Chapter 3
Results on uniformly convex Banach Spaces

3.1 A Common Fixed Point Theorem

The existence of fixed points for asymptotic pointwise nonexpansive mappings
in uniformly convex Banach spaces was proved by Kirk and Xu [34] as the following
theorem.

Theorem 3.1.1. Assume X is a uniformly convex Banach space and C' is a bounded
closed convex subset of X. Then every asymptotic pointwise nonexpansive mapping T :
C — C has a fized point. Moreover, the set of fixed points of T' is closed and converz.

The following result extends the existence theorem of Kirk and Xu.

Theorem 3.1.2. Let X be a uniformly convexr Banach space and C be a nonempty
bounded closed convex subset of X. Then every commuting family S of asymptotic
pointwise nonexrpansive mappings on C' has a nonempty closed convexr common fized
point set.

Proof. Let T1,T5, ..., T, € S. By Theorem 3.1.1, F((T}) is a nonempty closed and convex
subset of C. We assume that A := ﬂk | F(T;) is nonempty closed and convex for some
ke Nwith 1 <k <n. ForxeAand]ENWlth1§]<k:,wehave

Tu(z) = T o Ty(w) = Ty 0 Tu(x)
Thus T}, (z) is a fixed point of T}, which implies that T} (z) € A, therefore A is invariant
under Tj. Again, by Theorem 3.1.1, T} has a fixed point in A, i.e.,

(\F(T;) = F(Tw) [ ) A # 0.

Also, the set is closed and convex. By induction, 0?21 F(Tj) # (. This shows that the
set {F(T) : T € S} has the finite intersection property. We note that C' is weakly
compact because X is reflexive. Since F(T') is weakly closed for every T' € S, we have
Nres F(T) # 0. This completes the proof. O
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3.2 Weak Convergence and Strong Convergence Theorems

Let C' be a nonempty subset of a metric space (X,d). We shall denote by
7 (C) the class of all asymptotic pointwise nonexpansive mappings from C' into C. Let
Ti,....,T, € T(C). Then there exists, for each i, i = 1,2, ..., m, a sequence of mappings
Qi o C'— [0,00) such that for all z,y € C;n € Nand i = 1,2, ...,m,

n—oo

For each n € N and = € C, let a,(z) = maxi<;<;, ain(x). Then we get that for
allz,ye C,neNandi=1,2,....m,

ATz, T'y) < a,(z)d(z,y) and limsup a,(x) < 1. (3.2.2)

n—oo

Let a,(r) = max {a,(x),1}. So we have that

ATz, T!'y) < ap(x)d(z,y), lim a,(x) =1 and a,(x) > 1, (3.2.3)
for all z,y € C, n € N, and i = 1,2,...,m. Define b,(z) = a,(x) — 1, then for each
x € C, we have lim b,(z) = 0.

n—oo

Definition 3.2.1. Define 7,.(C') as a class of all mappings T in the class 7 (C') such that

Z bn(z) < oo, and (3.2.4)
n=1
a, is a bounded function for every n € N. (3.2.5)

Let 11, ..., T, € 7.(C) and let t € (0,1) and {nx} be an increasing sequence of
natural numbers. Let x; € C' and define a sequence {z;} in C as:

T = (L= )ag + T Y m—1)k, (3.2.6)
Ym-1k = (1 ~ t)xk + tan;lily(m—2)k7
Ym—2)k = (1 - t)xk + tTnTi2y(m—3)k7

Yor = (1 — t)ay + tT5 Y,
Yie = (1 = )y + 1" yor,
Yok = T, k€ N.
We say that the sequence {x)} in (3.2.6) is well-defined if lim sup a,,, (zx) = 1.

k—o0

As in [35], we observe that limy_,. ax(x) = 1 for every = € C. Hence we can
always choose a subsequence {a,, } which makes {x)} well-defined.
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One choice of {a,, } that we can choose is as the following:
Starting by arbitrary x; € C' and letting € = 2%, there exists a positive integer n; such
that .
la,(x1) — 1| < o5 for all n > ny

since lim,, .o a,(x1) = 1. For 9 € C' and € = 2%, there exists an integer nmy > my such

that .
lan(z2) — 1] < 7 for all n > ny

since lim,, ., a,(72) = 1. Repeting the same argument, we have that for z; € C and

€= zik, there exists an integer ny > ngi_1 > ... > ny > ny such that

1
lan(zg) — 1] < o for all n > ny

since lim,, ., a,(z;) = 1. This implies that limsup a,,, () = 1.
k—oo

Before proving the main convergence theorems we give the following definitions
and some useful lemmas.

Definition 3.2.2. ([7]) A strictly increasing sequence {n;} C N is called quasi-periodic if
the sequence {n;.; —n;} is bounded, or equivalently if there exists a number ¢ € N such
that any block of ¢ consecutive natural numbers must contain a term of the sequence
{ni}. The smallest of such numbers ¢ will be called a quasi-period of {n;}.

Example 3.2.3. Quasi-periodic sequences.
(1) the sequence {1,3,5,7,....,2n + 1, ...} is quasi-periodic with quasi-period 2,
(2) the sequence {3,6,9,12,...,3n, ...} is quasi-periodic with quasi-period 3,
(3) the sequence {1,4,9,16,...,n% ...} is not quasi-periodic.
Lemma 3.2.4. ([/8]) Let {a,} and {u,} be sequences of nonnegative real numbers satisfy:

any1 < (14 uy)a,, foralln €N, and Zun < 00.

n=1
Then lim,, . a,, exists and if liminf, . a, = 0, then lim, ., a, = 0.

Lemma 3.2.5. ([7]) Suppose {ry} is a bounded sequence of real numbers and {dy,} is a
doubly-index sequence of real numbers which satisfy:

limsuplimsupdy,, < 0, and 744, < 7%+ dip

k—o00 n—o00

for each k,n € N. Then {ry} converges to an r € R.
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Lemma 3.2.6. ({6, 53]) Let X be a uniformly convexr Banach space and let {t,} be a
sequence in |a,b] for some a,b € (0,1). Suppose that {u,} and {v,} are sequences in X
which satisfy:

(i) limsup,,_, . ||u,|| <75
(11) limsup,,_, ., ||va]] < 7
(15i) lim, o |[tnun + (1 —tp)v,|| =7,
for some r > 0. Then lim,,_, ||un, — v,] = 0.

Lemma 3.2.7. ([/7]) Let X be a Banach space which satisfies Opial’s condition and {z,}
be a sequence in X. Let u,v € X be such that lim,,_. ||z, — u|| and lim, . ||z, — v||
exist. If {x,, } and {z,, } are subsequences of {x,} which converge weakly to u and v,
respectively, then u = v.

The following two lemmas are proved by Kolowski ([35]).

Lemma 3.2.8. Let X be a uniformly convex Banach space, C be a nonempty closed
convex subset of X and let T € T.(C.) Iflim, . ||T(x,) —z,|| = 0 then for any m € N,
limy, oo |77 (2) — x|| = 0.

Lemma 3.2.9. Let X be a uniformly convex Banach space with the Opial property and let
C' be a nonempty closed convex subset of X. Let T € T.(C) and let w € X, {x,} C X,
be such that x, — w, and lim, ., ||T(z,) — z,|| = 0. Then w € F(T).

To prove our main convergence theorems, we need to construct the following
lemmas.

Lemma 3.2.10. Let X be a Banach space, C' be a nonempty closed convex subset of X
and let Ty, ..., T, € T.(C). Let t € (0,1) and {ng} C N be such that {x}} in (3.2.6) is
well-defined. Assume that F' = (2, F(T;) # 0. Then for eachp € F, there are sequences
of nonnegative real numbers {~x} and {d;} (depending on p) such that >~y < 00,
Y rey 0 < 0o and the following statements hold:

(i) llyix —pll < A +v) 2 —pll, forall i=1,2,...m—1;
(i) ks = pll < (1+ 0p)llexe = plf;
(111) lmy o ||z — pl| exists.
Proof. (i) Let p € F and i, = by, (p) for all k € N. Then Y ;2| 7 < co. Consider

lyar = pll = (1 = )z + tT7" 21, — p
= 1A = ) (zx, — p) + t(T7" 25 — p)
< (L= H)llzx = pll + T2k — pll
= (L= t)llzx — pll + T2 — T7p|
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< (1 =)llzx = pll + (1 + bn (p) 2% — 2
= (L=Dllzx = pll + (1 + ) llx — pll

= (L4 t7)l|lze — pll
< (L +7)llzx = pll.

Suppose that |ly;x — p|l < (14 %)’ ||zx — p|| holds for some 1 < j < m — 2. Then

1Yk = pll = (1 = D)k + T3 Y50 = p

= |0 =)@k — p) + LT3y = p)
< (1= H)llx = pll + T30y — pll
= (1= t)llzx — pll + T30y — Tikapll
(1= O)llzx = pll + (1 + 7)Y — pll
(L= t)llwx = pll +£(1 + %) 2w — pl

1—t41¢ <1+jz <j+1)j”7;!(j+2_r>72)] |z — p)|

r=1

J+1
1) 9
<<1+Z‘7+ ‘7+ )£>|lfck—p|l

= (1 + ) lax — pl|-

<
<

By mathematical induction, we have

lyie — pll < (14 3)"|zx — pl|, for alli=1,2,...m— 1. (3.2.7)

(ii) By using (3.2.7) we obtain that

|Zr1 = pll = (1 = t)ap + T y 1y — ||

= |1 = t)(zx, — p) + LT Ym—1)x — D)

< (I =lzr = pll + T Fyen—1yk — Pl
1 —t)[lzk = pll + T3 Yn-1x — Lol
1 —t)||zx — pll + (1 + ) Yen-1)s — pll
L =t)||lzx — pll + (1 4+ )" ||z — pll
L=t +t(1+5)") |z — pll

1—t+t<1+Zm(m_1)”T'!(m_Hl)VZ)] 2 — pll
< <1+Zm<m_1)'}}(m_r“) %Z) (e

= (14 0x)[|lzx = pll

= (
<(
< (
= (

where 0, = > ", m(m—l)-(m=rl) r Since Dopey Ve <00, Do O < 00.

r!
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(iii) follows directly from part (i) and Lemma 3.2.4. O

Lemma 3.2.11. Let X be a uniformly convex Banach space, C' be a nonempty closed
convex subset of X and Ty, ..., T, € T,(C). Let t € (0,1) and {ny} C N be such that
{x} in (3.2.6) is well-defined. Assume that F' = (-, F(T;) # 0. Then

(1) limy oo |2 — T yu—1yk]| = 0, forall i =1,2,...,m;
(i1) limy oo ||z — T;% k]| = 0, for all i =1,2,...,m;

(iii) If the set J = {k € N : ngyy = 1 4+ ni} is quasi-periodic, then limy_ . ||xp —
Tixpl| =0, forall i=1,2,....,m.

Proof. (i) Let p € F. By Lemma 3.2.10 (iii), we have limy_, ||zx — p|| exists. Let

i flox — pll = . (328

By Lemma 3.2.10 (i), we have that

So we get
limsup [|y;x —p|| < ¢ forallj=1,2,...,m—1. (3.2.10)
k—oo
Note that
[zpr1 = pll = |(1 = )y + T3 Yon—1)k — Pl
= [|(1 = &)(zr — p) + UL Ym-1)s — P
< (X =Dl = pll + TR yem—1y6 — Dl
= (1 = t)llze — pll + T3 ym—1)x — Tt pll
< (@ =Olze —pll + 1 + ) lYon-1)s — pll
< (1=t (A A+ )"l — p
+ "L+ )" Ny — pl-
e foe =l — gl
T —p Tky1 — P
— < — — , , % — Dl
|z —pll < promy P (1 £ ) + [lyjr — |
It follows that
¢ < lilgninf llyje —pl|, forall j=1,2,...,m—1. (3.2.11)

From (3.2.10) and (3.2.11), we have

klim lyjx —pll =¢, forall j=1,2,...,m—1.
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That is,

T /(1= ) (k= p) + HT e — )| = Jimn [lyze—pll = c

for all j =1,2,...,m — 1. We also obtain from (3.2.10) that

liin_)s;}p 1Ty — pll < ¢, foreach j=1,2,...,m—1.
By Lemma 3.2.6, we get that

]}LIEO 175" y—1yr — il = 0, foreach j=1,2,...,m— 1.
For the case j = m, we have by Lemma 3.2.10 (i) that

| Tk ym-vk — Pll = 1Tk yam—1yx — Tk pl|
< (I +v)lyam—1yr — 1|l
< (X4 %)™ 2w — pl|-

But since limy_. ||z — p|| = ¢, then

limsup || T ymm-1ye — p| < c.

k—oo

Moreover,

Tim (1= 1)z~ p) + KT~ )| = Jim [z = ] = c.
Again, by Lemma 3.2.6, we get that
Jim (T3 ymnye — @il = 0.

Thus, (3.2.12) and (3.2.13) imply that
kh_)rlolo T Y-y — x|l = 0, for each i =1,2,...,m.
(ii) For 7 = 1, we have by part (i) that
Jim {77, — ]| = 0.
If j =2,3,...,m, then we have

75" ek = il < T3 *wn = T3yl + 115y -1k — 2l
< an, (@) |2k = yg—orll + 127 Y-k — 2l
< an, @)tk = T yG—oll + 1T Y-k — @il

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)
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By part (i) and limsup,_, . an, (zx) = 1, we get

limsup || T}z — x|l = 0, for j =2,3,...,m. (3.2.16)

k—o0

By (3.2.15) and (3.2.16), we have
klim | T 2y, — 2] =0, forall j=1,2,..,m, (3.2.17)

which completes the prove of (ii). Observe that (3.2.13) and the construction of the
sequence {z} yield

klim |xk+1 — x| = 0. (3.2.18)
(iii) We will show that
klim | Ty — xx)| =0, forall j =1,2,...,m. (3.2.19)

It is enough to prove that ||Tjx; — zx|| — 0 as & — oo through J. Indeed, let ¢ be a
quasi-period of J and € > 0 be given. Then there exists N; € N such that

Jim [Tz — | < % for all k € J such that k > N,. (3.2.20)

By the quasi-periodicity of J, for each [ € N, there exists i; € J such that |l — ;| < q.
Without loss of generality, we can assume that [ < i; < [+¢ (the proof for the other case
is identical). Let M = sup{a;(z): x € C'}. Then M > 1. Since lim;_,o ||2141 — 2] =0
by (3.2.18), there exists Ny € N such that

i — 2| < ?)qLM for all [ > Ny. (3.2.21)

This implies that for all [ > Ny,

€

9
o = all < s = il oot s =l S0 (557 ) = 5o (G222

By the definition of T, we have

&
1Ty, = Tyl < My, = ill < M (557 ) = (3.2.23)

<

3M 3

Let N = max{Nj, No}. Then for I > N, we have from (3.2.20), (3.2.22) and
(3.2.23) that

9 i 15
v = Tyl < llaw = |+ Nl = Ty | + 1Ty, = Tyml] < 5=+ 5+ = < =0 (3:2.24)

To prove that || Tjz, — k]| — 0 as k — oo through J. Since J = {k € N: nyyy =
ng + 1} is quasi-periodic, for each k£ € J, we have
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l2r = Tyar|| < l|ox — @ppa || + Nonr — T wpga |l + 1T g — T |
+ | Ty — Ty |
<k = el + |zesr — T3 @pga || + @y (@) || T — |
+ ar (@) || T xr — |-

This, together with (3.2.17) and (3.2.18), we can obtain that || Tjz,—x|| — 0 as k — oo
through 7. O

Theorem 3.2.12. Let X be a uniformly convex Banach space with the Opial property
and C' be a nonempty closed convex subset of X. Let Ty, ..., T,, € T,.(C) be such that
F=N"F(T) #0. Let t € (0,1) and {ny} C N be such that the sequence {xy} in
(8.2.6) is well-defined. If the set J = {k : ngy1 = 1+ ng} is quasi-periodic, then the
sequence {xy} converges weakly to a common fized point of the family {11, Ts, ..., Tp,}.

Proof. We have by Lemma 3.2.10 (iii) that lim,,_, ||zx —p|| exists for every p € F. This
implies that the sequence {z,} is bounded. Since the Banach space X is uniformly
convex, it is reflexive. By Theorem 2.1.35, {z, } has a weakly convergent subsequence.

Next, we shall prove that {x,} has a unique subsequential limit in F. For this,
we suppose that the subsequences {z,,,} and {z,,} of {x,} converge weakly to u and
v, respectively.

Since we have by Lemma 3.2.11 (iii) that klim |lzr — Tixk|| = 0,
klim |Zm, — Tizm,|| = 0 = klim |20, — Tizn,||, foralli=1,2,.. m.

It follows from Lemma 3.2.9 that u,v € F(T;) for all i = 1,2,...,m. So u,v € F.
Consequently, lim ||z, — u|| and lim ||z — v|| exist. By Lemma 3.2.7, we obtain that

u = v. This implies that the sequence {x,} itself converges weakly to a common fixed
point of the family {7}, 75, ..., T,,} which completes the proof. O

Theorem 3.2.13. Let X be a uniformly convex Banach space and C be a nonempty
closed convex subset of X. Let Ty, ..., T,, € T,(C) be such that T} is semi-compact for
some i € {1,2,....m} andl € N. Let t € (0,1) and {ny} C N be such that the sequence
{a} in (5.2.6) is well-defined. Suppose that F = (-, F(T;) # 0 and the set J =
{k : npy1 = 1+ ng} is quasi-periodic, then the sequence {x} converges strongly to a
common fized point of the family {11, Tz, ..., T)n}.

Proof. By Lemma 3.2.11 (ii) we have
klim ey — Tizg]| =0, fori=1,2,...,m. (3.2.25)

Let i € {1,2,...,m} be such that T} is semi-compact. Thus, by Lemma 3.2.8,

lim ||y — T}a|| = 0.
k—oo
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We can also find a subsequence {xy, } of {x;} such that lim; .., = p € C. Hence,
from (3.2.25), we have

||p - T;p” ) ]lirgo ||xk1 - | irzka” I 07 for all © = ]-7 2, ceey T

Thus p € F. But since limy_ ||z — p|| exists, then the sequence {x;} must itself
converges to p. This completes the proof. O

To prove the strong convergence of the sequence {z,} defined by (3.2.6)
whenever {11,...,T,,} C 7,(C) satisfies Condition (A”), we need to construct some
lemmas.

Lemma 3.2.14. Let X be a Banach space, C' be a nonempty closed convex subset of X
and let Ty, ..., T,, € T,(C) be such that F = (", F(T;) # 0. Let t € (0,1) and {ny} C N
be such that {zy} in (3.2.6) is well-defined. Assume that Y ,o sup,co by, () < oo.
Then there exists a sequence {vy} in [0,00) and a nonnegative real number M such that
Y ey v < o0 and the following statements hold for all p € F :

(i) |xxs1 —pll < (14 vp)™||zx — p||, for all k € N;

(i) wrsr = pll < Mz —pll, for all k,1 € N;

Proof. Let p € F.

To prove (i), we let v, = sup,c¢ by, () for all k € N.
Since > 7~ sup,ee by, (x) < 00, then we get .2 vy, < co. Consider

[yar = pll = (1 = )z + tT7" 25 — p
= |1 = &) (zx, — p) + t(T7" 2 — p)|
< (L= Dllzx = pll + [Tz — pl|

Suppose that |y — p|l < (14 vg)?||zx — p|| holds for some j = 1,2,...,m — 2. Then

lyGre — pll = [[(1 = )z + T3 F yn — pl|
= [|(1 = t)(zx — p) + t(T]Frye — D)
< (1 =)fwg = pll + LT}y — pll
< (L=)llzx — pll + (1 + o)y — pll
< (1 —t)lax — pll + t(1 + o) zx - p
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]+1 .
+1 g +2-r) ,
[1—t+t<1+z DI H(j )vk>] |z, — p

r=1

J-‘rl
(7+1)j j—|—2 ,
<1+Z r) ) s —

= (1 + v}l = pll.

By mathematical induction, we have

lyje — pll < (1 +wv) ||ag —p|, forall j =1,2,....,m — 1. (3.2.26)
This implies that
@541 = pll = |(1 = )z + T3 Yn-1yk — D

= [|(1 = t)(zx — p) + (L3 Ym-1)k — D)

< (= 8)lze = pll + U TR yon-1yr — 2l
(1 =l = pll + ¢ + ve)[[Ym-1yx — P
(L =)z — pll + (1 + v)™ ||z — pll
=[1—t+t(1l+ve)"] |zx — p|

“mm—1)---(m—r+1) ,
1—t+t<1+; . it | o=l
“mm—1)---(m—7r+1) ,
g<1+z . o)l = pl
r=1 |

= (1+ o)™ [lzx = pl

<
<

which completes the proof of (i).

(ii) We observe that (1 4+ «)™ < €"* holds for all n € N and o > 0. Thus, by
part (i), for k,l € N, we have

2k = pll < (T + vei-2)™ k410 = 2|

< exp {mvgri-1 H| Tk p1-1 = pll
k+1-1

<exp{m Y v}ar—p|
i=1

<exp{m) vz —pl.
i=1

By setting M = m > .-, v;, we obtain (ii). O

Theorem 3.2.15. Let X be a Banach space, C' be a nonempty closed convex subset of
X and Ty, ..., T,, € T.(C) be such that F' = (", F(T;) # 0. Let t € (0,1) and {nx} C N
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be such that {xy} in (3.2.6) is well-defined. Assume that > ;- Supyec by, () < 0.
Then {x} converges strongly to a point in F if and only if liminfy_ . d(zy, F') = 0,
where d(z, F) = inf,cp d(z, p).

Proof. The necessity is obvious. Now, we prove the sufficiency.

Assume that liminfy . d(zg, F) = 0. We will show that the sequence {z;}
converges strongly to a point in F.

Let p € F, by Lemma 3.2.14 (i), we have

@541 = pll < (14 0)" ||z = pl|, forall k € N.
This implies that

d(l’k+1,F) < (1 + ’Uk)md(l’k, F) = (1 + Z m(m = 1) . T' (m —7r—+ 1) UIZ) d(l’k, F)

Since > o, U < 00, D gy o, m(m_l)';!(m_rﬂ) vy < 0o. By Lemma 3.2.4, we get that
Next, we will show that {z;} is Cauchy. From Lemma 3.2.14 (ii), there exists

M > 0 such that
|k — pl| < M|z, —pl|, forall k,l € N. (3.2.27)

Since limy_, d(xg, F') = 0, then for each € > 0, there exists k; € N such that

d(zy, F) < for all k > k.

€
2M’
Hence, there exists z; € F' such that

€

< —.
- 2M
By (3.2.27) and (3.2.28), we have that for k > ky,

d(wpy, 21) (3.2.28)

Tkt — 2|l < |2kt — 21l + |2k — 21]]
< Mz, — 21 || + M|zg, — 21|

€
oM (=5
< 2M(g57)

= €.

This shows that {z;} is Cauchy and so converges to some w € C. We next show that
w € F. Let L = sup{a;(z) : z € C}. For € > 0, there exists ks € N such that

|zr —w|| < , for all k > k. (3.2.29)

€
2(14+ L)
Since limy_, o, d(xg, F') = 0, there exists k3 > ko such that

d(zy, F) < for all & > k.

€
2(1+ L)
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Thus, there exists 2o € F' such that

€

T (3.2.30)

[2k; — 2ol <

By (3.2.29) and (3.2.30), for each ¢ = 1,2, ..., m, we have

ITiw = wll < | Tiw = Tigs || + [[Tiwn, — zall + 22 = g || + [Jg; —
< Lo, = wll + Lllag, — 22l + l2ks = 22l + [k, — o
< (L4 L)flwgy = wll + (L+ D)o, — 2

<(1+1L) +(1+1L)

2(1+ 1) 2(1+ 1)

—

Since € is arbitrary, Tyw = w for all : = 1,2,...,m. Thus w € F. This completes the
proof. O

The next corollary follows immediately from Theorem 3.2.15

Corollary 3.2.16. Let X be a Banach space, C' be a nonempty closed and convex subset
of X and T, ..., T, € T.(C). Let t € (0,1) and {ny} C N be such that {x}} in (3.2.6)
is well-defined. Assume that F = (i F(T;) # 0 and >~7, sup,cc by, (x) < co. Then
the sequence {xy} converges strongly to a point in p € F if and only if there exists a
subsequence {wy,} of {wx} which converges to p.

Theorem 3.2.17. Let X be a uniformly convexr Banach space and C' be a monempty
closed convex subset of X. Let {T1,...,T,,} C T.(C) be satisfy Condition (A"). Let
t € (0,1) and {ny} C N be such that {x} in (3.2.6) is well-defined. Suppose that
Y e SUPee by () < 00, F = (2, F(T;) # 0 and the set J = {k € N: ngyy = 14ng}
is quasi-periodic. Then {xy} converges strongly to a common fized point of the family
(11, Ty, ..., T}

Proof. By Lemma 3.2.11 (iii), limy_, ||zx — Tizk]| = 0, for all i = 1,2, ..., m. By using
Condition (A”), there exists a nondecreasing function f : [0, 00) — [0, 00) with f(0) =0,
f(r) >0 for r € (0,00) such that

lim f(d(xy, F)) < klim |z — Tjxi|| = 0 for some j=1,...,m.

k—o0

This implies that limg_.o, d(xy, F') = 0. The conclusion follows from Theorem 3.2.15. [



