
Chapter 3

Results on uniformly convex Banach Spaces

3.1 A Common Fixed Point Theorem

The existence of fixed points for asymptotic pointwise nonexpansive mappings

in uniformly convex Banach spaces was proved by Kirk and Xu [34] as the following

theorem.

Theorem 3.1.1. Assume X is a uniformly convex Banach space and C is a bounded

closed convex subset of X. Then every asymptotic pointwise nonexpansive mapping T :

C → C has a fixed point. Moreover, the set of fixed points of T is closed and convex.

The following result extends the existence theorem of Kirk and Xu.

Theorem 3.1.2. Let X be a uniformly convex Banach space and C be a nonempty

bounded closed convex subset of X. Then every commuting family S of asymptotic

pointwise nonexpansive mappings on C has a nonempty closed convex common fixed

point set.

Proof. Let T1, T2, ..., Tn ∈ S. By Theorem 3.1.1, F (T1) is a nonempty closed and convex

subset of C. We assume that A :=
⋂k−1

j=1 F (Tj) is nonempty closed and convex for some

k ∈ N with 1 < k ≤ n. For x ∈ A and j ∈ N with 1 ≤ j < k, we have

Tk(x) = Tk ◦ Tj(x) = Tj ◦ Tk(x).

Thus Tk(x) is a fixed point of Tj, which implies that Tk(x) ∈ A, therefore A is invariant

under Tk. Again, by Theorem 3.1.1, Tk has a fixed point in A, i.e.,

k
⋂

j=1

F (Tj) = F (Tk)
⋂

A 6= ∅.

Also, the set is closed and convex. By induction,
⋂n

j=1 F (Tj) 6= ∅. This shows that the

set {F (T ) : T ∈ S} has the finite intersection property. We note that C is weakly

compact because X is reflexive. Since F (T ) is weakly closed for every T ∈ S, we have
⋂

T∈S F (T ) 6= ∅. This completes the proof.
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3.2 Weak Convergence and Strong Convergence Theorems

Let C be a nonempty subset of a metric space (X, d). We shall denote by

T (C) the class of all asymptotic pointwise nonexpansive mappings from C into C. Let

T1, ..., Tm ∈ T (C). Then there exists, for each i, i = 1, 2, ..., m, a sequence of mappings

αin : C → [0,∞) such that for all x, y ∈ C, n ∈ N and i = 1, 2, ..., m,

d(T n
i x, T n

i y) ≤ αin(x)d(x, y) and lim sup
n→∞

αin(x) ≤ 1. (3.2.1)

For each n ∈ N and x ∈ C, let αn(x) = max1≤i≤m αin(x). Then we get that for

all x, y ∈ C, n ∈ N and i = 1, 2, ..., m,

d(T n
i x, T n

i y) ≤ αn(x)d(x, y) and lim sup
n→∞

αn(x) ≤ 1. (3.2.2)

Let an(x) = max {αn(x), 1} . So we have that

d(T n
i x, T n

i y) ≤ an(x)d(x, y), lim
n→∞

an(x) = 1 and an(x) ≥ 1, (3.2.3)

for all x, y ∈ C, n ∈ N, and i = 1, 2, ..., m. Define bn(x) = an(x) − 1, then for each

x ∈ C, we have lim
n→∞

bn(x) = 0.

Definition 3.2.1. Define Tr(C) as a class of all mappings T in the class T (C) such that

∞
∑

n=1

bn(x) < ∞, and (3.2.4)

an is a bounded function for every n ∈ N. (3.2.5)

Let T1, ..., Tm ∈ Tr(C) and let t ∈ (0, 1) and {nk} be an increasing sequence of

natural numbers. Let x1 ∈ C and define a sequence {xk} in C as:

xk+1 = (1 − t)xk + tT nk
m y(m−1)k, (3.2.6)

y(m−1)k = (1 − t)xk + tT nk

m−1y(m−2)k,

y(m−2)k = (1 − t)xk + tT nk

m−2y(m−3)k,

...

y2k = (1 − t)xk + tT nk

2 y1k,

y1k = (1 − t)xk + tT nk

1 y0k,

y0k = xk, k ∈ N.

We say that the sequence {xk} in (3.2.6) is well-defined if lim sup
k→∞

ank
(xk) = 1.

As in [35], we observe that limk→∞ ak(x) = 1 for every x ∈ C. Hence we can

always choose a subsequence {ank
} which makes {xk} well-defined.
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One choice of {ank
} that we can choose is as the following:

Starting by arbitrary x1 ∈ C and letting ǫ = 1
21 , there exists a positive integer n1 such

that

| an(x1) − 1| <
1

21
for all n ≥ n1

since limn→∞ an(x1) = 1. For x2 ∈ C and ǫ = 1
22 , there exists an integer n2 > n1 such

that

| an(x2) − 1| <
1

22
for all n ≥ n2

since limn→∞ an(x2) = 1. Repeting the same argument, we have that for xk ∈ C and

ǫ = 1
2k , there exists an integer nk > nk−1 > ... > n2 > n1 such that

| an(xk) − 1| <
1

2k
for all n ≥ nk

since limn→∞ an(xk) = 1. This implies that lim sup
k→∞

ank
(xk) = 1.

Before proving the main convergence theorems we give the following definitions

and some useful lemmas.

Definition 3.2.2. ([7]) A strictly increasing sequence {ni} ⊂ N is called quasi-periodic if

the sequence {ni+1−ni} is bounded, or equivalently if there exists a number q ∈ N such

that any block of q consecutive natural numbers must contain a term of the sequence

{ni}. The smallest of such numbers q will be called a quasi-period of {ni}.

Example 3.2.3. Quasi-periodic sequences.

(1) the sequence {1, 3, 5, 7, ..., 2n + 1, ...} is quasi-periodic with quasi-period 2,

(2) the sequence {3, 6, 9, 12, ..., 3n, ...} is quasi-periodic with quasi-period 3,

(3) the sequence {1, 4, 9, 16, ..., n2, ...} is not quasi-periodic.

Lemma 3.2.4. ([48]) Let {an} and {un} be sequences of nonnegative real numbers satisfy:

an+1 ≤ (1 + un)an, for all n ∈ N, and
∞
∑

n=1

un < ∞.

Then limn→∞ an exists and if lim infn→∞ an = 0, then limn→∞ an = 0.

Lemma 3.2.5. ([7]) Suppose {rk} is a bounded sequence of real numbers and {dk,n} is a

doubly-index sequence of real numbers which satisfy:

lim sup
k→∞

lim sup
n→∞

dk,n ≤ 0, and rk+n ≤ rk + dk,n

for each k, n ∈ N. Then {rk} converges to an r ∈ R.
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Lemma 3.2.6. ([46, 53]) Let X be a uniformly convex Banach space and let {tn} be a

sequence in [a, b] for some a, b ∈ (0, 1). Suppose that {un} and {vn} are sequences in X

which satisfy:

(i) lim supn→∞ ‖un‖ ≤ r;

(ii) lim supn→∞ ‖vn‖ ≤ r;

(iii) limn→∞ ‖tnun + (1 − tn)vn‖ = r,

for some r ≥ 0. Then limn→∞ ‖un − vn‖ = 0.

Lemma 3.2.7. ([47]) Let X be a Banach space which satisfies Opial’s condition and {xn}
be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖
exist. If {xnk

} and {xmk
} are subsequences of {xn} which converge weakly to u and v,

respectively, then u = v.

The following two lemmas are proved by Kolowski ([35]).

Lemma 3.2.8. Let X be a uniformly convex Banach space, C be a nonempty closed

convex subset of X and let T ∈ Tr(C.) If limn→∞ ‖T (xn)−xn‖ = 0 then for any m ∈ N,

limn→∞ ‖Tm(xn) − xn‖ = 0.

Lemma 3.2.9. Let X be a uniformly convex Banach space with the Opial property and let

C be a nonempty closed convex subset of X. Let T ∈ Tr(C) and let ω ∈ X, {xn} ⊂ X,

be such that xn ⇀ ω, and limn→∞ ‖T (xn) − xn‖ = 0. Then ω ∈ F (T ).

To prove our main convergence theorems, we need to construct the following

lemmas.

Lemma 3.2.10. Let X be a Banach space, C be a nonempty closed convex subset of X

and let T1, ..., Tm ∈ Tr(C). Let t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in (3.2.6) is

well-defined. Assume that F =
⋂m

i=1 F (Ti) 6= ∅. Then for each p ∈ F, there are sequences

of nonnegative real numbers {γk} and {δk} (depending on p) such that
∑∞

k=1 γk < ∞,
∑∞

k=1 δk < ∞ and the following statements hold:

(i) ‖yik − p‖ ≤ (1 + γk)
i‖xk − p‖, for all i = 1, 2, ..., m− 1;

(ii) ‖xk+1 − p‖ ≤ (1 + δk)‖xk − p‖;

(iii) limk→∞ ‖xk − p‖ exists.

Proof. (i) Let p ∈ F and γk = bnk
(p) for all k ∈ N. Then

∑∞

k=1 γk < ∞. Consider

‖y1k − p‖ = ‖(1 − t)xk + tT nk

1 xk − p‖

= ‖(1 − t)(xk − p) + t(T nk

1 xk − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk

1 xk − p‖

= (1 − t)‖xk − p‖ + t‖T nk

1 xk − T nk

1 p‖
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≤ (1 − t)‖xk − p‖ + t(1 + bnk
(p))‖xk − p‖

= (1 − t)‖xk − p‖ + t(1 + γk)‖xk − p‖

= (1 + tγk)‖xk − p‖

≤ (1 + γk)‖xk − p‖.

Suppose that ‖yjk − p‖ ≤ (1 + γk)
j‖xk − p‖ holds for some 1 ≤ j ≤ m − 2. Then

‖y(j+1)k − p‖ = ‖(1 − t)xk + tT nk

j+1yjk − p‖

= ‖(1 − t)(xk − p) + t(T nk

j+1yjk − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk

j+1yjk − p‖

= (1 − t)‖xk − p‖ + t‖T nk

j+1yjk − T nk

j+1p‖

≤ (1 − t)‖xk − p‖ + t(1 + γk)‖yjk − p‖

≤ (1 − t)‖xk − p‖ + t(1 + γk)
j+1‖xk − p‖

=

[

1 − t + t

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
γr

k

)]

‖xk − p‖

≤

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
γr

k

)

‖xk − p‖

= (1 + γk)
j+1‖xk − p‖.

By mathematical induction, we have

‖yik − p‖ ≤ (1 + γk)
i‖xk − p‖, for all i = 1, 2, ..., m− 1. (3.2.7)

(ii) By using (3.2.7) we obtain that

‖xk+1 − p‖ = ‖(1 − t)xk + tT nk
m y(m−1)k − p‖

= ‖(1 − t)(xk − p) + t(T nk
m y(m−1)k − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk
m y(m−1)k − p‖

= (1 − t)‖xk − p‖ + t‖T nk
m y(m−1)k − T nk

m p‖

≤ (1 − t)‖xk − p‖ + t(1 + γk)‖y(m−1)k − p‖

≤ (1 − t)‖xk − p‖ + t(1 + γk)
m‖xk − p‖

= (1 − t + t(1 + γk)
m)‖xk − p‖

=

[

1 − t + t

(

1 +

m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
γr

k

)]

‖xk − p‖

≤

(

1 +

m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
γr

k

)

‖xk − p‖

= (1 + δk)‖xk − p‖

where δk =
∑m

r=1
m(m−1)···(m−r+1)

r!
γr

k. Since
∑∞

k=1 γk < ∞,
∑∞

k=1 δk < ∞.
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(iii) follows directly from part (ii) and Lemma 3.2.4.

Lemma 3.2.11. Let X be a uniformly convex Banach space, C be a nonempty closed

convex subset of X and T1, ..., Tm ∈ Tr(C). Let t ∈ (0, 1) and {nk} ⊂ N be such that

{xk} in (3.2.6) is well-defined. Assume that F =
⋂m

i=1 F (Ti) 6= ∅. Then

(i) limk→∞ ‖xk − T nk

i y(i−1)k‖ = 0, for all i = 1, 2, ..., m;

(ii) limk→∞ ‖xk − T nk

i xk‖ = 0, for all i = 1, 2, ..., m;

(iii) If the set J = {k ∈ N : nk+1 = 1 + nk} is quasi-periodic, then limk→∞ ‖xk −
Tixk‖ = 0, for all i = 1, 2, ..., m.

Proof. (i) Let p ∈ F. By Lemma 3.2.10 (iii), we have limk→∞ ‖xk − p‖ exists. Let

lim
k→∞

‖xk − p‖ = c. (3.2.8)

By Lemma 3.2.10 (i), we have that

‖yjk − p‖ ≤ (1 + γk)
j‖xk − p‖, for all j = 1, 2, ..., m− 1 (3.2.9)

So we get

lim sup
k→∞

‖yjk − p‖ ≤ c, for all j = 1, 2, ..., m − 1. (3.2.10)

Note that

‖xk+1 − p‖ = ‖(1 − t)xk + tT nk
m y(m−1)k − p‖

= ‖(1 − t)(xk − p) + t(T nk
m y(m−1)k − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk
m y(m−1)k − p‖

= (1 − t)‖xk − p‖ + t‖T nk
m y(m−1)k − T nk

m p‖

≤ (1 − t)‖xk − p‖ + t(1 + γk)‖y(m−1)k − p‖

...

≤ (1 − tm−j)(1 + γk)
m−j‖xk − p‖

+ tm−j(1 + γk)
m−j‖yjk − p‖.

Thus

‖xk − p‖ ≤
‖xk − p‖

tm−j
−

‖xk+1 − p‖

tm−j(1 + γk)m−j
+ ‖yjk − p‖.

It follows that

c ≤ lim inf
k→∞

‖yjk − p‖, for all j = 1, 2, ..., m− 1. (3.2.11)

From (3.2.10) and (3.2.11), we have

lim
k→∞

‖yjk − p‖ = c, for all j = 1, 2, ..., m− 1.
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That is,

lim
k→∞

‖(1 − t)(xk − p) + t(T nk

j y(j−1)k − p)‖ = lim
k→∞

‖yjk − p‖ = c,

for all j = 1, 2, ..., m− 1. We also obtain from (3.2.10) that

lim sup
k→∞

‖T nk

j y(j−1)k − p‖ ≤ c, for each j = 1, 2, ..., m− 1.

By Lemma 3.2.6, we get that

lim
k→∞

‖T nk

j y(j−1)k − xk‖ = 0, for each j = 1, 2, ..., m − 1. (3.2.12)

For the case j = m, we have by Lemma 3.2.10 (i) that

‖T nk
m y(m−1)k − p‖ = ‖T nk

m y(m−1)k − T nk
m p‖

≤ (1 + γk)‖y(m−1)k − p‖

≤ (1 + γk)
m‖xk − p‖.

But since limk→∞ ‖xk − p‖ = c, then

lim sup
k→∞

‖T nk
m y(m−1)k − p‖ ≤ c.

Moreover,

lim
k→∞

‖(1 − t)(xk − p) + t(T nk
m y(m−1)k − p)‖ = lim

k→∞
‖xk+1 − p‖ = c.

Again, by Lemma 3.2.6, we get that

lim
k→∞

‖T nk
m y(m−1)k − xk‖ = 0. (3.2.13)

Thus, (3.2.12) and (3.2.13) imply that

lim
k→∞

‖T nk

i y(i−1)k − xk‖ = 0, for each i = 1, 2, ..., m. (3.2.14)

(ii) For j = 1, we have by part (i) that

lim
k→∞

‖T nk

1 xk − xk‖ = 0. (3.2.15)

If j = 2, 3, ..., m, then we have

‖T nk

j xk − xk‖ ≤ ‖T nk

j xk − T nk

j y(j−1)k‖ + ‖T nk

j y(j−1)k − xk‖

≤ ank
(xk)‖xk − y(j−1)k‖ + ‖T nk

j y(j−1)k − xk‖

≤ ank
(xk)t‖xk − T nk

j−1y(j−2)k‖ + ‖T nk

j y(j−1)k − xk‖.
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By part (i) and lim supk→∞ ank
(xk) = 1, we get

lim sup
k→∞

‖T nk

j xk − xk‖ = 0, for j = 2, 3, ..., m. (3.2.16)

By (3.2.15) and (3.2.16), we have

lim
k→∞

‖T nk

j xk − xk‖ = 0, for all j = 1, 2, ..., m, (3.2.17)

which completes the prove of (ii). Observe that (3.2.13) and the construction of the

sequence {xk} yield

lim
k→∞

‖xk+1 − xk‖ = 0. (3.2.18)

(iii) We will show that

lim
k→∞

‖Tjxk − xk‖ = 0, for all j = 1, 2, ..., m. (3.2.19)

It is enough to prove that ‖Tjxk − xk‖ → 0 as k → ∞ through J . Indeed, let q be a

quasi-period of J and ε > 0 be given. Then there exists N1 ∈ N such that

lim
k→∞

‖Tjxk − xk‖ <
ε

3
, for all k ∈ J such that k ≥ N1. (3.2.20)

By the quasi-periodicity of J , for each l ∈ N, there exists il ∈ J such that |l − il| ≤ q.

Without loss of generality, we can assume that l ≤ il ≤ l+q (the proof for the other case

is identical). Let M = sup{a1(x) : x ∈ C}. Then M ≥ 1. Since liml→∞ ‖xl+1 − xl‖ = 0

by (3.2.18), there exists N2 ∈ N such that

‖xl+1 − xl‖ <
ε

3qM
, for all l ≥ N2. (3.2.21)

This implies that for all l ≥ N2,

‖xil − xl‖ ≤ ‖xil − xil−1‖ + ... + ‖xl+1 − xl‖ ≤ q

(

ε

3qM

)

=
ε

3M
. (3.2.22)

By the definition of T, we have

‖Tjxil − Tjxl‖ ≤ M‖xil − xl‖ ≤ M
( ε

3M

)

=
ε

3
. (3.2.23)

Let N = max{N1, N2}. Then for l ≥ N, we have from (3.2.20), (3.2.22) and

(3.2.23) that

‖xl − Tjxl‖ ≤ ‖xl − xil‖ + ‖xil − Tjxil‖ + ‖Tjxil − Tjxl‖ <
ε

3M
+

ε

3
+

ε

3
≤ ε. (3.2.24)

To prove that ‖Tjxk−xk‖ → 0 as k → ∞ through J . Since J = {k ∈ N : nk+1 =

nk + 1} is quasi-periodic, for each k ∈ J , we have
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‖xk − Tjxk‖ ≤ ‖xk − xk+1‖ + ‖xk+1 − T
nk+1

j xk+1‖ + ‖T
nk+1

j xk+1 − T
nk+1

j xk‖

+ ‖T nk+1
j xk − Tjxk‖

≤ ‖xk − xk+1‖ + ‖xk+1 − T
nk+1

j xk+1‖ + ank+1
(xk+1)‖xk+1 − xk‖

+ a1(xk)‖T
nk

j xk − xk‖.

This, together with (3.2.17) and (3.2.18), we can obtain that ‖Tjxk−xk‖ → 0 as k → ∞
through J .

Theorem 3.2.12. Let X be a uniformly convex Banach space with the Opial property

and C be a nonempty closed convex subset of X. Let T1, ..., Tm ∈ Tr(C) be such that

F =
⋂m

i=1 F (Ti) 6= ∅. Let t ∈ (0, 1) and {nk} ⊂ N be such that the sequence {xk} in

(3.2.6) is well-defined. If the set J = {k : nk+1 = 1 + nk} is quasi-periodic, then the

sequence {xk} converges weakly to a common fixed point of the family {T1, T2, ..., Tm}.

Proof. We have by Lemma 3.2.10 (iii) that limn→∞ ‖xk −p‖ exists for every p ∈ F. This

implies that the sequence {xn} is bounded. Since the Banach space X is uniformly

convex, it is reflexive. By Theorem 2.1.35, {xn} has a weakly convergent subsequence.

Next, we shall prove that {xn} has a unique subsequential limit in F. For this,

we suppose that the subsequences {xmj
} and {xnj

} of {xn} converge weakly to u and

v, respectively.

Since we have by Lemma 3.2.11 (iii) that lim
k→∞

‖xk − Tixk‖ = 0,

lim
k→∞

‖xmj
− Tixmj

‖ = 0 = lim
k→∞

‖xnj
− Tixnj

‖, for all i = 1, 2, ..., m.

It follows from Lemma 3.2.9 that u, v ∈ F (Ti) for all i = 1, 2, ..., m. So u, v ∈ F.

Consequently, lim
n→∞

‖xk − u‖ and lim
n→∞

‖xk − v‖ exist. By Lemma 3.2.7, we obtain that

u = v. This implies that the sequence {xn} itself converges weakly to a common fixed

point of the family {T1, T2, ..., Tm} which completes the proof.

Theorem 3.2.13. Let X be a uniformly convex Banach space and C be a nonempty

closed convex subset of X. Let T1, ..., Tm ∈ Tr(C) be such that T l
i is semi-compact for

some i ∈ {1, 2, ..., m} and l ∈ N. Let t ∈ (0, 1) and {nk} ⊂ N be such that the sequence

{xk} in (3.2.6) is well-defined. Suppose that F =
⋂m

i=1 F (Ti) 6= ∅ and the set J =

{k : nk+1 = 1 + nk} is quasi-periodic, then the sequence {xk} converges strongly to a

common fixed point of the family {T1, T2, ..., Tm}.

Proof. By Lemma 3.2.11 (ii) we have

lim
k→∞

‖xk − Tixk‖ = 0, for i = 1, 2, ..., m. (3.2.25)

Let i ∈ {1, 2, ..., m} be such that T l
i is semi-compact. Thus, by Lemma 3.2.8,

lim
k→∞

‖xk − T l
i xk‖ = 0.
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We can also find a subsequence {xkj
} of {xk} such that limj→∞ xkj

= p ∈ C. Hence,

from (3.2.25), we have

‖p − Tip‖ = lim
j→∞

‖xkj
− Tixkj

‖ = 0, for all i = 1, 2, ..., m.

Thus p ∈ F. But since limk→∞ ‖xk − p‖ exists, then the sequence {xk} must itself

converges to p. This completes the proof.

To prove the strong convergence of the sequence {xn} defined by (3.2.6)

whenever {T1, ..., Tm} ⊂ Tr(C) satisfies Condition (A′′), we need to construct some

lemmas.

Lemma 3.2.14. Let X be a Banach space, C be a nonempty closed convex subset of X

and let T1, ..., Tm ∈ Tr(C) be such that F =
⋂m

i=1 F (Ti) 6= ∅. Let t ∈ (0, 1) and {nk} ⊂ N

be such that {xk} in (3.2.6) is well-defined. Assume that
∑∞

k=1 supx∈C bnk
(x) < ∞.

Then there exists a sequence {vk} in [0,∞) and a nonnegative real number M such that
∑∞

k=1 vk < ∞ and the following statements hold for all p ∈ F :

(i) ‖xk+1 − p‖ ≤ (1 + vk)
m‖xk − p‖, for all k ∈ N;

(ii) ‖xk+l − p‖ ≤ M‖xk − p‖, for all k, l ∈ N;

Proof. Let p ∈ F .

To prove (i), we let vk = supx∈C bnk
(x) for all k ∈ N.

Since
∑∞

k=1 supx∈C bnk
(x) < ∞, then we get

∑∞

k=1 vk < ∞. Consider

‖y1k − p‖ = ‖(1 − t)xk + tT nk

1 xk − p‖

= ‖(1 − t)(xk − p) + t(T nk

1 xk − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk

1 xk − p‖

= (1 − t)‖xk − p‖ + t‖T nk

1 xk − T nk

1 p‖

≤ (1 − t)‖xk − p‖ + t(1 + vk)‖xk − p‖

= (1 + tvk)‖xk − p‖

≤ (1 + vk)‖xk − p‖.

Suppose that ‖yjk − p‖ ≤ (1 + vk)
j‖xk − p‖ holds for some j = 1, 2, ..., m− 2. Then

‖y(j+1)k − p‖ = ‖(1 − t)xk + tT
nk

j+1yjk − p‖

= ‖(1 − t)(xk − p) + t(T nk

j+1yjk − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk

j+1yjk − p‖

≤ (1 − t)‖xk − p‖ + t(1 + vk)‖yjk − p‖

≤ (1 − t)‖xk − p‖ + t(1 + vk)
j+1‖xk − p‖
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=

[

1 − t + t

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
vr

k

)]

‖xk − p‖

≤

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
γr

k

)

‖xk − p‖

= (1 + vk)
j+1‖xk − p‖.

By mathematical induction, we have

‖yjk − p‖ ≤ (1 + vk)
j‖xk − p‖, for all j = 1, 2, ..., m − 1. (3.2.26)

This implies that

‖xk+1 − p‖ = ‖(1 − t)xk + tT nk
m y(m−1)k − p‖

= ‖(1 − t)(xk − p) + t(T nk
m y(m−1)k − p)‖

≤ (1 − t)‖xk − p‖ + t‖T nk
m y(m−1)k − p‖

≤ (1 − t)‖xk − p‖ + t(1 + vk)‖y(m−1)k − p‖

≤ (1 − t)‖xk − p‖ + t(1 + vk)
m‖xk − p‖

= [1 − t + t(1 + vk)
m] ‖xk − p‖

=

[

1 − t + t

(

1 +

m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
vr

k

)]

‖xk − p‖

≤

(

1 +

m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
vr

k

)

‖xk − p‖

= (1 + vk)
m‖xk − p‖

which completes the proof of (i).

(ii) We observe that (1 + α)n ≤ enα holds for all n ∈ N and α ≥ 0. Thus, by

part (i), for k, l ∈ N, we have

‖xk+l − p‖ ≤ (1 + vk+l−1)
m‖xk+l−1 − p‖

≤ exp {mvk+l−1}‖xk+l−1 − p‖

≤ exp {m
k+l−1
∑

i=1

vi}‖xk − p‖

≤ exp {m
∞
∑

i=1

vi}‖xk − p‖.

By setting M = m
∑∞

i=1 vi, we obtain (ii).

Theorem 3.2.15. Let X be a Banach space, C be a nonempty closed convex subset of

X and T1, ..., Tm ∈ Tr(C) be such that F =
⋂m

i=1 F (Ti) 6= ∅. Let t ∈ (0, 1) and {nk} ⊂ N
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be such that {xk} in (3.2.6) is well-defined. Assume that
∑∞

k=1 supx∈C bnk
(x) < ∞.

Then {xk} converges strongly to a point in F if and only if lim infk→∞ d(xk, F ) = 0,

where d(x, F ) = infp∈F d(x, p).

Proof. The necessity is obvious. Now, we prove the sufficiency.

Assume that lim infk→∞ d(xk, F ) = 0. We will show that the sequence {xk}
converges strongly to a point in F.

Let p ∈ F, by Lemma 3.2.14 (i), we have

‖xk+1 − p‖ ≤ (1 + vk)
m‖xk − p‖, for all k ∈ N.

This implies that

d(xk+1, F ) ≤ (1 + vk)
md(xk, F ) =

(

1 +
m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
vr

k

)

d(xk, F ).

Since
∑∞

k=1 vk < ∞,
∑∞

k=1

∑m
r=1

m(m−1)···(m−r+1)
r!

vr
k < ∞. By Lemma 3.2.4, we get that

limk→∞ d(xk, F ) = 0.

Next, we will show that {xk} is Cauchy. From Lemma 3.2.14 (ii), there exists

M > 0 such that

‖xk+l − p‖ ≤ M‖xk − p‖, for all k, l ∈ N. (3.2.27)

Since limk→∞ d(xk, F ) = 0, then for each ǫ > 0, there exists k1 ∈ N such that

d(xk, F ) <
ǫ

2M
, for all k ≥ k1.

Hence, there exists z1 ∈ F such that

d(xk1
, z1) ≤

ǫ

2M
. (3.2.28)

By (3.2.27) and (3.2.28), we have that for k ≥ k1,

‖xk+l − xk‖ ≤ ‖xk+l − z1‖ + ‖xk − z1‖

≤ M‖xk1
− z1‖ + M‖xk1

− z1‖

< 2M(
ǫ

2M
)

= ǫ.

This shows that {xk} is Cauchy and so converges to some ω ∈ C. We next show that

ω ∈ F. Let L = sup{a1(x) : x ∈ C}. For ǫ > 0, there exists k2 ∈ N such that

‖xk − ω‖ <
ǫ

2(1 + L)
, for all k ≥ k2. (3.2.29)

Since limk→∞ d(xk, F ) = 0, there exists k3 ≥ k2 such that

d(xk, F ) <
ǫ

2(1 + L)
, for all k ≥ k3.
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Thus, there exists z2 ∈ F such that

‖xk3
− z2‖ <

ǫ

2(1 + L)
. (3.2.30)

By (3.2.29) and (3.2.30), for each i = 1, 2, ..., m, we have

‖Tiω − ω‖ ≤ ‖Tiω − Tixk3
‖ + ‖Tixk3

− z2‖ + ‖z2 − xk3
‖ + ‖xk3

− ω‖

≤ L‖xk3
− ω‖ + L‖xk3

− z2‖ + ‖xk3
− z2‖ + ‖xk3

− ω‖

≤ (1 + L)‖xk3
− ω‖ + (1 + L)‖xk3

− z2‖

< (1 + L)
ǫ

2(1 + L)
+ (1 + L)

ǫ

2(1 + L)

= ǫ.

Since ǫ is arbitrary, Tiω = ω for all i = 1, 2, ..., m. Thus ω ∈ F. This completes the

proof.

The next corollary follows immediately from Theorem 3.2.15

Corollary 3.2.16. Let X be a Banach space, C be a nonempty closed and convex subset

of X and T1, ..., Tm ∈ Tr(C). Let t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in (3.2.6)

is well-defined. Assume that F =
⋂m

i=1 F (Ti) 6= ∅ and
∑∞

k=1 supx∈C bnk
(x) < ∞. Then

the sequence {xk} converges strongly to a point in p ∈ F if and only if there exists a

subsequence {xkj
} of {xk} which converges to p.

Theorem 3.2.17. Let X be a uniformly convex Banach space and C be a nonempty

closed convex subset of X. Let {T1, ..., Tm} ⊂ Tr(C) be satisfy Condition (A′′). Let

t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in (3.2.6) is well-defined. Suppose that
∑∞

k=1 supx∈C bnk
(x) < ∞, F =

⋂m
i=1 F (Ti) 6= ∅ and the set J = {k ∈ N : nk+1 = 1+nk}

is quasi-periodic. Then {xk} converges strongly to a common fixed point of the family

{T1, T2, ..., Tm}.

Proof. By Lemma 3.2.11 (iii), limk→∞ ‖xk − Tixk‖ = 0, for all i = 1, 2, ..., m. By using

Condition (A′′), there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0,

f(r) > 0 for r ∈ (0,∞) such that

lim
k→∞

f(d(xk, F )) ≤ lim
k→∞

‖xk − Tjxk‖ = 0 for some j = 1, ..., m.

This implies that limk→∞ d(xk, F ) = 0. The conclusion follows from Theorem 3.2.15.


