
Chapter 2

Basic Concepts and Preliminaries

2.1 Metric Spaces, Banach Spaces and Hilbert Spaces

Our purpose in this section is to talk about the basic definitions and elementary

properties of metric spaces, Hilbert spaces, and Banach spaces. Indeed a Banach space

is a normed space equipped with a function, norm, defined on it. The norm on the

space is used to define the convergence of the sequences and the other structures on the

spaces. A Hilbert space is a normed space which an inner product defined on it.

Definition 2.1.1. ([36]) A metric space is a pair (X, d), where X is a set and d is a metric

on X(or distance function on X), that is, a real valued function defined on X ×X such

that for all x, y, z ∈ X we have:

(1) d is real valued, finite and nonnegative,

(2) d(x, y) = 0 if and only if x = y,

(3) d(x, y) = d(y, x) (Symmetry),

(4) d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

The elements of X are called the point of the metric (X, d).

Example 2.1.2. (see e.g., [36])

(1) The real line R with d(x, y) := |x − y| for all x, y ∈ R is a metric space. The

metric d is called the usual metric for R.;

(2) The Euclidian space Rn with

d(x, y) := {
n
∑

i=1

(xi − yi)
2}1/2,

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn is a metric space. The metric d is

called the usual metric for Rn. The following two mappings:

δ(x, y) =
n
∑

i=1

| xi − yi|, x, y ∈ R
n,

ρ(x, y) = max
1≤i≤n

| xi − yi|, x, y ∈ R
n,

are also metrics on Rn.
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(3) The space of all continuous complex-valued functions on the closed interval [a, b]

with

d(f, g) := max
x∈[a,b]

|f(x) − g(x)|

is a metric space. The metric d is called the Chebyshev metric. This metric space

usually denoted by C[a, b].

Definition 2.1.3. ([36]) A sequence {xn} in a metric space X = (X, d) is said to be

convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0

x is called the limit of {xn} and we write

lim
n→∞

xn = x or, simple, xn → x.

In this case, we say that {xn} converges to x. If {xn} is not convergent, it is said to be

divergent.

For any sequence {xn} in X, we can consider a subsequence {xnk
} = {xn1

, xn2
,

xn3
, ...} of {xn}, where n1 < n2 < n3 < ....

Proposition 2.1.4. ([40]) If a sequence in a metric space converges to a limit, then every

subsequence of that sequence converges to that same limit.

Definition 2.1.5. ([36]) A sequence {xn} in a metric space X = (X, d) is said to be

Cauchy if for every ε > 0, there is an N(ε) ∈ N such that d(xm, xn) < ε for every

m, n ≥ N(ε).

Theorem 2.1.6. ([40]) Every convergent sequence in a metric space is Cauchy.

But the converse need not be true.

Definition 2.1.7. ([40]) If every Cauchy sequence in a metric space (X, d) converges then

the metric space X is said to be complete.

Proposition 2.1.8. ([40]) If a Cauchy sequence in a metric space has a convergent sub-

sequence, then the entire sequence converges to the limit of the subsequence.

The diameter of a nonempty subset C in a metric space (X, d) is defined by

diam(C) := sup{d(x, y) : x, y ∈ C}.

The set C is said to be bounded if diam(C) < ∞.

Proposition 2.1.9. ([40]) Every Cauchy sequence in a metric space (and hence every

convergent sequence) is bounded.

Definition 2.1.10. ([40]) Let S be a subset of a metric space X. Then S is compact if,

for each collection B of open subsets of X whose union includes S, there is a finite

subcollection of B whose union includes S. That is, the set S is compact if each open

covering of S can be thinned to a finite subcovering.
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Definition 2.1.11. ([40]) Let S be a subset of a metric space X. Consider S to be a metric

space with the metric inherited from X. Then S has the finite intersection property if

∩{F : F ∈ F} is nonempty whenever F is a collection of closed subsets of S such that

each finite subcollection of F has nonempty intersection.

In the preceding definition, the set S, not X, should really be considered to be

the universal set when taking intersections of empty families F.

Proposition 2.1.12. ([40]) Let S be a subset of a metric space X. Then the following

are equivalent.

(i) The set S is compact.

(ii) The set S has the finite intersection property.

(iii) Each sequence in S has a convergent subsequence whose limit is in S.

Let (X, d) be a metric space and C be a nonempty subset of X. A map-

ping T : C → C is called semi-compact if for any sequence {xn} in C such that

lim
n→∞

d(xn, Txn) = 0, there exists a subsequence {xnj
} of {xn} and q ∈ C such that

lim
j→∞

xnj
= q.

Definition 2.1.13. ([1]) A mapping T from a metric space (X, d) into another metric

space (Y, ρ) is said to satisfy Lipschitz condition on X if there exists a constant L > 0

such that

ρ(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X.

If L is the least number for which Lipschitz condition holds, then L is called

Lipschitz constant. In this case, we say that T is an L-Lipschitz mapping or simply a

Lipschitzian mapping with Lipschitz constant L.

Definition 2.1.14. ([51]) A self-mapping T on a Hilbert space H is said to be pseudo-

contractive if ‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖(I − T )x − (I − T )y‖2, for all x, y ∈ H).

Definition 2.1.15. ([26]) Let X be a metric space and C be a nonempty subset of X. A

family of mapping {Ti : i = 1, 2, ..., m} on C is said to satisfy Condition (A′′) if there

exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all

r > 0 such that d(x, Tjx) ≥ f(d(x, F )), for some j = 1, 2, ..., m and for all x ∈ C where

d(x, F ) = inf {d(x, p) : p ∈ F =
⋂m

i=1 F (Ti)} .

To state fundamental theorems relating to Banach spaces and Hilbert spaces,

we begin with the concept of vector spaces ([40]) as follows:

Definition 2.1.16. A vector space (or linear space) over a field K is a nonempty set

X of elements x, y, ... (called vectors) together with two algebraic operations. These

operations are called vector addition and multiplication of vectors by scalars, that is,

by elements of K.

Vector addition

(1) x + y = y + x;
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(2) x + (y + z) = (x + y) + z;

(3) there exists in X a unique element, denoted by 0 and called the zero element,

such that x + 0 = x for every x;

(4) to each element x in X there corresponds a unique element in X, denoted by −x

and called the negative of x, such that x + (−x) = 0.

Multiplication by scalars

(5) α(x + y) = αx + αy;

(6) (α + β)x = αx + βx;

(7) (αβ)x = α(βx);

(8) 1x = x.

Note that the above definition involves a general field K, but in functional

analysis, K is either R or C and the elements of K are called scalars.

Definition 2.1.17. ([40]) Let X be a linear space (or vector space). A norm on X is a

real-valued function ‖ · ‖ on X such that the following conditions are satisfied by all

members x and y of X and each scalar α:

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

(2) ‖αx‖ = |α|‖x‖,

(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

The ordered pair (X, ‖ · ‖) is called a normed space or normed linear space.

Example 2.1.18. ([36])

(1) Let p be a real number such that p ≥ 1. The collection of all sequences {αn} of

scalars for which
∑∞

n=1 |αn|
p is finite with the norm defined by

‖{αn}‖p := (

∞
∑

n=1

|αn|
p)

1

p ,

is a normed space. The resulting normed space is called ℓp.

(2) The collection of all bounded sequences of scalars with the norm defined by

‖{αn}‖∞ := sup{|αn| : n ∈ N},

is a normed space. The resulting normed space is called ℓ∞.

(3) The space of all continuous complex-valued functions on the closed interval [a, b]

with the norm defined by

‖f‖2 := (

∫ a

b

|f(t)|2dt)
1

2

is a normed space.
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Proposition 2.1.19. ([40]) Let X be a normed space. Then |‖x‖ − ‖y‖| ≤ ‖x − y‖
whenever x, y ∈ X. Thus, the function x 7→ ‖x‖ is continuous from X into R.

Definition 2.1.20. ([40]) A nonempty subset C of a normed space X is said to be convex

if λx + (1 − λ)y ∈ C for all x, y ∈ C and λ ∈ (0, 1).

Definition 2.1.21. ([40]) Let X be normed space. The metric induced by the norm of

X is the metric d on X defined by the formula

d(x, y) := ‖x − y‖, for all x, y ∈ X.

The norm topology of X is the topology obtained from this metric.

Definition 2.1.22. ([40]) Let X be normed space. The closed unit ball of X is {x ∈ X :

‖x‖ ≤ 1} and is denoted by BX . The open unit ball of X is {x ∈ X : ‖x‖ < 1}. The

unit sphere of X is {x ∈ X : ‖x‖ = 1} and is denoted by SX .

Definition 2.1.23. ([36]) A normed space which is complete under the induced metric

is called a Banach space.

Example 2.1.24. ([36])

(1) The normed space ℓp, where 1 ≤ p < ∞, is a Banach space.

(2) The normed space ℓ∞ is a Banach space.

(3) The space C[a, b] of all complex-valued functions on the closed interval [a, b] with

the norm ‖f(t)‖ := maxt∈[a,b] |f(t)| is a Banach space.

Definition 2.1.25. ([36]) A functional is an operator whose range lies in the real line R

or in the complex plane C.

Definition 2.1.26. ([36]) A linear functional is a linear operator with domain in a vector

space X and range in the scalar field F of X; thus,

f : dom(f) → F,

where F = R if X is a real vector space and F = C if X is a complex vector space.

Recall that a subset A of a normed space is bounded if there is a nonnegative

number M such that ‖x‖ ≤ M for each x ∈ A. For the boundedness of the operator

can be defined in this sense, that is,

Let X and Y be a normed spaces. A linear operator T from X into Y is

bounded if there exists an integer c > 0 such that ‖Tx‖ ≤ c‖x‖ for all x ∈ X. The

collection of all bounded linear operators from X into Y is denoted by B(X, Y ). But if

the range Y of the linear operators is just a field F (R or C), we call it specifically as

defined follows.

Definition 2.1.27. ([40]) Let X be a normed space. The (continuous) dual space of X

or dual of X or conjugate space of X is the normed space B(X, F) of all bounded linear

functionals on X with the operator norm defined by

‖f‖ := sup{|f(x)| : x ∈ X, ‖x‖ ≤ 1}.

This space is denoted by X∗.
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Theorem 2.1.28. ([40]) If X is a normed space, then X∗ is a Banach space.

Definition 2.1.29. ([36]) A sequence {xn} in a normed space X is said to be strongly

convergent (or convergent in norm) if there is an x ∈ X such that

lim
n→∞

‖xn − x‖ = 0.

This is written

lim
n→∞

xn = x

or simply

xn → x.

The point x is called the strong limit of {xn}, and we say that {xn} converges strongly

to x.

The topology induced by a norm is quite strong in the sense that it has many

open sets. In order that each bounded sequence in X has a norm convergent subse-

quence, it is necessary and sufficient that X has to be finite dimensional. This fact

leads us to consider other weaker topologies on normed spaces to search for subsequen-

tial extraction principles. To define the weaker topology for a normed space X, we give

the definition of weak convergence of a sequence in the space first.

Definition 2.1.30. ([36]) A sequence {xn} in a normed space X is said to be weakly

convergent if there is an x ∈ X such that for every f ∈ X∗,

lim
n→∞

f(xn) = f(x).

This is written

w − lim
n→∞

xn = x

or simply

xn ⇀ x.

The element x is called the weak limit of {xn}, and we say that {xn} converges weakly

to x.

A subset C of X is weakly closed if it is closed in the weak topology, that is, if

it contains the weak limit of all of its weakly convergent sequences. The weakly open

sets are now taken as those sets whose complements are weakly closed. The resulting

topology on X is called the weak topology on X. Sets which are compact in this topology

are said to be weakly compact.

For x ∈ X, define the mapping ϕ : X → X∗∗ by

ϕ(x) = fx,

where fx(g) = g(x) for all g ∈ X∗. We can see that ϕ is linear injective and preserves

the norm. This mapping ϕ is called the canonical embedding from X into X∗∗. (Note

that X∗∗ is the dual space (X∗)∗ of X∗.
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Definition 2.1.31. ([40]) A normed space X is said to be reflexive if the canonical

embedding mapping ϕ : X → X∗∗ is surjective. In this case, we write X ∼= X∗∗ or

X = X∗∗.

Example 2.1.32. ([40]) For 1 < p, q < ∞ with 1
p

+ 1
q

= 1, we have that ℓ∗p is isomet-

rically isomorphic to ℓq and ℓ∗q is isometrically isomorphic to ℓp, it follows that ℓ∗∗p is

isometrically isomorphic to ℓp. Thus all ℓp, where 1 < p < ∞, are reflexive.

To see the example of nonreflexive space, we recall the notation of one of the

subspaces of ℓ∞. Let c0 be the collection of all sequences of scalars which converge to

zero. It is well-known that c0 is a closed subspace of ℓ∞ which is complete, so c0 itself

is a complete normed space with the same norm inherited from ℓ∞, i.e., it is a Banach

space.

Example 2.1.33. ([40] Since we have c∗0 is isometrically isomorphic to ℓ1 and ℓ∗1 is iso-

metrically isomorphic to ℓ∞, thus c∗∗0 is isometrically isomorphic to ℓ∞. This shows that

the Banach space c0 is not reflexive.

Theorem 2.1.34. ([40]) Every finite-dimensional normed space is reflexive.

Theorem 2.1.35. ([40]) Suppose that X is a Banach space. Then the following are

equivalent.

(i) X is reflexive.

(ii) The dual space X∗ of X is reflexive.

(iii) Every bounded sequence in X has a weakly convergent subsequence.

(iv) The closed unit ball of X is weakly compact.

(v) Whenever {Cn} is a sequence of nonempty bounded closed convex sets in X such

that Cn+1 ⊂ Cn for each n ∈ N, it follows that
⋂∞

n=1 Cn 6= ∅.

Theorem 2.1.36. ([40]) The closure and weak closure of a convex subset of a normed

space are the same. In particular, a convex subset of a normed space is closed if and

only if it is weakly closed.

Next are the geometric properties of Banach spaces which are quite often used

in assuming into the space when we study fixed point theory in Banach spaces.

Definition 2.1.37. ([40]) A normed space X is rotund or strictly convex if ‖tx1 + (1 −
t)x2‖ < 1 whenever x1 and x2 are different points of SX and 0 < t < 1.

Definition 2.1.37 actually says that a normed space X is strictly convex if and only

if whenever x1 and x2 are different points of SX the open line segment {tx1 +(1− t)x2 :

0 < t < 1} lies entirely in the interior of BX . Incidentally, the next argument establishes

the another characterization of strictly convexity that allows examining this property

only the midpoints of straight line segments rather that the entire segments.

Proposition 2.1.38. ([40]) Suppose that X is a normed space. Then X is strictly convex

if and only if ‖1
2
(x1 + x2)‖ < 1 whenever x1 and x2 are different points of SX .
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Example 2.1.39. ([40]) The scalar field F, viewed as a normed space over F, is strictly

convex. More generally, every normed space that is zero- or one-dimensional is strictly

convex.

Example 2.1.40. ([40]) Let e1 = (1, 0, 0, ..., 0, ...) and e2 = (0, 1, ..., 0, ...). Let x1 = e1+e2

and x2 = e1 − e2. Then

‖x1‖∞ = ‖x2‖∞ = ‖
1

2
(x1 + x2)‖∞ = 1,

this shows that neither c0 nor ℓ∞ is strictly convex.

After we see the characterization of strictly convexity of a normed space above,

it is natural to survey how much the midpoint of such a segment far away from the

boundary of the closed unit ball. If the segment has some minimum positive length,

it is reasonable to use this length measures the amount of convexity of the space. It

is quite possible for a normed space X to be strictly convex and yet for there to be

sequences {xn} and {yn} in SX such that ‖xn − yn‖ > ǫ for some ǫ > 0 still satisfying

supn∈N ‖1
2
(x1 + x2)‖ = 1. This leads to the definition of uniformly convex if this does

not happen; that is, for every positive ǫ, there is a positive δ depending on ǫ such that

‖1
2
(x + y)‖ ≤ 1 − δ whenever x, y ∈ SX and ‖x − y‖ ≥ ǫ. This definition can be stated

formally in term of the amount of convexity of the space as follows.

Definition 2.1.41. ([40]) Let X be a normed space. Define a function δX : [0, 2] → [0, 1]

by the formula

δX(ǫ) = inf{1 − ‖
1

2
(x + y)‖ : x, y ∈ SX , ‖x − y‖ ≥ ǫ}

if X 6= {0}, and by the formula

δX(ǫ) =







0 if ǫ = 0

1 if 0 < ǫ ≤ 2.

if X = 0. Then δX is the modulus of rotundity or modulus of convexity of X. The space

X is uniformly rotund or uniformly convex if δX(ǫ) > 0 whenever 0 < ǫ ≤ 2.

Notice that if X is a uniformly convex normed space with modulus of convexity

δX and x and y are different elements of SX , then ‖1
2
(x + y)‖ ≤ 1 − δX(‖x − y‖) < 1,

which proves the following basic fact of this property.

Proposition 2.1.42. ([40]) Every uniformly convex normed space is strictly convex.

Example 2.1.43. ([40])

(1) Suppose that 1 < p < ∞. Then ℓp is uniformly convex.

(2) Since neither c0 nor ℓ∞ is strictly convex, it follows from Proposition 2.1.42 that

they are not uniformly convex.
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Let S be a subset of a normed space X. A point x ∈ S is a diametral point of

S provided r(S) := sup{‖x − y‖ : y ∈ S} = diam(S). A convex set K ⊂ X is said to

have normal structure if for each bounded convex subset H of K which contains more

than one point, there is some point x ∈ H which is not a diametral point of H . Thus

sets with normal structure have no convex subsets S which consist entirely of diametral

points except singletons; i.e.,

diam(S) > 0 ⇒ r(S) < diam(S).

Next is one of the properties of a Banach space which is usually used in the

assumptions to approximate the fixed point of the mappings on that space.

Definition 2.1.44. ([42]) A Banach space is said to have the Opial’s condition if given

whenever {xn} converge weakly to x ∈ X,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for each y ∈ X with x 6= y.

It is well-known that all Hilbert spaces and ℓp spaces, where 1 ≤ p < ∞, have

this property, while all Lp spaces do not unless p = 2.

The last portion of this part is about the special normed spaces which are very

important spaces because they have rich properties and have been the most useful spaces

in practical applications in general function analysis. The definition of these spaces are

the following.

Definition 2.1.45. ([36]) An inner product space is a vector space X with an inner

product defined on X. A Hilbert space is a complete inner product space (complete in

the metric defined by the inner product). Here, an inner product on X is a mapping of

X × X into the scalar field F of X; that is, with every pair of vectors x and y, there is

an associated a scalar which is written 〈x, y〉 and is called the inner product of x and

y, such that for all vectors x, y, z and scalars α we have

(1) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉

(2) 〈αx, y〉 = α〈x, y〉

(3) 〈x, y〉 = 〈y, x〉

(4) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

An inner product on X defines a norm on X given by

‖x‖ =
√

〈x, x〉.

Hence inner product spaces are normed spaces and Hilbert spaces are Banach spaces.

In fact it can be straightforward calculation that a norm on an inner product space X

satisfies the important Parallelogram equality:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2,
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for all x, y ∈ X (see Figure 2.1).

Figure 2.1: Parallelogram equality

As above, every inner product space is a normed space but not all normed spaces

are inner product spaces. In deed a norm which does not satisfy the Parallelogram

equality cannot be obtained from an inner product.

2.2 CAT(0) Spaces

In this section, we focus on the special metric space which has the geometry

defined on it. Its important properties are also established.

Definition 2.2.1. ([33]) Let (X, d) be a metric space. A geodesic path joining x ∈ X

to y ∈ X (or, more briefly, a geodesic from x to y) is a map c from a closed interval

[0, l] ⊂ R to X such that

(1) c(0) = x and c(l) = y,

(2) d(c(t), c(t′)) = |t − t′|, for all t, t′ ∈ [0, l].

In particular, c is an isometry and d(x, y) = l. The image of c is called a geodesic (or

metric) segment joining x and y (see Figure 2.2). When it is unique, this geodesic

segment is denoted by [x, y].

Figure 2.2 : Geodesic path and geodesic segment
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Definition 2.2.2. ([33]) A metric space (X, d) is said to be geodesic space if every two

points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is

exactly one geodesic joining x and y for each x, y ∈ X.

The way to define a convex subset in a geodesic space is the same as defined in

general metric spaces.

Definition 2.2.3. ([33]) A subset Y of a geodesic space (X, d) is said to be convex if Y

includes every geodesic segment joining any two of its points (see Figure 2.3).

Figure 2.3 : Convex set

Definition 2.2.4. ([33]) A geodesic triangle △(x1, x2, x3) in a geodesic space (X, d) con-

sists of three points x1, x2, x3 in X (the vertices of △) and a geodesic segment between

each pair of vertices (the edges of △), see Figure 2.4.

Figure 2.4 : Geodesic triangle

Definition 2.2.5. ([33]) A comparison triangle for geodesic triangle △(x1, x2, x3) in

(X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in the Euclidean plane R2 such that

dR2(xi, xj) = d(xi, xj),

for i, j ∈ {1, 2, 3}, (see Figure 2.5).
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Figure 2.5 : Comparison triangle

We are ready to give the definition of the CAT(0) space as follows.

Definition 2.2.6. ([33]) A geodesic space is said to be a CAT(0) space if all geodesic

triangles satisfy the following comparison axiom.

CAT(0) : Let △ be a geodesic triangle in X and let △ be a comparison triangle

for △. Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all

comparison points x, y ∈ △,

d(x, y) ≤ dR2(x, y), see Figure 2.6.

Figure 2.6 : CAT(0) inequality

Lemma 2.2.7. Let z, x, y be points in a CAT(0) space X and m[x, y] be the midpoint of

the segment [x, y], then the CAT(0) inequality implies

d(z, m[x, y])2 ≤
1

2
d(z, x)2 +

1

2
d(z, y)2 −

1

4
d(x, y)2.

This is called the (CN) inequality of Bruhat and Tits [8]. In fact a geodesic

space is a CAT(0) space if and only if it satisfies the (CN) inequality ([4]).

In 2008, Dhompongsa and Panyanak [15] introduced the following notations

and also proved the properties that used quite often for studying the fixed point theory

in CAT(0) spaces.

Lemma 2.2.8. ([15]) Let (X, d) be a CAT(0) space. Then

(i) (X, d) is uniquely geodesic.
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(ii) Let x, y ∈ X, x 6= y and z, w ∈ [x, y] such that d(x, z) = d(x, w). Then z = w.

(iii) Let x, y ∈ X. For each t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y).

We use the notation (1 − t)x ⊕ ty for such the point z, (see Figure 2.7).

Figure 2.7

By using this notation, It is easy to verify that if x, y ∈ X such that x 6= y and

s, t ∈ [0, 1], then (1 − t)x ⊕ ty = (1 − s)x ⊕ sy if and only if s = t.

Lemma 2.2.9. ([15]) Let X be a CAT(0) space and let x, y ∈ X such that x 6= y. Then

(i) [x, y] = {(1 − t)x ⊕ ty : t ∈ [0, 1]}.

(ii) d(x, z) + d(z, y) = d(x, y) if and only if z ∈ [x, y].

(iii) The mapping f : [0, 1] → [x, y], f(t) = (1 − t)x ⊕ ty is continuous and bijective.

Lemma 2.2.10. Let X be a CAT(0) space. Then

(i) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z)

(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2, (see figure 2.8).

Figure 2.8
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Recall that if X is a metric space and K is a nonempty subset of X. A subset

H of K is said to be a retract of K if there exists a continuous mapping R : K → H

with R(x) = x for all x ∈ H. Any such mapping R is called a retraction of K. If R

is nonexpansive, then R is called a nonexpansive retraction and H is a nonexpansive

retract of K.

Lemma 2.2.11. ([4]) Let X be a complete CAT(0) space. If C is a nonempty closed

convex subset of X, then for every x ∈ X, there exists a unique point P (x) ∈ C such

that d(x, P (x)) = inf{d(x, y) : y ∈ C}. Moreover, the map x 7→ P (x) is a nonexpansive

retraction from X onto C.

In 1976, Lim [37] introduced a concept of convergence in a general metric space

setting which he called △−convergence. In 2008, Kirk and Panyanak [33] specialized

Lim’s concept to CAT(0) spaces and showed that many Banach space results which

involve weak convergence have precise analogs in this setting.

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known (see, e.g., [14]) that in a CAT(0) space, A({xn}) consists of exactly

one point.

We now give the definition and some basic properties of △−convergence.

Definition 2.2.12. ([33]) A sequence {xn} in X is said to △− converge to x ∈ X if x is

the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case,

we write △− limnxn = x and call x the △− limit of {xn}.

Lemma 2.2.13. Let X be a complete CAT(0) space.

(i) Every bounded sequence in X has a △−convergent subsequence ([33]).

(ii) If C is a closed convex subset of X and if {xn} is a bounded sequence in C, then

the asymptotic center of {xn} is in C([13]).

(iii) If {xn} is a bounded sequence in X with A({xn}) = {x} and {un} is a subsequence

of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u

([15]).

Lemma 2.2.14. ([27, 41]) Let X be a complete CAT(0) space. Suppose that {tn} is a

sequence in [b, c] for some b, c ∈ (0, 1) and {un}, {vn} are sequences in X such that

(i) lim supn→∞ d(un, w) ≤ r,

(ii) lim supn→∞ d(vn, w) ≤ r, and

(iii) limn→∞ d((1 − tn)un ⊕ tnvn, w) = r,

for some r ≥ 0. Then limn→∞ d(un, vn) = 0.


