
Chapter 2
Preliminaries

In this chapter, we present some notions and results to be referred in the next
chapters. Section 2.1 concerns with the notion of metric spaces and Banach spaces.
Section 2.2 deals with the notion of multivalued mappings. In section 2.3, the
terminology of ultrapower of Banach spaces and related notions are given.

2.1 Metric Spaces and Banach Spaces
In this section, we state basic concepts and fundamental results in metric spaces
and Banach spaces.

Definition 2.1.1. Let X be a nonempty set and d : X ×X → R a function. Then
d is called a metric on X if the following properties hold for all x, y, z ∈ X:

(i) (Positive Definiteness) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;

(ii) (Symmetry) d(x, y) = d(y, x);

(iii) (Triangle Inequality) d(x, y) ≤ d(x, z) + d(z, y).

The valued of metric d at (x, y) is called distance between x and y, and the ordered
pair (X, d) is called metric space.

Example 2.1.2. Some standard examples of metric spaces:

(i) Euclidean space (Rn, d), for x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn,

d(x, y) =
√
(x1 − y1)2 + ...+ (xn − yn)2.

(ii) l∞: the set of all bounded sequences of complex numbers with

d(x, y) = sup
n∈N

|xn − yn|,

where x = {xn}, y = {yn} ∈ l∞.

(iii) C([a, b]): the set of all continuous real-valued functions on [a, b] with

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|,

where x, y ∈ C([a, b]).
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Let (X, d), (Y, d′) be metric spaces. A sequence {xn} in X is said to be
convergent to x ∈ X if limn→∞ d(xn, x) = 0. In this case, we write xn →
x or limn→∞ xn = x. For any ε > 0 and x ∈ X, we define the open ball with
center x and radius ε,

B(x, ε) := {y ∈ X : d(x, y) < ε}.

A mapping t : X → Y is said to be continuous at a point x if for every ε > 0,
there is a δ > 0 such that

d′(tx, ty) < ε for all y satisfying d(x, y) < δ.

t is said to be continuous if it is continuous at each point of X.

Definition 2.1.3. Let E be a subset of a metric space (X, d).

(i) E is open if for x ∈ E, there exists ε > 0 such that B(x, ε) ⊂ E.

(ii) E is closed if X \ E is open.

(iii) E is bounded if δ(E) := supx,y∈E d(x, y) < ∞.

(iv) E is compact if every sequence in E has a convergent subsequence.

Proposition 2.1.4. Let E be a subset of a metric space (X, d).

(i) E is closed if and only if the limit of every convergent sequence in E is an
element of E.

(ii) If E is compact, then E is closed and bounded.

(iii) If X is compact, then E is compact if and only if E is closed.

(iv) If t : X → X is continuous and E is compact, then t(E) is also compact.

Definition 2.1.5. A linear space or vector space X over the field F (the real valued
R or the complex number C) is a set X together with an internal binary operation
“+” called addition and a scalar multiplication carrying (α, x) in F×X to αx in
X satisfying the following for all x, y, z ∈ X and α, β ∈ F:

(i) x+ y = y + x;

(ii) x+ (y + z) = (x+ y) + z;

(iii) there exists an element 0 ∈ X called the zero vector of X such that x+0 = x

for all x ∈ X;
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(iv) given x ∈ X, there exists an element −x ∈ X called the additive inverse or
the negative of x such that x+ (−x) = 0;

(v) α(x+ y) = αx+ αy;

(vi) (α + β)x = αx+ βx;

(vii) (αβ)x = α(βx);

(viii) 1x = x.

Example 2.1.6. The following are vector spaces.

(i) The set of real-valued functions of a real variable on [0, 1]. Addition and
multiplication by a scalar are defined as follows:

f + g : (f + g)(t) = f(t) + g(t),

αf : (αf)(t) = αf(t).

(ii) The set of n-tuples of real numbers:

Rn = {(a1, a2, .., an) : ai ∈ R, for all i = 1, 2, .., n},

where addition and scalar multiplication are defined by

(a1, a2, .., an) + (b1, b2, .., bn) = (a1 + b1, a2 + b2, .., an + bn),

α(a1, a2, .., an) = (αa1, αa2, .., αan).

Definition 2.1.7. Let E be a nonempty subset of a vector space X over field F.

(i) E is said to be linear subspace of X if for all x, y ∈ E and α, β ∈ F, we have
αx+ βy ∈ E.

(ii) E is convex if λx+ (1− λ)y ∈ E for x, y ∈ E and λ ∈ [0, 1].

(iii) The convex hull of E, co(E)=∩{K ⊂ X : K ⊃ E and K is convex }. It is
easy to see that co(E) = {

∑n
i=1 αixi |xi ∈ E,αi ≥ 0 and

∑n
i=1 αi = 1}.

(iv) The closed convex hull of E,

co(E) = ∩{K ⊂ X : K ⊃ E and K is closed and convex }.

Definition 2.1.8. A function ∥ · ∥ from a (real) linear space X into R is called a
norm if it satisfies the following properties for all x, y ∈ X and α ∈ R:
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(i) ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0;

(ii) ∥αx∥ = |α|∥x∥;

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

From this norm we can define a metric, induced by the norm ∥ · ∥, by

d(x, y) = ∥x− y∥ for x, y ∈ X.

A linear space X equipped with the norm ∥ · ∥ is called a normed linear space.

A sequence {xn} in a normed space (X, ∥ · ∥) is said to be convergent to x ∈ X

if limn→∞ ∥xn − x∥ = 0. In this case, we write xn → x or limn→∞ xn = x. A
sequence {xn} in X is Cauchy if limn,m→∞ ∥xn − xm∥ = 0.

Definition 2.1.9. A normed linear space (X, ∥ ·∥) (or simply X) which is complete,
i.e. every Cauchy sequence in X is convergent, is called a Banach space.

Example 2.1.10.

(i) Euclidean space Rn and unitary space Cn are Banach spaces with norm

∥x∥ =

(
n∑

i=1

|xi|2
)1/2

.

(ii) Space l∞ is a Banach space with norm ∥x∥ = supi |xi|.

(iii) L2[a, b]: the vector space of all continuous real-valued functions on [a, b]

forms a normed space with norm

∥x∥ =

(∫ b

a

x(t)2dt

)1/2

.

This space is not complete.

A function f : X → R is said to be linear if f(αx + βy) = αf(x) + βf(y) for
all x, y ∈ X and α, β ∈ R. In addition, if there exists a real number M > 0 such
that |f(x)| ≤ M∥x∥ for all x ∈ X, we say that f is a bounded linear functional.

Definition 2.1.11. Let X be a normed space. The dual space of X, denote by X∗,
is the space of all bounded linear functionals on X with the operator norm defined
by:

∥f∥ = sup{|f(x)| : x ∈ BX} = sup{|f(x)| : x ∈ SX}

where BX = {x ∈ X : ∥x∥ ≤ 1} is the unit ball of X and SX = {x ∈ X : ∥x∥ = 1}
is the unit sphere of X.
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It is not difficult to see that X∗ equipped with the norm is a Banach space.
The topology induced by a norm is too strong in the sense that it has many open
sets. Indeed, in order that each bounded sequence in X has a norm convergent
subsequence, it is necessary and sufficient that X be finite dimensional. This fact
leads us to consider other weaker topologies on normed spaces which are related to
the linear structure of the spaces to search for subsequential extraction principles.
So it is worthwhile to define the weaker topology for a Banach space X.

Definition 2.1.12. Let X be a normed space. The topology for X induced by the
topologizing family X∗ is the weak topology of X or the topology σ(X,X∗).

That is, the weak topology of a normed space is the weakest topology for the
space such that every member of the dual space is continuous.

We say that a sequence (xn) in X converges weakly to x, denoted by

w − lim
n

xn = x or xn ⇀ x,

if and only if
lim
n

f(xn) = f(x)

for all f ∈ X∗. A topological property that holds with respect to the weak topology
is said to be a weak property or to hold weakly. For examples, a subset K of X
is weakly closed if it is closed in the weak topology; that is, if it contains the weak
limit of each of its weakly convergent sequences. Weakly open sets are now taken
as those sets whose complements are weakly closed. The resulting topology on X

is called the weak topology on X. Sets which are compact in this topology are
said to be weakly compact.

We now collect for subsequent use some well-known properties of the weak
topology. Despite the fact that proofs of these results can be found in any standard
functional analysis text we included selected details.

Proposition 2.1.13. (Eberlein-Smulian Theorem) For any weakly closed subset E
of a Banach space the following are equivalent.

(i) E is weakly compact.

(ii) Each sequence {xn} in E has a weak converges subsequence to a point of E.

Proposition 2.1.14.

(i) A convex subset of a Banach space is weakly closed if and only if it is norm
closed.

(ii) A closed convex subset of a weakly compact set is itself weakly compact.

(iii) A weakly compact subset of a Banach space is bounded.
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2.2 Multivalued Mappings
In this section, we collect the definition of classes of multivalued mappings that
we use in this thesis.

Definition 2.2.1. Let E be a nonempty subset of a Banach space X. A multivalued
mapping T : E → CB(X) is said to

(i) be contraction if there exists k ∈ [0, 1) such that H(Tx, Ty) ≤ k∥x− y∥ for
x, y ∈ E;

(ii) satisfy (Cλ) for some λ ∈ (0, 1) if for each x, y ∈ E,

λdist(x, Tx) ≤ ∥x− y∥ implies H(Tx, Ty) ≤ ∥x− y∥;

(iii) be continuous at x ∈ E if for every ε > 0, there exists δ = δ(ε, x) > 0 such
that ∥x− y∥ < δ for y ∈ E implies that H(Tx, Ty) < ε;

(iv) be uniformly continuous on E if every ε > 0, there exists δ = δ(ε) > 0 such
that ∥x− y∥ < δ for x, y ∈ E implies that H(Tx, Ty) < ε;

(v) be upper semicontinuous on E if for every sequence {xn} in E such that
xn → x ∈ E, for every sequence yn ∈ Txn with yn → y we have y ∈ Tx.

It is easy to show that nonexpansiveness implies condition (Cλ) for every λ ∈
(0, 1) but the converse does not hold.

Example 2.2.2. Define a mapping T on [0, 5] by

T (x) =

[0, x
5
], x ̸= 5;

{1}, x = 5.

Then T satisfies condition (C 1
2
) but it is not nonexpansive.

First, we will show that T satisfies condition (C 1
2
). If x = 5 and y ∈ [0, 5) be such

that 1
2
dist(x, Tx) ≤ ∥x− y∥, then 1

2
dist(5, {1}) = 2 ≤ ∥x− y∥. Thus

H(Tx, Ty) = H({1}, [0, y
5
]) = 1 ≤ 2 ≤ ∥x− y∥.

If x, y ∈ [0, 5), then

H(Tx, Ty) = H([0,
x

5
], [0,

y

5
]) =

1

5
∥x− y∥ ≤ ∥x− y∥.

Therefore T satisfies condition (C 1
2
). Take x = 9

2
and y = 5. We have

H(Tx, Ty) = H([0,
9

2
], {1}) = 1 >

1

2
= ∥x− y∥.

Hence T fails to be nonexpansive.
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Next example shows that a mapping T satisfying condition (Cλ) for some
λ ∈ (0, 1) can be discontinuous:

Example 2.2.3. Let λ ∈ (0, 1) and a = 2(λ+1)
λ(λ+2)

. Define a mapping T : [0, 2
λ
] →

KC([0, 2
λ
]) by

Tx =

{x
2
} if x ̸= 2

λ
,

[ 1
λ
, a] if x = 2

λ
.

Clearly, 1
λ
< a < 2

λ
and T is nonexpansive on [0, 2

λ
). Thus, we only verify that, for

x ∈ [0, 2
λ
),

λdist(x, Tx) ≤ ∥x− 2

λ
∥ ⇒ H

(
Tx, T

2

λ

)
≤ ∥x− 2

λ
∥ (2.2.1)

and
λdist

(
2

λ
, T

2

λ

)
≤ ∥2

λ
− x∥ ⇒ H

(
T
2

λ
, Tx

)
≤ ∥2

λ
− x∥. (2.2.2)

If λdist(x, Tx) ≤ ∥x− 2
λ
∥, then x ≤ 4

λ(λ+2)
and

H

(
Tx, T

2

λ

)
= a− x

2
≤ 2

λ
− x = ∥x− 2

λ
∥.

Hence (2.2.1) holds. If λdist( 2
λ
, T 2

λ
) ≤ ∥ 2

λ
− x∥, then x ≤ 4

λ(λ+2)
and

H

(
T
2

λ
, Tx

)
= a− x

2
≤ 2

λ
− x = ∥2

λ
− x∥.

Thus (2.2.2) holds. Therefore, T satisfies condition (Cλ). Clearly, T is upper
semicontinuous but not continuous (and hence T is not nonexpansive).

Let (X, d) be a metric space and B ⊂ X. The Hausdorff (or ball) measure of
noncompactness is defined as

χ(B) = inf{r > 0, B ⊂ ∪n
i=1B(xi, r) with xi ∈ X}.

The Kuratowski measure of noncompactness is defined as

β(B) = inf{r > 0, B ⊂ ∪n
i=1Di and δ(Di) < r}.

A multivalued mapping T : E → 2X is called ϕ−condensing (resp. 1 − ϕ-
contractive) where ϕ is a measure of noncompactness, if for each bounded subset
B of E with ϕ(B) > 0, there holds the inequality

ϕ(T (B)) < ϕ(B) (resp. ϕ(T (B)) ≤ ϕ(B)),
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where T (B) = ∪x∈BTx. Recall that the inward set of E at x ∈ E is defined by

IE(x) = {x+ α(y − x) : α ≥ 1, y ∈ E}.

A multivalued mapping T : E → 2X is said to be inward (resp. weakly inward) on
E if

Tx ⊂ IE(x) (resp. Tx ⊂ IE(x)) for all x ∈ E.

The following theorem is very useful in order to prove the results on fixed
points for multivalued mappings.

Theorem 2.2.4. ([12, Theorem 11.5]) Let E be a nonempty bounded closed and
convex subset of a Banach space X and T : E → KC(X) an upper semicontinuous
and χ-condensing mapping. If T (x) ∩ IE(x) ̸= ∅ for all x ∈ E, then T has a fixed
point.

2.3 Ultrapower of Banach Spaces
Ultrapowers of a Banach space are proved to be useful in many branches of math-
ematics. Many results can be seen more easily when treated in this setting.
Throughout the section I will denote an index set, usually the natural numbers
N for the most situations in metric fixed point theory.

Definition 2.3.1. Let F be a filter on I, that is F ⊂ 2I , satisfying:

(i) If A ∈ F and A ⊂ B ⊂ I, then B ∈ F .

(ii) If A,B ∈ F , then A ∩B ∈ F .

Example 2.3.2.

(i) The power set of I, 2I , defines a filter.

(ii) The Fréchet filter {A ⊂ I : I \ A is finite }.

(iii) For some fixed i0 ∈ I,Fi0 := {A ⊂ I : i0 ∈ A}. Filters of the form Fi0 for
some i0 ∈ I are called trivial (or non-free) filters, otherwise, they are called
nontrivial (or free).

Definition 2.3.3. A filter U on I is called an ultrafilter if it is maximal with respect
to the ordering of filters on I given by set-inclusion. That is, if U ⊂ F and F is
filter on I, then F = U .
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Lemma 2.3.4. A filter U ⊂ 2I is an ultrafilter on I if and only if for every A ⊂ I

precisely one of A or I \ A is in U .

It will henceforth be a standing assumption that all the filter and ultrafilters
with we deal are nontrivial.

Definition 2.3.5. Let {xn} be a sequence in a Hausdorff topological space X and
U a ultrafilter on I. The sequence {xn} is said to converge to x with respect to
U , denoted by

lim
n→U

xn = x,

if for each neighborhood U of x, {n ∈ I : xn ∈ U} ∈ U . Limits along U are unique
and if U is on N and {xn} is a bounded sequence in R, then

lim inf
n→∞

xn ≤ lim
n→U

xn ≤ lim sup
n→∞

xn.

Moreover, if E is a closed subset of X and {xn} ⊂ E, then limn→U xn belongs to
E whenever it exists.

Remark 2.3.6. Suppose {xn} converges to x in the topology of the space X. Then
{xn} converges to x with respect to any ultrafilter U . Let X be a metric space.
If U is an ultrafilter and limn→U xn = x, with {xn} ⊂ X, then there exists a
subsequence of {xn} which converges to x.

Now we are in position to define the ultrapower of a Banach space X. Let U
be a nontrivial ultrafilter on N. We can form the substitution space

l∞(X) := {{xn} : xn ∈ X for all n ∈ N and ∥{xn}∥ = sup
n

∥xn∥ < ∞}.

Then,
N = {{xn} ∈ l∞(X) : lim

n→U
∥xn∥ = 0}.

is a closed linear subspace of l∞(X).

Definition 2.3.7. ([4, 34, 43, 58]) The Banach space ultrapower of X over U is
defined to be the Banach quotient

(X)U := l∞(X)/N ,

with the quotient norm given by ∥{xn}U∥ = limn→U ∥xn∥, where {xn}U is the
equivalence class of {xn}.
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One can proof that X̃ = (X)U is a Banach space. It is also clear that X

is isometric to a subspace of X̃ by the canonical embedding x 7→ {x, x, ...}U . If
E ⊂ X, we shall use the symbols Ė and ẋ to denote the image of E and x in X̃

under this isometry respectively and denote

Ẽ = {{xn}U ∈ X̃ : xn ∈ E for all n ∈ N}.

Thus ẋ = {x, x, ...}U and Ė = {ẋ ∈ X̃ : x ∈ E}.
If T : E → CB(X) is a multivalued mapping, we define a corresponding

multivalued mapping T̃ : Ẽ → CB(X̃) by

T̃ ({xn}U) := {{un}U ∈ X̃ : un ∈ Txn for all n ∈ N},

where {xn}U ∈ Ẽ. Moreover, the set T̃ ({xn}U) is bounded and closed (see [4, 43]).
The Hausdorff metric on CB(X̃) will be denoted by H̃.

Proposition 2.3.8. ([61, Proposition 3.1]) For every {xn}U and {yn}U in Ẽ,

H̃(T̃{xn}U , T̃{yn}U) = lim
n→U

H(Txn, T yn).

Proposition 2.3.9. ([18, Page 37], [61, Proposition 3.2]) Let E be a nonempty
subset of a Banach space X and T : E → CB(X).

(i) If T is convex-valued, then T̃ is convex-valued;

(ii) If T is compact-valued, then T̃ is compact-valued and T̃ ẋ = ˙(Tx) for every
x ∈ E;

(iii) If T is nonexpansive, then T̃ is nonexpansive.

The following method and results deal with the concept of asymptotic centers.
Let E be a nonempty closed convex subset of a Banach space X and {xn} a
bounded sequence in X. For x ∈ X, define the asymptotic radius of {xn} at x as
the number

r(x, {xn}) = lim sup
n→∞

∥xn − x∥.

Let
r(E, {xn}) = inf{r(x, {xn}) : x ∈ E}

and
A(E, {xn}) = {x ∈ E : r(x, {xn}) = r(E, {xn})}.
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The number r(E, {xn}) and the set A(E, {xn}) are, respectively, called the asymp-
totic radius and asymptotic center of {xn} relative to E.

It was noted in [34] that if E is nonempty and weakly compact, then A(E, {xn})
is nonempty and weakly compact, and if E is convex, then A(E, {xn}) is convex.

Definition 2.3.10. A bounded sequence {xn} in X is called regular relative to
a bounded subset E of a Banach space X if r(E, {xn}) = r(E, {xn′}) for each
subsequence {xn′} of {xn}; further, {xn} is called asymptotically uniform relative
to E if A(E, {xn}) = A(E, {xn′}) for each subsequence {xn′} of {xn}.

Lemma 2.3.11. ([34, Lemma 15.2],[47, Theorem 1]) Let E be a subset of a Banach
space X, {xn} a bounded sequence in X. Then {xn} has a subsequence which is
regular relative to E.

Let U be a nontrival ultrafilter on N. Wiśnicki and Wośko [61] defined the
ultra-asymptotic radius of {xn} relative to E by

rU(E, {xn}) = inf{ lim
n→U

∥xn − x∥ : x ∈ E},

and the ultra-asymptotic center of {xn} relative to E by

AU(E, {xn}) = {x ∈ E : lim
n→U

∥xn − x∥ = rU(E, {xn})}.

Notice that the above notions have a natural interpretation in the ultrapower X̃:

rU(E, {xn}) = inf
x∈E

∥{xn}U − ẋ∥

is the relative Chebyshev radius of {xn}U , and,

˙(AU(E, {xn})) = Ė ∩BX̃({xn}U , r)

is the relative Chebyshev center of {xn}U relative to Ė in the ultrapower X̃.
(Here BX̃({xn}U , r) denotes the ball in X̃ centered at {xn}U and of radius r =

rU(E, {xn}).) It is not difficult to see that AU(E, {xn}) is a nonempty weakly
compact convex set if E is. It should be noted that, in general, A(E, {xn}) and
AU(E, {xn}) may be different.

Example 2.3.12. ([61]) Let U be a nontrivial ultrafilter defined on N such that
{2, 4, 6, ...} ∈ U and let

xn =

en, n = 1, 3, 5, ...;

{−3, 0, 0, ...}, n = 2, 4, 6, ...

be a sequence of elements in X = l2. Then r(X, {xn}) = 5
3
, rU(X, {xn}) = 0,

χE({xn}) = 1, A(X, {xn}) = {(−4
3
, 0, 0, ...)} and AU(X, {xn}) = {(−3, 0, 0, ...)}.
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The notion of the asymptotic radius is closely related to the notion of the
relative Hausdorff measure of noncompactness of a bounded set A defined by
Domínguez and Lorenzo [23] as χE(A) = inf{r > 0, B ⊂ ∪n

i=1B(xi, r) with xi ∈
E}.

Proposition 2.3.13. ([61, Proposition 4.5]) If {xn} is a bounded sequence which is
regular relative to E, then

r(E, {xn}) = rU(E, {xn}) = χE({xn}).

From Proposition 2.3.13, we have for w ∈ A(E, {xn}),

lim
n→U

∥xn − w∥ ≤ lim sup
n→∞

∥xn − w∥ = r(E, {xn}) = rU(E, {xn}).

Therefore, A(E, {xn}) ⊂ AU(E, {xn}).

The following result plays an important role in our proofs.

Lemma 2.3.14. ([14, Lemma 3.3]) Let E be a nonempty closed and convex subset
of a Banach space X and {xn} a bounded sequence in X which is regular relative
to E. For each {yn} ⊂ AU(E, {xn}), there exists a subsequence {xn′} of {xn} such
that {yn} ⊂ A(E, {xn′}).
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