that 0 < a ≤ 1
2
. Fix k, l ∈ N and ε > 0. Then

there exists m′ ≥ l such that a ≤ 1 − αn, d(zn, vn) ≤ ε
2
, d(wn+1, wn) − d(zn+1, zn) ≤ ε

2
,

and d(wn+j, zn+j) − d(wn, zn) ≤ ε
4
, for all n ≥ m′ and j = 1, 2, ..., k. In the case of

r = lim supn d(wn, zn), we choose m ≥ m′ satisfying

d(wm+k, zm+k) ≥ r − ε

4

and d(wn, zn) ≤ r + ε
2

for all n ≥ m. We note that

d(wm+j, zm+j) ≥ d(wm+k, zm+k) −
ε

4
≥ r − ε

2

for j = 0, 1, ..., k − 1. In the case of r = lim infn d(wn, zn), we choose m ≥ m′ satisfying

d(wm, zm) ≤ r +
ε

4

and d(wn, zn) ≥ r − ε
2

for all n ≥ m. We note that

d(wm+j, zm+j) ≤ d(wm, zm) +
ε

4
≤ r +

ε

2
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for j = 1, 2, ..., k. In both cases, such m satisfies that m ≥ l, a ≤ 1 − αn ≤ 1,

d(zn, vn) ≤ ε
2
, d(wn+1, wn) − d(zn+1, zn) ≤ ε

2
for all n ≥ m, and

r − ε

2
≤ d(wm+j , zm+j) ≤ r +

ε

2

for j = 0, 1, ..., k. We next show that

d(wm+k, zm+j) ≥ (1 + αm+j + αm+j+1 + ... + αm+k−1)r −
(k − j)(2k + 2)

ak−j
ε (3.1.12)

for j = 0, 1, ..., k − 1. Since

r − ε

2
≤ d(wm+k, zm+k)

= d(wm+k, αm+k−1wm+k−1 ⊕ (1 − αm+k−1)vm+k−1)

≤ αm+k−1d(wm+k, wm+k−1) + (1 − αm+k−1)d(wm+k, vm+k−1)

≤ αm+k−1d(zm+k, zm+k−1) +
ε

2

+ (1 − αm+k−1)d(wm+k, zm+k−1) + (1 − αm+k−1)d(zm+k−1, vm+k−1)

≤ αm+k−1

(

d(zm+k, um+k−1) + d(um+k−1, zm+k−1)
)

+
ε

2

+ (1 − αm+k−1)d(wm+k, zm+k−1) + (1 − αm+k−1)d(zm+k−1, vm+k−1)

≤ αm+k−1(1 − αm+k−1)d(zm+k−1, vm+k−1) + α2
m+k−1d(wm+k−1, zm+k−1) +

ε

2

+ (1 − αm+k−1)d(wm+k, zm+k−1) + (1 − αm+k−1)d(zm+k−1, vm+k−1)

≤ α2
m+k−1

(

r +
ε

2

)

+
ε

2
+ (1 − αm+k−1)d(wm+k, zm+k−1)

+ (1 − α2
m+k−1)d(zm+k−1, vm+k−1)

≤ α2
m+k−1r + ε + (1 − αm+k−1)d(wm+k, zm+k−1) + (1 − α2

m+k−1)
ε

2

and a ≤ 1 − αm+k−1, we have

d(wm+k, zm+k−1) ≥
(1 − α2

m+k−1)r − 3
2
ε − (1 − α2

m+k−1)
ε
2

1 − αm+k−1

≥ (1 + αm+k−1)r −
2k + 1

a
ε − ε

a

= (1 + αm+k−1)r −
2k + 2

a
ε.

Hence (3.1.12) holds for j = k − 1. We assume that (3.1.12) holds for some

j ∈ {1, 2, ..., k − 1}. Then since
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(

1 +
∑k−1

i=j αm+i

)

r − (k−j)(2k+2)
ak−j ε

≤ d(wm+k, zm+j)

= d(wm+k, αm+j−1wm+j−1 ⊕ (1 − αm+j−1)vm+j−1)

≤ αm+j−1d(wm+k, wm+j−1) + (1 − αm+j−1)d(wm+k, vm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

d(wm+i+1, wm+i) + (1 − αm+j−1)d(wm+k, vm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

(

d(zm+i+1, zm+i) +
ε

2

)

+ (1 − αm+j−1)d(wm+k, vm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

d(zm+i+1, zm+i) +
kε

2
+ (1 − αm+j−1)d(wm+k, vm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

(αm+id(wm+i, zm+i) + (1 − αm+i)d(zm+i, vm+i)) +
kε

2

+ (1 − αm+j−1)d(wm+k, vm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

αm+id(wm+i, zm+i) + αm+j−1

k−1
∑

i=j−1

(1 − αm+i)d(zm+i, vm+i) +
kε

2

+ (1 − αm+j−1)d(wm+k, zm+j−1) + (1 − αm+j−1)d(zm+j−1, vm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

αm+i(r +
ε

2
) + (k + 1)

ε

2
+

kε

2
+ (1 − αm+j−1)d(wm+k, zm+j−1)

≤ αm+j−1

k−1
∑

i=j−1

αm+ir +
(3k + 1)ε

2
+ (1 − αm+j−1)d(wm+k, zm+j−1),

we obtain

d(wm+k, zm+j−1) ≥
1 +

∑k−1
i=j αm+i − αm+j−1

∑k−1
i=j−1 αm+i

1 − αm+j−1
r

− (k − j)(2k + 2)/ak−j + (3k + 1)/2

1 − αm+j−1
ε

≥
(

1 +

k−1
∑

i=j−1

αm+i

)

r − (k − j + 1)(2k + 2)

ak−j+1
ε.

Hence (3.1.12) holds for j := j − 1. Therefore (3.1.12) holds for all j = 0, 1, ..., k − 1.

Specially, we have

d(wm+k, zm) ≥ (1 + αm + αm+1 + ... + αm+k−1)r −
k(2k + 2)

ak
ε. (3.1.13)
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On the other hand, we have

d(wm+k, zm) ≤ d(wm+k, zm+k) +
k−1
∑

i=0

d(zm+i+1, zm+i)

≤ d(wm+k, zm+k) +
k−1
∑

i=0

d(zm+i+1, um+i) +
k−1
∑

i=0

d(um+i, zm+i)

≤ d(wm+k, zm+k) +
k−1
∑

i=0

d(vm+i, zm+i) +
k−1
∑

i=0

αm+id(wm+i, zm+i)

≤ r +
ε

2
+

kε

2
+

k−1
∑

i=0

αm+i(r +
ε

2
)

=

(

1 +
k−1
∑

i=0

αm+i

)

r +

(

2k + 1

2

)

ε.

This fact and (3.1.13) imply

|d(wm+k, zm) − (1 + αm + αm+1 + ... + αm+k−1)r| ≤
k(2k + 2)

ak
ε.

Since l ∈ N and ε > 0 are arbitrary, we obtain the desired result.

Now, we are ready to prove Lemma 3.1.7

Proof of Lemma 3.1.7. We put a = lim infn→∞ αn > 0, r = lim supn→∞
d(wn, zn) < ∞,

let p ∈ X and M = 2 sup{d(zn, p) + d(wn, p) : n ∈ N}. We assume that r > 0 and fix

k ∈ N with (1 + ka)r > M. By Lemma 3.1.8, we have

lim inf
n→∞

|d(wn+k, zn) − (1 + αn + αn+1 + ... + αn+k−1)r| = 0. (3.1.14)

Thus, there exists a subsequence {ni} of a sequence {n} in N such that

lim
i→∞

(d(wni+k, zni
) − (1 + αni

+ αni+1 + ... + αni+k−1)r) = 0, (3.1.15)

the limit of {d(wni+k, zni
)} exists, and the limits of {αni+j} exist for all j ∈ {0, 1, ..., k−

1}. Put βj = limi→∞ αni+j for j ∈ {0, 1, ..., k − 1}. It is obvious that βj ≥ a for all

j ∈ {0, 1, ..., k − 1}. We have

M < (1 + ka)r

≤ (1 + β0 + β1 + ... + βk−1)r

= lim
i→∞

(1 + αni
+ αni+1 + ... + αni+k−1)r

= lim
i→∞

d(wni+k, zni
)

≤ lim sup
n→∞

d(wn+k, zn)

≤ lim sup
n→∞

(d(wn+k, p) + d(zn, p))

≤ M.

This is a contradiction. Therefore r = 0. �


