Chapter 5 Conclusion

In this chapter, we conclude all main results obtained in this thesis. It is divided into 2 sections. First is the results in Banach spaces. Second is ones in CAT(0) spaces. Each section inlcludes both fixed point theorems and convergence theorems.

5.1 Results in uniformly convex Banach Spaces

- (1) Let X be a uniformly convex Banach space and C be a nonempty bounded closed convex subset of X. Then every commuting family \mathcal{S} of asymptotic pointwise nonexpansive mappings on C has a nonempty closed convex common fixed point set.
- (2) Let X be a Banach space, C be a nonempty closed convex subset of X and let $T_1, ..., T_m \in \mathcal{T}_r(C)$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (3.2.6) is well-defined. Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Then for each $p \in F$, there are sequences of nonnegative real numbers $\{\gamma_k\}$ and $\{\delta_k\}$ (depending on p) such that $\sum_{k=1}^{\infty} \gamma_k < \infty, \sum_{k=1}^{\infty} \delta_k < \infty$ and the following statements hold:
 - (i) $||y_{ik} p|| \le (1 + \gamma_k)^i ||x_k p||$, for all i = 1, 2, ..., m 1;
 - (ii) $||x_{k+1} p|| \le (1 + \delta_k) ||x_k p||;$
 - (iii) $\lim_{k\to\infty} ||x_k p||$ exists.
- (3) Let X be a uniformly convex Banach space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (3.2.6) is well-defined. Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Then
 - (i) $\lim_{k\to\infty} ||x_k T_i^{n_k} y_{(i-1)k}|| = 0$, for all i = 1, 2, ..., m;
 - (ii) $\lim_{k\to\infty} ||x_k T_i^{n_k} x_k|| = 0$, for all i = 1, 2, ..., m;
 - (iii) If the set $\mathcal{J} = \{k \in \mathbb{N} : n_{k+1} = 1 + n_k\}$ is quasi-periodic, then $\lim_{k \to \infty} ||x_k T_i x_k|| = 0$, for all i = 1, 2, ..., m.
- (4) Let X be a uniformly convex Banach space with the Opial property and C be a nonempty closed convex subset of X. Let $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that the sequence $\{x_k\}$ in (3.2.6) is well-defined. If the set $\mathcal{J} = \{k : n_{k+1} = 1 + n_k\}$ is quasi-periodic, then the sequence $\{x_k\}$ converges weakly to a common fixed point of the family $\{T_1, T_2, ..., T_m\}$.

- (5) Let X be a uniformly convex Banach space and C be a nonempty closed convex subset of X. Let $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that T_i^l is semi-compact for some $i \in \{1, 2, ..., m\}$ and $l \in \mathbb{N}$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that the sequence $\{x_k\}$ in (3.2.6) is well-defined. Suppose that $F := \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and the set $\mathcal{J} = \{k : n_{k+1} = 1 + n_k\}$ is quasi-periodic, then the sequence $\{x_k\}$ converges strongly to a common fixed point of the family $\{T_1, T_2, ..., T_m\}$.
- (6) Let X be a Banach space, C be a nonempty closed convex subset of X and let $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that $F := \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (3.2.6) is well-defined. Assume that $\sum_{k=1}^{\infty} \sup_{x \in C} b_{n_k}(x) < \infty$. Then there exists a sequence $\{v_k\}$ in $[0, \infty)$ and a nonnegative real number M such that $\sum_{k=1}^{\infty} v_k < \infty$ and the following statements hold for all $p \in F$:
 - (i) $||x_{k+1} p|| \le (1 + v_k)^m ||x_k p||$, for all $k \in \mathbb{N}$;
 - (ii) $||x_{k+l} p|| \le M ||x_k p||$, for all $k, l \in \mathbb{N}$;
- (7) Let X be a Banach space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (3.2.6) is well-defined. Assume that $\sum_{k=1}^{\infty} \sup_{x \in C} b_{n_k}(x) < \infty$. Then $\{x_k\}$ converges strongly to a point in F if and only if $\liminf_{k \to \infty} d(x_k, F) = 0$, where $d(x, F) = \inf_{p \in F} d(x, p)$.
- (8) Let X be a Banach space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (3.2.6) is well-defined. Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and $\sum_{k=1}^\infty \sup_{x \in C} b_{n_k}(x) < \infty$. Then the sequence $\{x_k\}$ converges strongly to a point in $p \in F$ if and only if there exists a subsequence $\{x_{k_i}\}$ of $\{x_k\}$ which converges to p.
- (9) Let X be a uniformly convex Banach space and C be a nonempty closed convex subset of X. Let $\{T_1, ..., T_m\} \subset \mathcal{T}_r(C)$ be satisfy Condition (A''). Let $t \in (0,1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (3.2.6) is well-defined. Suppose that $\sum_{k=1}^{\infty} \sup_{x \in C} b_{n_k}(x) < \infty, F = \bigcap_{i=1}^{m} F(T_i) \neq \emptyset$ and the set $\mathcal{J} = \{k \in \mathbb{N} : n_{k+1} = 1 + n_k\}$ is quasi-periodic. Then $\{x_k\}$ converges strongly to a common fixed point of the family $\{T_i : i = 1, 2, ..., m\}$.

5.2 Results in CAT(0) Spaces

- (1) Let X be a complete CAT(0) space, C be a nonempty bounded closed convex subset of X. Then for any commuting family \mathcal{S} of asymptotic pointwise nonexpansive mappings on C, the set $\mathcal{F}(\mathcal{S})$ of common fixed points of \mathcal{S} is a nonempty nonexpansive retract of C.
- (2) Let X be a complete CAT(0) space, C be a nonempty bounded closed convex subset of X. Then for any commuting family S of nonexpansive mappings on C, the set \$\mathcal{F}(S)\$ of common fixed points of \$\mathcal{S}\$ is a nonempty nonexpansive retract of C.

- (3) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and let $T_1, ..., T_m \in \mathcal{T}_r(C)$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Then for each $p \in F$, there are sequences of nonnegative real numbers $\{\gamma_k\}$ and $\{\delta_k\}$ (depending on p) such that $\sum_{k=1}^{\infty} \gamma_k < \infty, \sum_{k=1}^{\infty} \delta_k < \infty$ and the following statements hold:
 - (i) $d(y_{ik}, p) \leq (1 + \gamma_k)^i d(x_k, p)$, for all i = 1, 2, ..., m 1;
 - (ii) $d(x_{k+1}, p) \leq (1 + \delta_k) d(x_k, p);$
 - (iii) $\lim_{k\to\infty} d(x_k, p)$ exists.
- (4) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Then
 - (i) $\lim_{k\to\infty} d(x_k, T_i^{n_k} y_{(i-1)k}) = 0$, for all i = 1, 2, ..., m;
 - (ii) $\lim_{k\to\infty} d(x_k, T_i^{n_k} x_k) = 0$, for all i = 1, 2, ..., m,
 - (iii) If the set $\mathcal{J} = \{k \in \mathbb{N} : n_{k+1} = 1 + n_k\}$ is quasi-periodic, then $\lim_{k \to \infty} d(x_k, T_i x_k) = 0$, for all i = 1, 2, ..., m.
- (5) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Suppose that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and the set $\mathcal{J} = \{k \in \mathbb{N} : n_{k+1} = 1 + n_k\}$ is quasi-periodic. Then $\{x_k\} \Delta$ -converges to a common fixed point of the family $\{T_1, T_2, ..., T_m\}$.
- (6) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$. Assume that T_i^l is semi-compact for some $i \in \{1, 2, ..., m\}$ and $l \in \mathbb{N}$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Suppose that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and the set $\mathcal{J} = \{k \in \mathbb{N} : n_{k+1} = 1 + n_k\}$ is quasi-periodic. Then $\{x_k\}$ converges strongly to a common fixed point of the family $\{T_1, T_2, ..., T_m\}$.
- (7) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that $\sum_{k=1}^{\infty} \sup_{x \in C} b_{n_k}(x) < \infty$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Assume that $F = \bigcap_{i=1}^{m} F(T_i) \neq \emptyset$. Then
 - (i) there exists a sequence $\{v_k\}$ in $[0, \infty)$ such that $\sum_{k=1}^{\infty} v_k < \infty$ and $d(x_{k+1}, p) \le (1 + v_k)^m d(x_k, p)$, for all $p \in F$ and all $k \in \mathbb{N}$,
 - (ii) there exists a constant M > 0 such that $d(x_{k+l}, p) \le Md(x_k, p)$, for all $p \in F$ and $k, l \in \mathbb{N}$.
- (8) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that $\sum_{k=1}^{\infty} \sup_{x \in C} b_{n_k}(x) < \infty$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$. Then $\{x_k\}$ converges strongly to some point in F if and only if $\liminf_{k \to \infty} d(x_k, F) = 0$, where $d(x, F) = \inf_{p \in F} d(x, p)$.

- (9) Let X be a complete CAT(0) space, C be a nonempty closed convex subset of X and $T_1, ..., T_m \in \mathcal{T}_r(C)$ be such that $\sum_{k=1}^{\infty} \sup_{x \in C} b_{n_k}(x) < \infty$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. Assume that $F = \bigcap_{i=1}^{m} F(T_i) \neq \emptyset$. Then $\{x_k\}$ converges strongly to a point $p \in F$ if and only if there exists a subsequence $\{x_{k_i}\}$ of $\{x_k\}$ which converges to p.
- (10) Let X be a complete CAT(0) space and C be a nonempty closed convex subset of X. Let $\{T_1, ..., T_m\} \subset \mathcal{T}_r(C)$ be satisfy Condition (A''). Assume that $F = \bigcap_{i=1}^m F(T_i) \neq \emptyset$ and $\sum_{k=1}^\infty \sup_{x \in C} b_{n_k}(x) < \infty$. Let $t \in (0, 1)$ and $\{n_k\} \subset \mathbb{N}$ be such that $\{x_k\}$ in (4.2.1) is well-defined. If the set $\mathcal{J} = \{k \in \mathbb{N} : n_{k+1} = 1 + n_k\}$ is quasi-periodic, then $\{x_k\}$ converges strongly to a common fixed point of the family $\{T_1, T_2, ..., T_m\}$.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved