Chapter 4
Strong Convergence of Modified Halpern
Iterations in CAT(0) Spaces

In this chepter, we prove four kinds of strong convergence theorems for the modified
Halpern iterations of nonexpansive mappings in CAT(0) spaces. The results we obtain
are analogs of the Banach space results of Kim-Xu [25], Hu [19] and Song and Li [47].

The following result is an analog of Theorem 1 of Kim and Xu [25]. They prove
the theorem by using the concept of duality mapping while we use the concept of
Banach limit. We also observe that the condition ) >° | o, = oo in [25, Theorem 1] is
superfluous.

Theorem 4.1.9. Let C be a nonempty closed convex subset of a complete CAT(0) space
X and let T : C — C be a nonexpansive mapping such that F(T) # 0. Given a point
u € C and sequences {a,} and {3,} in [0, 1] the following conditions are satisfied:

(A1) lim, a,, =0 and "7 | |any1 — | < 005

(A2) lim, 3, =0, >, B, =00 and Y " |Bns1 — Bu] < o0.

Define a sequence {x,} in C by x1 = x € C arbitrarily, and
Tnt1 = Gou @ (1 = By) (anxy @ (1 — ap)Txy,),  forall n > 1. (4.1.16)

Then {x,} converges to a point z € F(T') which is nearest u.

Proof. For each n > 1, we let y,, :== a,x, ® (1 — ay,)Tx,. We divide the proof into 3
steps. (i) We will show that {x,}, {y,} and {Tx,} are bounded sequences. (ii) We
show that lim, d(z,,Tz,) = 0. Finally, we show that (iii) {x,} converges to a fixed
point z € F(T') which is nearest u.

(i): As in the first part of the proof of [25, Theorem 1], we can show that {z,} is
bounded and so is {y,} and {Tx,}. Notice also that

d(Yn,p) < d(zy,p) for all p e F(T).

(ii): It suffices to show that
lim d(z,,z,+1) = 0. (4.1.17)

n—oo

Indeed, if (4.1.17) holds, we obtain

d(xn, Txn) < d(xna anrl) + d(anrl? yn) + d(fgna Txn)
d(:L‘n, anrl) + d(ﬁnu D (1 - Bn)yna yn) + d<anxn D (1 - O‘n)Txna Txn)
d(

Ty Tpy1) + Ond(u, yn) + and(x,, Tx,) — 0 as n — oo.

IN
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By using Lemma 2.2.4, we get that

d(anrla xn) = d(ﬁnu EB (1 N ﬁn)yna anlu EB (1 B ﬁn71>yn71>
+ d(ﬁnu ¥ (]- - ﬁn)yn—ly ﬁn—lu S5 (]- - ﬁn—l)yn—l)

S (1 < ﬁn>d(yn7 yn71> + |ﬁn - anl|d(ua ynfl)
- (]- - ﬁn)d(anl‘n S (]- T 4 Oén)TZL‘n, Op—1Tp—1 D (]- - an—l)TfL‘n—l)
+ |80 — Bu-1ld(u, an_12p—1 @ (1 — 1) TTn—1)

<(1-7,) [d(anxn ®(1—a,)Txy, anty 1 ® (1 —a,)Tx,)
+ d(anxn_1 ® (1 — )T,y ® (1 — )T, 1)
+ d(anxn—l S (]- - an)Txn—la Op—1Tp—1 D (]- - Oén—l)TfL‘n—l)]

+ ‘ﬁn - ﬁn71| [Oénfld(ua xnfl) + (1 - Oén71>d(ua Txn71>:|

< (1= B0) [nd(@n, 1) + (1 = )d(Ty, Ty )
+ |an - an—1|d($n—17 T"L‘n—l)]

+ |ﬁn - ﬁn—1| |:O[n_1d(u, *In—l) + (]- - an—l)d(ua T"L‘n—l)

= (]- - ﬁn)d($n7 xn—l) + (]- - ﬁn)lan - an—lid(xn—ly T:L‘n—l)
+ ’6n - ﬁnfl|an71d(u7 xnfl> + |ﬁn ~ ﬁnfll(l - O‘nfl)d(ua Txn71>

S (1 - ﬁn)d(xnv 1771—1) + (1 - ﬁn)|an - an—1|d(l‘n—1a Txn—l)
+ lﬁn ~ ﬁn—1|an—1 d(u, Tl'n—l) == d(T"L‘n—la xn—l)
+ |ﬁn - ﬁn—1|d(ua Tl'n—l) - Iﬁn iy 5n—1|an—1d(u7Txn—1)

— (1 - ﬁn)d(xna xnfl> + (1 - ﬁn)'Oén | anfl‘d(xnfla Txnfl)
+ |ﬁn - 5n—1|an—1d($n—17 T:L‘n—l) + |ﬁn - ﬁn—1|d(u7 T"L‘n—l)-

Hence,

A@ni1,70) < (1= B)d(@n, 20) + 7 (Jow = ana| #2080 = Bual), (41.18)

where v > 0 is a constant such that v > max{d(u, Tz,_1),d(x,_1,Tx,_1)} foralln € N.
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By assumptions, we have
lim 3, =0, Zﬁn:oo, and Z<|an—an_1l+2|ﬁn—ﬁn_1|) < 00.
n=1 n=1

Hence, Lemma 2.2.6 is applicable to (4.1.18) and we obtain lim,, .o, d(2,41,2,) = 0.
(iii): From Lemma 2.2.2, let z = lim; o2 where z is given by the formula (2.2.2).
Then z is the point of F(T') which is nearest u. We observe that

d2($n+1’ 2) = d2(ﬁnu D (1 - ﬁn)yna Z)
< ﬁndz(ua z)+ (1 - ﬁn)dz(ym z) — Ba(l — ﬁn)dz(ua Yn)
< Bud*(u, 2) + (1 = Bo)d* (2, 2) — Bul(l — Bo)d(u, yn)
— (1= B (@, 2) + B[P, 2) = (1= B)(u, )]

By Lemma 2.2.3, we have ju, (d*(u, z) — d*(u, 2,,)) < 0 for all Banach limit y. Moreover
since lim,, d(x,41,x,) = 0,

limsup [(d*(u, 2) — d*(u, 2ps1)) — (d*(u, 2) — d*(u,z,))] = 0.

n—0o0

It follows from lim, d(y,, z,) = 0 and Lemma 2.2.1 that

lim sup (dz(u, z)—(1— ﬁn)dQ(u,yn)) = lim sup (dQ(u, 2) — d*(u, xn)) <0.

n—oo n—0o0

Hence the conclusion follows from Lemma 2.2.6. [l

By using the similar technique as in the proof of Theorem 4.1.9, we can obtain a
strong convergence theorem which is an analog of [19, Theorem 3.1] (see also [50] and
[53] for subsequence comments).

Theorem 4.1.10. Let C be a nonempty closed and convex subset of a complete CAT(0)
space X and let T : C — C be a nonexpansive mapping such that F(T) # (0.Given a
point uw € C' and an initial value x1 € C'. The sequence {x,} is defined iteratively by

Tnt1 = Bun @ (1 — 5p) (anu ®(1-— an)T:En), n > 1. (4.1.19)
Suppose that both {ca,} and {f,} are sequences in [0,1] satisfying
(B1) lim,,_, o, = 0;
(B2) 320y om = 003
(B3) 0 < liminf, ., G, < limsup,,_,. G, < 1.

Then {x,} converges to a point z € F(T') which is nearest u.
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Proof. Let y,, == a,u @ (1 — «,)Tx,. We divide the proof into 3 steps.
Step 1. We show that {z,}, {y,} and {T'z, } are bounded sequences. Let p € F(T),
then we have

d(xpi1,p) = d(Brzn, ® (1 = By)(au® (1 — ) Txy),p)
< Gud(xn,p) + (1 — Bo)d(au ® (1 — )Ty, p)
< Bud(zn,p) + (1 = Br)and(u, p) + (1 — Bo)(1 = a)d(Tzy, p)
< (Bn+ (1= Ba)(1 — an))d(@n, p) + (1 = Bp)ond(u, p)
= [1 = (1 = Ba)an]d(zn, p) + (1 = Bn)and(u, p)
< max {d(xn,p), d(u,p)}.

Now, an induction yields

d(anrlap) < max {d(xlap)ad(uap)}an > 1.

Hence, {x,} is bounded and so are {y,} and {Tz,}.
Step 2. We show that lim,, d(x,, Tx,) = 0. Since

A(Ynt1,Yn) = d(n1u @© (1 — 1) Tp41, 0qu @ (1 — )Ty,
< apd(pp1u @ (1 — ap1) T, u)
+ (1 — ap)d(ap1u @ (1 — api1)Twpyr, Txy)
< an(l = api)d(Txp1,u) + (1 — ay)ap1d(u, Ta,)
+ (1 —an)(1 — any1)d(Txpsq, Txy)
< an(l = api)d(Txpg,u) + (1 — ap)ap1d(u, Tx,)
+ (1= ) (1 = 1) d(@n1, T0),

we have

d(yn—l—la yn) N d(xn—f—lv xn) S an(l - O‘n-l—l)d(Tl'n—l—l) u) + (]- > an)an-‘rld(uy T"L‘n)

+ [anan-l—l - Qp — an—l—l] d(xn—f—l) xn)

Since {x,} and {Tz,} are bounded and lim,, .., o, = 0, it follows that

lim sup (d(yn—I—la yn) - d(xn—I—la xn)) < 0.

Hence, by Lemma 2.2.5, we get
nlglgo d(xp, yn) = 0. (4.1.20)
On the other hand,
Ad(Yn, Txy) = d(au ® (1 — an)Twp, Txy,) < apd(u, Tz,) — 0 as n —oo.  (4.1.21)
Using (4.1.20) and (4.1.21), we get

d(xy, Tx,) < d(xn, yn) + d(Yn, Tz,) — 0 as n — oo.
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Step 3. We show that {z,,} converges to a fixed point of T Let z = lim;_,¢ z; where
2; is given by the formula (2.2.2) then z € F(T'). Finally, we show that lim,,_,. z,, = 2.

(211, 2) = A (Bpxn & (1 = B)yn, 2)
< Bud®(20, 2) + (1= Bo)d*(Yn, 2) = Bu(1 — Bn)d* (2, yn)
< Bud(@n, 2) + (1 = Bp)d*(@nu @ (1 — )T, 2) = Bu(l — Br)d* (20, Yn)
< (1= o) [ond?(u, 2) + (1 — ) d* (T, 2) — (1 — a)d*(u, Ty,)]
= Bu(1 = B)d* (2, Yn) + Bud’ (21, 2)
< B0+ (1= )1 - @) | (an,2)
+ (1= Bn)on [d?(u, 2) — (1 — an)d?(u, Ta;n)}

_ :1 (- ﬁn)an] (20, 2) + (1= Bo)an[d2(u, 2) — (1 — o) d(u, T,)].

By Lemma 2.2.3 we have yu, (d?(u, z) — d*(u, z,,)) <0 for all Banach limit p. Moreover
since

d(anrla xn) = d(ﬁnxn D (1 - ﬁn)yna l’n)
< (1= 6n)d(yn, x,) — 0 as n — o0,

we have

lim sup (dZ(u, z) + d2(U, Tpi1) — dQ(Ua z) = d2(u, "En)) = 0.

n—0o0

It follows from condition (B1), lim, ., d(z,, Tx,) = 0 and Lemma 2.2.1 that

limsup (d*(u, z) = (1 — ay)d*(u, Tx,,)) = limsup (d*(u, z) — d*(u, z,)) < 0.

n—:~00 n—oo

Hence the conclusion follows by Lemma 2.2.6.

The following result is an analog of [47, Theorem 3.1].

Theorem 4.1.11. Let C be a nonempty closed convex subset of a complete CAT(0) space
X and let T : C — C be a nonexpansive mapping such that F(T) # (. Given a point
u € C and sequences {a,,} and {\,} in [0, 1], the following conditions are satisfied:

(C1) lim,, o o, = 0,
(C2) > 7, o, = 00, and
(C3) 0 < liminf,, .. A, <limsup, . A, < 1.
Define a sequence {x,} in C by x1 = x € C arbitrarily, and
Tpi1 = My & (1 = X)) T (qu @ (1 — a)xy,),  for all n > 1. (4.1.22)

Then {x,} converges to a fized point Pu of T, where P is the nearest point projection
from C onto F(T).
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Proof. For each n > 1, we let y, = T (a,u ® (1 — ay,)x,) . We divide the proof into
3 steps. (i) We show that {z,} and {y,} are bounded sequences. (ii) We show that
lim,, o0 d(2y,, Tz,) = 0. (iil) We show that {x,} converges to a point z € F(T') which
is nearest to w.

(i): Let p € F(T), then we have

d(Tny1,p) = d (A ® (1 — A\p)Yn), p)

< Mnd(@a,p) + (1= X)d (T(anu @ (1 - a,)z,), p)
< M@y p) + (1= A)and(u,p) + (1= A)(1 — a)d(z,p)
< O+ (1= M) (1 = @), p) + (1 = An)atad(u, p)

= [1— (1= N\)an]d(@n,p) + (1 — Aa)and(u, p)
< max{d(xmp)7d(u’p)}’

Now, an induction yields
d(n, p) < max {d(z1,p), d(u,p)},n > 1.

Hence, {z,} is bounded and so is {y,}.
(ii): First, we show that lim,_, d(zy, y,) = 0. Consider

Ans1,90) = A(T (@1 ® (1 — 1)) T (0 © (1 — ) )
< d(oanu @ (1 — aps1)Tog1, 0u® (1 — an)xn)
< an+1d(u, apu @ (1 — (xn)xn) + (1 - an+1)d(xn+1, anu® (1 — an):cn)
< 1 (1 — ap)d(u, z,) + (1 — agrr) apd(u, T,41)
(1= Qo) (1= ) (s, 2n)-

This implies
d(yn-i-la yn) N d(xn-i-la "L‘n) < an+1(1 v an)d(uv xn) + (1 < ozn+1)and(u, xn+1)‘
By the condition (C1) we have

lim Sup(d(yn—I—la yn) - d(xn—I—lv xn)) < 0.

n—o0o

It follows from Lemma 3.1.7 that lim,, .o d(z,,y,) = 0. Now,

d(xy, Txy) < d(xn, yn) + d(yp, Tx,)
< d(p, yn) + d(T(anu ®(1- an)xn),Tmn)
< d(zp,yn) + d(oznu @ (1 — )y, xn)
< d(zp, Yn) + and(u, x,) — 0 as n —

(iii): From Lemma 2.2.2; let z = lim; .o 2z; where z; is given by the formula (2.2.2).
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Then z is the point of F(T") which is nearest u. By applying Lemma 3.1.7 we have

d* (211, 2) = A MnZn © (1 — A\ Yn, 2)
< Md? (2, 2) + (1= X)) A% (Y, 2) — A1 = X)) d* (2, 9
= Md? (2, 2) + (1 = X)) d* (e @ (1 — an)Tn, 2) — A (1 — A d* (@0, Yn)
< Md* (2, 2) + (1= N,) [oznal2 (u, 2) + (1 — ap)d*(x,, 2) — an(l — an)dQ(u,xn)]
[A (1= A1 — an)} 2(20s2) + an(1 — A) [d?(u, 2) = (1 an)d2(u,xn)]
= (1= (1= A)an)d (2, 2) + (1= Ay)a [d?(u, 2) — (1 — ap)d(u, xn)].

By Lemma 2.2.3, we have j,, (d*(u, z) — d*(u, z,)) < 0 for all Banach limit y. Moreover
since

d(l‘n-i-la :L‘n) - d()\nxn S¥ (]- R~ /\n)yn> xn)
< (1= X)d(Yn, ) — 0 as n — oo,

we have

limsup [(d*(u, z) — d*(u, Tp41)) — (d*(u, 2) — d*(u, z,))] = 0.

n—0o0

It follows from condition (C1) and Lemma 2.2.1 that

limsup (d*(u, z) — (1 = ay)d*(u, z,,)) = limsup (d*(u, 2) — d*(u, z,)) < 0.

n—~oo n—oo

Hence the conclusion follows from Lemma 2.2.6. O

Remark 4.1.12. In the proof of Theorem 4.1.11, one may observe that it is not necessary
to use Lemma 3.1.7 because Suzuki’s original lemma is sufficient. However, in [47], there
is a strong convergence theorem for another type of modified Halpern iteration (see [47,
Theorem 3.2]). We show that the proof is quite easy when we use Lemma 3.1.7.

Theorem 4.1.13. Let C be a nonempty closed convex subset of a complete CAT(0) space
X and let T : C — C be a nonexpansive mapping such that F(T) # 0. Given a point
u € C and sequences {a,,} and {\,} in [0, 1], the following conditions are satisfied:

(D1) lim,,_oo ap = 0,
(D2) > oy, = 00, and
(D3) 0 < liminf, . A, <limsup,,_ A, < 1.
Define a sequence {x,} in C by x1 = x € C arbitrarily, and
Tl = M(apu® (1 — a)z,) & (1 — A\y)Txy,,  forall n> 1. (4.1.23)

Then {x,} converges to a fized point Pu of T, where P is the nearest point projection
from C onto F(T).
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Proof. Using the same technique as in the proof of Theorem 4.1.11, we easily obtain
that both {z,} and {Tx,} are bounded. Let y, = a,u ® (1 — )z, then z,,, =
AnYn @ (1 — N\,)Tx,. By the condition (D1) we have

AT, Yn) = d(Tn, au @ (1 — ay)x,) < apd(z,,u) =0 as n — oo. (4.1.24)
It follows from the nonexpansiveness of T" that
lim sup <d (Tzpi1, Txy,) — d(:vn+1,xn)> < 0.
By Lemma 3.1.7 we have
lim d(Txy, x,) = 0. (4.1.25)

n—0o0

From (4.1.24) and (4.1.25), we get that

d(xn-f—l) 1771) =S d()‘nyn S (1 — )‘n)T*Ina xn)
< Mld(Yny ) + (1 = Ap)d(Txy, x,) — 0 as n — oo.

Let z = limy;_ 2z where z; is given by (2.2.2). Then z is the point of € F(T") which is
nearest u. Consider
d*(Tny1,2) = My © (1 = \)T1y, 2)

< M (Yny 2) + (1 = X)) A2 (T, 2) — Ma(1 — X)) A (Y, Tory,)

< Md* (u @ (1 — o), 2) + (1 = X)) d* (T, 2)

<\ (andz(u, 2) + (1 — ap)d*(zn, 2) — an(l — o) d*(u, xn))

+ (1 = M) d? (s 2)
< (Ml =an) + (1= X)) &P (2, 2) + Apand®(u, 2) — Ay (1 — o) d*(u, )
= (1 = Maew) (2, 2) + At (dP(u, 2) — (1 — o) d*(u, )

By Lemma 2.2.3, we have p, (d*(u, z) — d*(u, z,,)) < 0 for all Banach limit p. Moreover
since d(zp41,x,) — 0, then

limsup [(d*(u, 2) — d*(u, 2p11)) — (d*(u, 2) — d*(u,2,))] = 0.

n—00

It follows from condition (D1) and Lemma 2.2.1 that

limsup (d*(u, z) — (1 — a)d*(u, 2,)) = limsup (d*(u, 2) — d*(u, z,,)) < 0.

n—oo n—oo

Hence the conclusion follows from Lemma 2.2.6. O



