
Chapter 4

The related results for CAT(0) Spaces

4.1 Common Fixed Point Theorems

In this section we ensure the existence of common fixed points for a family of

asymptotic pointwise nonexpansive mappings in a CAT(0) space. Before proving the

theorem some definitions have to be explained.

Definition 4.1.1. Let M be a metric space and F be a family of subsets of M . Then

we say that F defines a convexity structure on M if it contains the closed balls and is

stable by intersection.

Definition 4.1.2. ([24]) Let F be a convexity structure on M. We will say that F is

compact if any family {Aα}α∈Γ of elements of F has a nonempty intersection provided
⋂

α∈F Aα 6= ∅ for any finite subset F ⊂ Γ.

Let X be a complete CAT(0) space. We denote by C(X) the family of all closed

convex subsets of X. Then C(X) is a compact convexity structure on X (see e.g., [24]).

The existence of fixed points of just one asymptotic pointwise nonexpansive

mapping in CAT(0) space was proved by Hussain-Khamsi [24] as the following theorem.

Theorem 4.1.3. Let X be a complete CAT(0) space and C be a nonempty bounded closed

convex subset of X. Suppose that T : C → C is an asymptotic pointwise nonexpansive

mapping. Then F (T ) is nonempty closed and convex.

The following theorem is one of our main existence theorem. This theorem is

an extension of Theorem 4.1.3.

Theorem 4.1.4. Let X be a complete CAT(0) space, C be a nonempty bounded closed

convex subset of X. Then for any commuting family S of asymptotic pointwise non-

expansive mappings on C, the set F(S) of common fixed points of S is a nonempty

nonexpansive retract of C.

Proof. Let T be the family of all finite intersections of the fixed point sets of mappings

in the commutative family S. We first show that T has the finite intersection property.

Let T1, T2, ..., Tn ∈ S. By Theorem 4.1.3, F (T1) is a nonempty closed and convex subset

of C. We assume that A :=
⋂k−1

j=1 F (Tj) is nonempty closed and convex for some k ∈ N

with 1 < k ≤ n. For x ∈ A and j ∈ N with 1 ≤ j < k, we have

Tk(x) = Tk ◦ Tj(x) = Tj ◦ Tk(x).
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Thus Tk(x) is a fixed point of Tj, which implies that Tk(x) ∈ A, therefore A is invariant

under Tk. Again, by Theorem 4.1.3, Tk has a fixed point in A, i.e.,

k
⋂

j=1

F (Tj) = F (Tk)
⋂

A 6= ∅.

By induction,
⋂n

j=1 F (Tj) 6= ∅. Hence T has the finite intersection property since C(X)

is compact,

F(S) =
⋂

T∈T

T 6= ∅.

Obviously, the set is closed and convex. By Lemma 2.2.11 we obtain that the projection

map x 7→ P (x) is also a nonexpansive retraction from C onto F (T.) This implies the

desired conclusion.

As a consequence of Theorem 4.1.4, we obtain an analog of Bruck’s theorem

([6]).

Corollary 4.1.5. Let X be a complete CAT(0) space, C be a nonempty bounded closed

convex subset of X. Then for any commuting family S of nonexpansive mappings on C,

the set F(S) of common fixed points of S is a nonempty nonexpansive retract of C.

4.2 △-Convergence and Strong Convergence Theorems

Let X be a complete CAT(0) space and C be a closed convex subset of X. Let

T1, ..., Tm ∈ Tr(C) and let t ∈ (0, 1) and {nk} ⊂ N be an increasing sequence of natural

numbers. Let x1 ∈ C and define a sequence {xk} in C as:

xk+1 = (1 − t)xk ⊕ tT nk
m y(m−1)k, (4.2.1)

y(m−1)k = (1 − t)xk ⊕ tT nk

m−1y(m−2)k,

y(m−2)k = (1 − t)xk ⊕ tT nk

m−2y(m−3)k,

...

y2k = (1 − t)xk ⊕ tT nk

2 y1k,

y1k = (1 − t)xk ⊕ tT nk

1 y0k,

y0k = xk, k ∈ N.

We say that the sequence {xk} in (4.2.1) is well-defined if lim sup
k→∞

ank
(xk) = 1.

As in [35], we can choose a subsequence {ank
} which makes the sequence {xk}

well-defined since limk→∞ ak(x) = 1 for every x ∈ C.

We may observe that the same method used in proving the results in uniformly

convex Banach spaces can be used to obtain the analogous results for CAT(0) spaces

by replacing the norm with the distance. For completeness of the thesis we write them

in details.
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Lemma 4.2.1. Let X be a complete CAT(0) space, C be a nonempty closed convex

subset of X and let T1, ..., Tm ∈ Tr(C). Let t ∈ (0, 1) and {nk} ⊂ N be such that {xk}
in (4.2.1) is well-defined. Assume that F =

⋂m
i=1 F (Ti) 6= ∅. Then for each p ∈ F, there

are sequences of nonnegative real numbers {γk} and {δk} (depending on p) such that
∑∞

k=1 γk < ∞,
∑∞

k=1 δk < ∞ and the following statements hold:

(i) d(yik, p) ≤ (1 + γk)
id(xk, p), for all i = 1, 2, ..., m − 1;

(ii) d(xk+1, p) ≤ (1 + δk)d(xk, p);

(iii) limk→∞ d(xk, p) exists.

Proof. (i) Let p ∈ F and γk = bnk
(p) for all k ∈ N. Then

∑∞

k=1 γk < ∞. Consider

d(y1k, p) = d((1 − t)xk ⊕ tT nk

1 xk, p)

≤ (1 − t)d(xk, p) + td(T nk

1 xk, p)

≤ (1 − t)d(xk, p) + t(1 + bnk
(p))d(xk, p)

= (1 − t)d(xk, p) + t(1 + γk)d(xk, p)

≤ (1 + γk)d(xk, p).

Suppose that d(yjk, p) ≤ (1 + γk)
jd(xk, p) holds for some j = 1, 2, ..., m− 2. Then

d(y(j+1)k, p) = d((1 − t)xk ⊕ tT nk

j+1yjk, p)

≤ (1 − t)d(xk, p) + td(T nk

j+1yjk, p)

≤ (1 − t)d(xk, p) + t(1 + γk)d(yjk, p)

≤ (1 − t)d(xk, p) + t(1 + γk)
j+1d(xk, p)

=

[

1 − t + t

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
γr

k

)]

d(xk, p)

≤

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
γr

k

)

d(xk, p)

= (1 + γk)
j+1d(xk, p).

By mathematical induction, we have

d(yik, p) ≤ (1 + γk)
id(xk, p), for all i = 1, 2, ..., m− 1. (4.2.2)

(ii) By using (4.2.2) we obtain that

d(xk+1, p) = d((1 − t)xk ⊕ tT nk
m y(m−1)k, p)

≤ (1 − t)d(xk, p) + td(T nk
m y(m−1)k, p)

≤ (1 − t)d(xk, p) + t(1 + γk)d(y(m−1)k, p)

≤ (1 − t)d(xk, p) + t(1 + γk)
md(xk, p)

=

[

1 − t + t

(

1 +
m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
γr

k

)]

d(xk, p)

≤

(

1 +

m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
γr

k

)

d(xk, p)

= (1 + δk)d(xk, p),
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where δk =
∑m

r=1
m(m−1)···(m−r+1)

r!
γr

k. Since
∑∞

k=1 γk < ∞, then
∑∞

k=1 δk < ∞.

(iii) follows from part (ii) and Lemma 3.2.4.

Lemma 4.2.2. Let X be a complete CAT(0) space, C be a nonempty closed convex subset

of X and T1, ..., Tm ∈ Tr(C). Let t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in (4.2.1)

is well-defined. Assume that F =
⋂m

i=1 F (Ti) 6= ∅. Then

(i) limk→∞ d(xk, T
nk

i y(i−1)k) = 0, for all i = 1, 2, ..., m;

(ii) limk→∞ d(xk, T
nk

i xk) = 0, for all i = 1, 2, ..., m,

(iii) If the set J = {k ∈ N : nk+1 = 1+nk} is quasi-periodic, then limk→∞ d(xk, Tixk) =

0, for all i = 1, 2, ..., m.

Proof. Let p ∈ F By Lemma 4.2.1 (iii), we get limk→∞ d(xk, p) exists. Let

lim
k→∞

d(xk, p) = c. (4.2.3)

By Lemma 4.2.1 (i), we have

d(yjk, p) ≤ (1 + γk)
jd(xk, p), for all j = 1, 2, ..., m− 1 (4.2.4)

By taking on both sides the lim sup as k → ∞, we get that

lim sup
k→∞

d(yjk, p) ≤ c, for j = 1, 2, ..., m− 1. (4.2.5)

Since

d(xk+1, p) = d((1 − t)xk ⊕ tT nk
m y(m−1)k, p)

≤ (1 − t)d(xk, p) + td(T nk
m y(m−1)k, p)

≤ (1 − t)d(xk, p) + t(1 + γk)d(y(m−1)k, p)

...

≤ (1 − tm−j)(1 + γk)
m−jd(xk, p)

+ tm−j(1 + γk)
m−jd(yjk, p).

Then

d(xk, p) ≤
d(xk, p)

tm−j
−

d(xk+1, p)

tm−j(1 + γk)m−j
+ d(yjk, p).

It follows that

c ≤ lim inf
k→∞

d(yjk, p), for j = 1, 2, ..., m − 1. (4.2.6)

From (4.2.5) and (4.2.6), we have

lim
k→∞

d(yjk, p) = c, for each j = 1, 2, ..., m − 1.

That is,

lim
k→∞

d((1 − t)xk ⊕ tT nk

j y(j−1)k, p) = lim
k→∞

(yjk, p) = c,
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for all j = 1, 2, ..., m− 1. We also obtain from (4.2.5) that

lim sup
k→∞

d(T nk

j y(j−1)k, p) ≤ c, for each j = 1, 2, ..., m − 1.

By Lemma 2.2.14, we get that

lim
k→∞

d(T nk

j y(j−1)k, xk) = 0, for each j = 1, 2, ..., m− 1. (4.2.7)

For the case j = m, we have by Lemma 4.2.1(i) that

d(T nk
m y(m−1)k, p) ≤ (1 + γk)d(y(m−1)k, p)

≤ (1 + γk)
md(xk, p).

Since limk→∞ d(xk, p) = c,

lim sup
k→∞

d(T nk
m y(m−1)k, p) ≤ c.

Moreover,

lim
k→∞

d((1 − t)xk ⊕ tT nk
m y(m−1)k, p) = lim

k→∞
d(xk+1, p) = c.

Again, by Lemma 2.2.14, we get that

lim
k→∞

d(T nk
m y(m−1)k, xk) = 0. (4.2.8)

Thus, (4.2.7) and (4.2.8) imply that

lim
k→∞

d(T nk

i y(i−1)k, xk) = 0, for each i = 1, 2, ..., m. (4.2.9)

(ii) For j = 1, we have by part (i) that

lim
k→∞

d(T nk

1 xk, xk) = 0. (4.2.10)

If j = 2, 3, ..., m, then we have

d(T nk

j xk, xk) ≤ d(T nk

j xk, T
nk

j y(j−1)k) + d(T nk

j y(j−1)k, xk)

≤ ank
(xk)d(xk, y(j−1)k) + d(T nk

j y(j−1)k, xk)

≤ ank
(xk)td(xk, T

nk

j−1y(j−2)k) + d(T nk

j y(j−1)k, xk).

By part (i) and lim supk→∞ ank
(xk) = 1, we get

lim sup
k→∞

d(T nk

j xk, xk) = 0 for j = 2, 3, ..., m. (4.2.11)

By (4.2.10) and (4.2.11), we have

lim
k→∞

d(T nk

j xk, xk) = 0, for all j = 1, 2, ..., m, (4.2.12)
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which completes the prove of (ii).

Observe that (4.2.8) and the construction of the sequence {xk} yield

lim
k→∞

d(xk+1, xk) = 0. (4.2.13)

(iii) We will show that

lim
k→∞

d(Tjxk, xk) = 0 for all j = 1, 2, ..., m. (4.2.14)

It is enough to prove that d(Tjxk, xk) → 0 as k → ∞ through J . Indeed, let q be a

quasi-period of J and ε > 0 be given. Then there exists N1 ∈ N such that

lim
k→∞

d(Tjxk, xk) <
ε

3
, for all k ∈ J such that k ≥ N1. (4.2.15)

By the quasi-periodicity of J , for each l ∈ N there exists il ∈ J such that |l − il| ≤ q.

Without loss of generality, we can assume that l ≤ il ≤ l+q (the proof for the other case

is identical). Let M = sup{a1(x) : x ∈ C}. Then M ≥ 1. Since liml→∞ d(xl+1, xl) = 0

by (4.2.13), there exists N2 ∈ N such that

d(xl+1, xl) <
ε

3qM
, for all l ≥ N2. (4.2.16)

This implies that for all l ≥ N2,

d(xil , xl) ≤ d(xil, xil−1) + ... + d(xl+1, xl) ≤ q

(

ε

3qM

)

=
ε

3M
. (4.2.17)

By the definition of T, we have

d(Tjxil , Tjxl) ≤ Md(xil , xl) ≤ M
( ε

3M

)

=
ε

3
. (4.2.18)

Let N = max{N1, N2}. Then for l ≥ N, we have from (4.2.15), (4.2.17) and (4.2.18)

that

d(xl, Tjxl) ≤ d(xl, xil) + d(xil , Tjxil) + d(Tjxil , Tjxl) <
ε

3M
+

ε

3
+

ε

3
≤ ε.

To prove that d(Tjxk, xk) → 0 as k → ∞ through J . Since J = {k ∈ N :

nk+1 = nk + 1} is quasi-periodic then for each k ∈ J , we have

d(xk, Tjxk) ≤ d(xk, xk+1) + d(xk+1, T
nk+1

j xk+1) + d(T
nk+1

j xk+1, T
nk+1

j xk)

+ d(T nk+1
j xk, Tjxk)

≤ d(xk, xk+1) + d(xk+1, T
nk+1

j xk+1) + ank+1
(xk+1)d(xk+1, xk)

+ a1(xk)d(T nk

j xk, xk).

This, together with (4.2.12) and (4.2.13), we can obtain that d(Tjxk, xk) → 0 as k → ∞
through J .
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For approximating fixed points in this space, we are interested in proving the

△−convergence and strong convergence of the sequence defined in (4.2.1). For the

△−convergence, its proof is different to that of weakly convergence in Banach spaces.

More lemmas are needed to apply. All of them can be found in [35] (see also [24]).

Lemma 4.2.3. Let X be a complete CAT(0) space, C be a nonempty closed convex subset

of X and let T ∈ Tr(C). If limn→∞ d(xn, Txn) = 0, then limn→∞ d(xn, T lxn) = 0 for

every l ∈ N.

The following lemma is the demiclosed principal for asymptotic pointwise non-

expansive mapping in CAT(0) spaces.

Lemma 4.2.4. Let X be a complete CAT(0) space, C be a nonempty closed convex

subset of X and let T ∈ Tr(C). Suppose {xn} is a bounded sequence in C such that

limn→∞ d(xn, Txn) = 0 and ∆ − limn xn = w. Then Tw = w.

Lemma 4.2.5. Let X be a complete CAT(0) space, C be a nonempty closed convex subset

of X and let T : C → C be an asymptotic pointwise nonexpansive mapping. Suppose

{xn} is a bounded sequence in C such that limn→∞ d(xn, Txn) = 0 and {d(xn, v)}
converges for each v ∈ F (T ), then ωw(xn) ⊂ F (T ). Here ωw(xn) = ∪A ({un}) where

the union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists of

exactly one point.

Proof. Let u ∈ ωw(xn). Then there exists a subsequence {un} of {xn} such that

A({un}) = {u}. By Lemma 2.2.13 (i) and (ii), there exists a subsequence {vn} of

{un} such that ∆ − limn vn = v ∈ C. Since limn→∞ d(xn, Txn) = 0,

lim
n→∞

d(vn, T vn) = 0.

By Lemma 4.2.4, we have v ∈ F (T ). We also have u = v by Lemma 2.2.13 (iii). This

shows that ωw(xn) ⊂ F (T ).

Finally we will show that ωw(xn) consists of exactly one point. Let {un} be a

subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊂
F (T ), {d(xn, u)} converges. Again, by Lemma 2.2.13 (iii), x = u. This completes the

proof.

Now, we are ready to prove our ∆−convergence and strong convergence theo-

rems.

Theorem 4.2.6. Let X be a complete CAT(0) space, C be a nonempty closed convex

subset of X and T1, ..., Tm ∈ Tr(C). Let t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in

(4.2.1) is well-defined. Suppose that F =
⋂m

i=1 F (Ti) 6= ∅ and the set J = {k ∈ N :

nk+1 = 1 + nk} is quasi-periodic. Then {xk} ∆−converges to a common fixed point of

the family {T1, T2, ..., Tm}.

Proof. Let p ∈ F. By Lemma 4.2.1 (iii), we have limk→∞ d(xk, p) exists and hence {xk}
is bounded. Since we have from Lemma 4.2.2 (iii) that limk→∞ d(xk, Tjxk) = 0 for all

j = 1, 2, ..., m, it follows from Lemma 4.2.5 that ωw(xk) ⊂ F (Tj) for all j = 1, 2, ..., m.
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And thus ωw(xk) ⊂
⋂m

j=1 F (Tj) = F. Since ωw(xk) consists of exactly one point, {xk}
∆−converges to an element of F as desired.

Theorem 4.2.7. Let X be a complete CAT(0) space, C be a nonempty closed convex

subset of X and T1, ..., Tm ∈ Tr(C). Assume that T l
i is semi-compact for some i ∈

{1, 2, ..., m} and l ∈ N. Let t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in (4.2.1) is well-

defined. Suppose that F =
⋂m

i=1 F (Ti) 6= ∅ and the set J = {k ∈ N : nk+1 = 1 + nk}
is quasi-periodic. Then {xk} converges strongly to a common fixed point of the family

{T1, T2, ..., Tm}.

Proof. By Lemma 4.2.2 (iii), we have

lim
k→∞

d(xk, Tixk) = 0, for i = 1, 2, ..., m. (4.2.19)

Let i ∈ {1, 2, ..., m} be such that T l
i is semi-compact. Thus, by Lemma 4.2.3,

lim
k→∞

d(xk, T
l
i xk) = 0.

We can also find a subsequence {xkj
} of {xk} such that limj→∞ xkj

= p ∈ C. Hence,

from (4.2.19), we have

d(p, Tip) = lim
j→∞

d(xkj
, Tixkj

) = 0, for all i = 1, 2, ..., m.

Thus p ∈ F and but since limk→∞ d(xk, q) exists, {xk} must itself converges to p which

completes the proof.

Next is the lemma we constructed for proving the sufficient condition for strong

convergence of the sequence {xn} defined by (4.2.1) to a common fixed point of the

family {T1, T2, ..., Tm}.

Lemma 4.2.8. Let X be a complete CAT(0) space, C be a nonempty closed convex subset

of X and T1, ..., Tm ∈ Tr(C) be such that
∑∞

k=1 supx∈C bnk
(x) < ∞. Let t ∈ (0, 1) and

{nk} ⊂ N be such that {xk} in (4.2.1) is well-defined. Assume that F =
⋂m

i=1 F (Ti) 6= ∅.
Then

(i) there exists a sequence {vk} in [0,∞) such that
∑∞

k=1 vk < ∞ and d(xk+1, p) ≤
(1 + vk)

md(xk, p), for all p ∈ F and all k ∈ N,

(ii) there exists a constant M > 0 such that d(xk+l, p) ≤ Md(xk, p), for all p ∈ F and

k, l ∈ N.

Proof. Let p ∈ F.

(i) Let vk = supx∈C bnk
(x) for all k ∈ N. Since

∑∞

k=1 supx∈C bnk
(x) < ∞, we

have
∑∞

k=1 vk < ∞. By Lemma 2.2.10 (i), we have
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d(y1k, p) = d((1 − t)xk ⊕ tT nk

1 xk, p)

≤ (1 − t)d(xk, p) + td(T nk

1 xk, p)

≤ (1 − t)d(xk, p) + t(1 + bnk
(p))d(xk, p)

≤ (1 + bnk
(p))d(xk, p)

≤ (1 + vk)d(xk, p).

Suppose that d(yjk, p) ≤ (1 + vk)
jd(xk, p) holds for some j = 1, 2, ..., m − 2. Then

d(y(j+1)k, p) = d((1 − t)xk ⊕ tT nk

j+1yjk, p)

≤ (1 − t)d(xk, p) + td(T nk

j+1yjk, p)

≤ (1 − t)d(xk, p) + t(1 + bnk
(p))d(yjk, p)

≤ (1 − t)d(xk, p) + t(1 + vk)d(yjk, p)

≤ (1 − t)d(xk, p) + t(1 + vk)
j+1d(xk, p)

=

[

1 − t + t

(

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
vr

k

)]

d(xk, p)

≤

[

1 +

j+1
∑

r=1

(j + 1)j · · · (j + 2 − r)

r!
vr

k

]

d(xk, p)

= (1 + vk)
j+1d(xk, p).

By mathematical induction, we have

d(yik, p) ≤ (1 + vk)
id(xk, p), for all i = 1, 2, ..., m − 1. (4.2.20)

This implies that

d(xk+1, p) = d((1 − t)xk ⊕ tT nk
m y(m−1)k, p)

≤ (1 − t)d(xk, p) + td(T nk
m y(m−1)k, p)

≤ (1 − t)d(xk, p) + t(1 + bnk
(p))d(y(m−1)k, p)

≤ (1 − t)d(xk, p) + t(1 + vk)(1 + vk)
m−1d(xk, p)

≤ (1 − t)d(xk, p) + t(1 + vk)
md(xk, p)

=

[

1 − t + t

(

1 +
m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
vr

k

)]

d(xk, p)

≤

[

1 +
m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
vr

k

]

d(xk, p)

= (1 + vk)
md(xk, p)

which completes the proof of part (i).

(ii) We observe that (1 + α)n ≤ enα holds for all n ∈ N and α ≥ 0.
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It follows from part (i) that for k, l ∈ N,

d(xk+l, p) ≤ (1 + vk+l−1)
md(xk+l−1, p)

≤ exp{mvk+l−1}d(xk+l−1, p) ≤ · · · ≤ exp

{

m

k+l−1
∑

i=1

vi

}

d(xk, p)

≤ exp

{

m

∞
∑

i=1

vi

}

d(xk, p).

The proof is complete by setting M = exp{m
∑∞

i=1 vi}.

Theorem 4.2.9. Let X be a complete CAT(0) space, C be a nonempty closed con-

vex subset of X and T1, ..., Tm ∈ Tr(C) be such that
∑∞

k=1 supx∈C bnk
(x) < ∞. Let

t ∈ (0, 1) and {nk} ⊂ N be such that {xk} in (4.2.1) is well-defined. Assume that

F =
⋂m

i=1 F (Ti) 6= ∅. Then {xk} converges strongly to some point in F if and only if

lim infk→∞ d(xk, F ) = 0, where d(x, F ) = infp∈F d(x, p).

Proof. The necessity is obvious. Now, we prove the sufficiency. From Lemma 4.2.8 (i),

we have

d(xk+1, p) ≤ (1 + vk)
md(xk, p), for all p ∈ F and all k ∈ N.

This implies that

d(xk+1, F ) ≤ (1 + vk)
md(xk, p) =

(

1 +
m
∑

r=1

m(m − 1) · · · (m − r + 1)

r!
vr

k

)

d(xk, F ).

Since
∑∞

k=1 vk < ∞,
∑∞

k=1

∑m
r=1

m(m−1)···(m−r+1)
r!

vr
k < ∞. By Lemma 3.2.4, we get

limk→∞ d(xk, F ) = 0. Next, we show that {xk} is a Cauchy sequence. By Lemma

4.2.8 (ii), there exists an M > 0 such that

d(xk+l, p) ≤ Md(xk, p), for all p ∈ F and k, l ∈ N. (4.2.21)

Since limk→∞ d(xk, F ) = 0, for each ǫ > 0, there exists k1 ∈ N such that

d(xk, F ) <
ǫ

2M
, for all k ≥ k1.

Hence there exists z1 ∈ F such that

d(xk1
, z1) <

ǫ

2M
. (4.2.22)

By (4.2.21) and (4.2.22) for k ≥ k1, we have

d(xk+l, xk) ≤ d(xk+l, z1) + d(xk, z1) ≤ Md(xk1
, z1) + Md(xk1

, z1) < 2M
( ǫ

2M

)

= ǫ.

This shows that {xk} is a Cauchy sequence and so converges to some p ∈ C. Actually,

p ∈ C because {xk} ⊂ C and C is a closed subset of X. Next we show that p ∈ F. Since

F (Ti) is a closed subset in C for all i = 1, 2, ..., m, so is F = ∩m
i=1F (Ti). From the
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continuity of d(x, F ) with d(xk, F ) → 0 and xk → p as k → ∞, we get d(p, F ) = 0 and

thus p ∈ F. Therefore, the proof is complete.

As an immediate consequence of Theorem 4.2.9, we obtain the following corol-

lary.

Corollary 4.2.10. Let X be a complete CAT(0) space, C be a nonempty closed convex

subset of X and T1, ..., Tm ∈ Tr(C) be such that
∑∞

k=1 supx∈C bnk
(x) < ∞. Let t ∈

(0, 1) and {nk} ⊂ N be such that {xk} in (4.2.1) is well-defined. Assume that F =
⋂m

i=1 F (Ti) 6= ∅. Then {xk} converges strongly to a point p ∈ F if and only if there

exists a subsequence {xkj
} of {xk} which converges to p.

Theorem 4.2.11. Let X be a complete CAT(0) space and C be a nonempty closed

convex subset of X. Let {T1, ..., Tm} ⊂ Tr(C) be satisfy Condition (A′′). Assume that

F =
⋂m

i=1 F (Ti) 6= ∅ and
∑∞

k=1 supx∈C bnk
(x) < ∞. Let t ∈ (0, 1) and {nk} ⊂ N be

such that {xk} in (4.2.1) is well-defined. If the set J = {k ∈ N : nk+1 = 1 + nk}
is quasi-periodic, then {xk} converges strongly to a common fixed point of the family

{T1, T2, ..., Tm}.

Proof. By Lemma 4.2.2 (iii), limk→∞ d(xk, Tixk) = 0, for all i = 1, 2, ..., m. By using

Condition (A′′), there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0,

f(r) > 0 for r ∈ (0,∞) such that

lim
k→∞

f(d(xk, F )) ≤ lim
k→∞

d(xk, Tjxk) = 0 for some j = 1, ..., m.

This implies that limk→∞ d(xk, F ) = 0. The conclusion follows from Theorem 4.2.9.


