
Chapter 3
Fixed Point Theorems via Technique of

Ultra-asymptotic Centers

The main aim of this chapter is to present fixed point theorems for nonself multi-
valued mappings in Banach spaces having Property (D′) and Kirk-Massa condition
by using ultra-asymptotic centers technique.

3.1 Property (D′)

Let E be a nonempty subset of a Banach space X and t a mapping on E. Recall
that a subset K of E is said to be t-invariant if t(K) ⊂ K. A sequence {xn} in E

is called an approximate fixed point sequence (afps for short) for t if

lim
n→∞

∥xn − txn∥ = 0.

Analogously for a multivalued mapping T : E → CB(X), a subset K of E is said
to be T -invariant if T (x) ∩ E ̸= ∅ for all x ∈ K. A sequence {xn} in E is called
an approximate fixed point sequence (afps for short) for T if

lim
n→∞

dist(xn, Txn) = 0.

In 2006, Dhompongsa et al. [13] introduced a property for a Banach space X

which is weaker that property (D′):

Definition 3.1.1. ([13, Definition 3.1]) A Banach space X is said to have property
(D) if there exists λ ∈ [0, 1) such that for any nonempty weakly compact convex
subset E of X, any sequence {xn} ⊂ E which is regular and asymptotically
uniform relative to E, and any sequence {yn} ⊂ A(E, {xn}) which is regular and
asymptotically uniform relative to E we have

r(E, {yn}) ≤ λr(E, {xn}).

Theorem 3.1.2. ([13, Theorem 3.6]) Let E be a nonempty weakly compact convex
subset of a Banach space X which has property (D). Assume that T : E → KC(E)

is a nonexpansive mapping. Then T has a fixed point.
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Butsan, Dhompongsa and Takahashi [11] introduced a new condition for map-
pings and obtained a fixed point theorem in a Banach space having property (D):

Definition 3.1.3. ([11, Definition 3.1]) Let t : E → E be a mapping on a subset E
of a Banach space X. Then t is said to satisfy condition (∗) if

(1) for each t-invariant subset K of E, t has an afps in K, and

(2) for each pair of t-invariant subsets K and W of E, A(W, {xn}) is t-invariant
for each afps {xn} in K.

Theorem 3.1.4. ([11, Theorem 3.5]) Let E be a weakly compact convex subset of a
Banach space X having property (D). Let t : E → E satisfy conditon (∗). If t is
continuous, then t has a fixed point.

In fact, we can replace “continuity” by a weaker condition, namely “I−t is strongly
demiclosed at 0” : for every sequence {xn} in E strongly converges to z ∈ E and
such that xn − txn → 0 we have z = tz (cf. [30]).

In this section, motivated by Theorem 1.2.10 and above research works, we
will extend Theorem 1.2.10 and 3.1.4 for multivalued nonself mappings for spaces
having property (D′). As consequences,

(i) Theorem 1.2.10 is generalized to a larger class of mappings;

(ii) Theroem 3.1.4 is generalized to nonself multivalued mappings for spaces
having property (D′).

First we need the following lemma:

Lemma 3.1.5. Let E be a nonempty subset of a Banach space X and T : E →
CB(X). Then

(1) If T is uniformly continuous, then T̃ is uniformly continuous;

(2) If T is continuous at z ∈ E, then T̃ is continuous at ż.

Proof. (1) Let ε > 0. Since T is uniformly continuous, there exists δ > 0 such that
H(Tx, Ty) < ε for each x, y ∈ E with ∥x−y∥ < δ. Suppose {xn}U , {yn}U ∈ Ẽ and
∥{xn}U − {yn}U∥ < δ. Let A = {n : ∥xn − yn∥ < δ} and B = {n : H(Txn, T yn) <

ε}. Since A ∈ U and A ⊂ B, we have B ∈ U . Thus, by Proposition 2.3.8
H̃(T̃{xn}U , T̃{yn}U) ≤ ε.

(2) Let ε > 0. Since T is continuous at z, there exists δ > 0 such that
H(Tx, Tz) < ε for each x ∈ E with ∥x−z∥ < δ. If {xn}U ∈ Ẽ such that ∥{xn}U −
ż∥ < δ, then letting A = {n : ∥xn − z∥ < δ} and B = {n : H(Txn, T z) < ε}, we
see that A ∈ U and B ∈ U . Thus by Proposition 2.3.8, H̃(T̃{xn}U , T̃ ż) ≤ ε.
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We now define a multivalued version of condition (∗) in Definition 3.1.3.

Definition 3.1.6. Let E be a nonempty subset of a Banach space X. A mapping
T : E → CB(X) is said to satisfy condition (∗) if

(1) T has an afps in E, and

(2) T has an afps in A(E, {xn′}) for some subsequence {xn′} of any given afps
{xn} for T in E.

The following is our main theorem:

Theorem 3.1.7. Let E be a weakly compact convex subset of a Banach space X

having property (D′). Assume that T : E → KC(X) is a multivalued mapping
satisfying condition (∗). If T is continuous, then T has a fixed point.

Proof. The proof follows by adapting the proof of [14, Theorem 1.9] . By (1) of
Definition 3.1.6, let {x0

n} be an afps for T in E . We can assume by Proposition
2.3.11 that {x0

n} is weakly convergent and regular relative to E. Condition (2) of
Definition 3.1.6 gives us a subsequence {x0

n0
} of {x0

n} so that the center A(E, {x0
n0
})

contains an afps for T . Denote A0 = A(E, {x0
n0
}) and let {x1

n} be an afps in A0.
Assume that {x1

n} is weakly convergent and regular relative to E. As before, T has
an afps in A(E, {x1

n1
}) for some subsequence {x1

n1
} of {x1

n}. Since X has property
(D′), put λ = DU(X) < 1. Then, by Proposition 2.3.13 and Definition 1.2.8,

r(E, {x1
n1
}) = χE({x1

n1
}) ≤ λχE({x0

n0
}) = λr(E, {x0

n0
}).

Continue the procedure to obtain for each m ≥ 0, a weakly convergent and regular
sequence {xm

nm
} relative to E in Am−1 := A(E, {xm−1

nm−1
}) such that

lim
n→∞

dist(xm
nm

, Txm
nm

) = 0,

and for all m ≥ 1,
r(E, {xm

nm
}) ≤ λr(E, {xm−1

nm−1
}).

Consequently,

r(E, {xm
nm

}) ≤ λr(E, {xm−1
nm−1

}) ≤ · · · ≤ λmr(E, {x0
n0
}).

We show that {{xm
nm

}U}m≥1 is a Cauchy sequence in X̃. Indeed, for each m ≥ 1,
take an element ẏm ∈ Ȧm−1. Then

∥ẋm
nm

− ẏm∥ ≤ ∥ẋm
nm

− {xm−1
nm−1

}U∥+ ∥{xm−1
nm−1

}U − ẏm∥ ≤ 2r(E, {xm−1
nm−1

}),
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for all m ≥ 1 and hence

∥{xm
nm

}U − {xm−1
nm−1

}U∥ ≤ ∥{xm
nm

}U − ẏm∥+ ∥ẏm − {xm−1
nm−1

}U∥ ≤ 3r(E, {xm−1
nm−1

}).

Thus,
∥{xm

nm
}U − {xm−1

nm−1
}U∥ ≤ 3λm−1r(E, {x0

n0
}),

implying that {xm
nm

}U is a Cauchy sequence, and hence converges to some {zn}U
in Ẽ as m → ∞. Next, we will show that {zn}U ∈ Ė. For each m ≥ 0,

dist({zn}U , Ė) ≤ ∥{zn}U − {xm
nm

}U∥+ dist({xm
nm

}U , Ė)

≤ ∥{zn}U − {xm
nm

}U∥+ ∥{xm
nm

}U − ẋm+1
1m+1

∥
= ∥{zn}U − {xm

nm
}U∥+ r(E, {xm

nm
})

≤ ∥{zn}U − {xm
nm

}U∥+ λmr(E, {x0
n0
}).

Taking m → ∞, we see that

dist({zn}U , Ė) = 0.

Thus, it follows that there exists z ∈ E such that {zn}U = ż. By Lemma 3.1.5, T̃
is continuous at ż, and thus H̃(T̃{xm

nm
}U , T̃ ż) → 0 as m → ∞. For every m ≥ 0,

dist(ż, T̃ ż) ≤ ∥ż − {xm
nm

}U}∥+ dist({xm
nm

}U , T̃{xm
nm

}U) + H̃(T̃{xm
nm

}U , T̃ ż).

Taking m → ∞, we then obtain ż ∈ T̃ ż. By Proposition 2.3.9, T̃ ż = ˙(Tz) and
therefore z ∈ Tz.

Remark 3.1.8. The proof presented here based on a standard proof appeared in
a series of papers [14, 23, 24, 61]. However, we cannot follow their proof directly
to be able to obtain a result for larger classes of spaces and mappings. We choose
an ultralimit approach by using an ultra-asymptotic center as our main tool. As
mentioned earlier, this powerful tool was introduced in [61] byWiśnicki andWośko.
Thus, our proof may not be totally new, but it significantly improves, generalizes,
or extends many known results:

(i) Theorem 3.1.7 (as well as Theorem 3.2.3) unifies many known theorems in
one. Examples of mappings in both theorems are given throughout the rest
of the paper.

(ii) Theorem 3.1.7 improves condition (∗) in Definition 3.1.3 in which the map-
pings under consideration only are single-valued and are self-mappings. Con-
sequently, Theorem 3.1.4 is improved significantly. Obviously, Theorem
1.2.10 is a special case of Theorem 3.1.7.
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(iii) In Remark 3.2.2(ii) below, we show the following implication:

(∗∗) + (A) ⇒ (∗).

Thus results in [2, Corollary 3.5, Corollary 3.6], [6, Theorem 1, Theorem
2], [15, Theorem 3.3], [30, Theorem 5], [36, Theorem 2.4], [45, Theorem
2], [49, Theorem 4.2, Corollary 4.3, Theorem 4.4], [59, Theorem 2.6], and
Theorem 1.2.5 are either improved, generalized, or extended. See Remark
3.2.4, Corollary 3.2.6, and Corollary 3.2.7. See also Remark 3.2.13(i) and
(ii).

We now give some examples of mappings satisfying condition (∗). We will see
that the ultra-center AU(E, {xn}) plays a significant role in verifying condition (2)
of condition (∗) for a given mapping.

Nonexpansive Mappings
We will show by following the proof of Theorem 5.3 in [61] that if T : E → KC(X)

is nonexpansive and 1−χ-contractive such that Tx ⊂ IE(x) for every x ∈ E. Then
T satisfies condition (∗). The main tools are Theorem 2.2.4 and Lemma 2.3.14.

Proposition 3.1.9. Let E be a nonempty weakly compact convex subset of a Banach
space X. Assume that T : E → KC(X) is nonexpansive and 1 − χ-contractive
such that Tx ⊂ IE(x) for every x ∈ E. Then T satisfies condition (∗).

Proof. First, we will show that T has an afps in E. Let y0 ∈ E and consider, for
each n ≥ 1, the contraction Tn : E → KC(X) defined by

Tn(x) =
1

n
y0 + (1− 1

n
)Tx, x ∈ E.

It is not difficult to see that Tn(x) ⊂ IE(x) for every x ∈ E. Since T is 1 − χ-
contractive, Tn is (1 − 1

n
) − χ-contractive and by Theorem 2.2.4, there exists a

fixed point xn of Tn. Clearly, {xn} is an afps for T in E.
Next, let us see that T has an afps in A(E, {xn′}) for some subsequence {xn′}

of an afps {xn} for T in E. Let {xn} be an afps in E. By Proposition 2.3.11, we
can assume that {xn} is regular relative to E. Let AU := AU(E, {xn}). We show
that

Tx ∩ IAU (x) ̸= ∅ for every x ∈ AU . (3.1.1)

Let x ∈ AU . Observe first that {xn}U ∈ T̃{xn}U . By Proposition 2.3.9,
T̃ ẋ = ˙(Tx) is compact and hence there exists u ∈ Tx such that

∥{xn}U − u̇∥ = H̃(T̃{xn}U , T̃ ẋ) ≤ ∥{xn}U − ẋ∥ = rU(E, {xn}). (3.1.2)
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Since u ∈ Tx ⊂ IE(x), there exists α ≥ 1 and y ∈ E such that u = x+ α(y − x).
If α = 1 then u = y ∈ E and it follows from (3.1.2) that u ∈ AU . If α > 1 then
y = 1

α
u+ (1− 1

α
)x and therefore we have

∥{xn}U − ẏ∥ ≤ 1

α
∥{xn}U − u̇∥+ (1− 1

α
)∥{xn}U − ẋ∥ ≤ rU(E, {xn}).

Hence y ∈ AU and consequently u ∈ IAU (x). Thus (3.1.1) is justified.
Fix y0 ∈ AU and consider for each n ≥ 1, the contraction Tn : AU → KC(X)

defined by
Tn(x) =

1

n
y0 + (1− 1

n
)Tx, x ∈ AU .

As before, Tn is (1− 1
n
)−χ-contractive and by Theorem 2.2.4, there exists a fixed

point zn ∈ AU of Tn. Again, as above, {zn} is an afps for T in AU . By Lemma
2.3.14, there exists a subsequence {xn′} of {xn} such that {zn} ⊂ A(E, {xn′}).

Diametrically Contractive Mappings
In [38], Istratescu introduced a new class of mappings:

Definition 3.1.10. ([38]) A mapping t defined on a complete metric space (X, d) is
said to be diametrically contractive if δ(tK) < δ(K) for all closed subsets K with
0 < δ(K) < ∞. (Here δ(K) := sup{d(x, y) : x, y ∈ K} denotes the diameter of
K ⊂ X.)

Xu [63] proved the fixed point theorem for a diametrically contractive mapping
in the framework of Banach spaces.

Theorem 3.1.11. ([63, Theorem 2.3]) Let E be a weakly compact subset of a Banach
space X and let t : E → E be a diametrically contractive mapping. Then t has a
fixed point.

Dhompongsa and Yingtaweesittikul [20] defined a multivalued version of map-
pings in Theorem 3.1.11 which is weaker than the condition required in Definition
3.1.10.

Theorem 3.1.12. ([20, Theorem 2.2]) Let E be a weakly compact subset of a Banach
space X and let T : E → KC(X) be a multivalued mapping such that δ(TK∩K) <

δ(K) for all closed sets K with δ(K) > 0 and E is invariant under T . Then T

has a unique fixed point.

Moreover, in [20] example of a mapping that satisfies condition in Theorem
3.1.12 but does not satisfy condition in Theorem 3.1.11 is given.
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Example 3.1.13. Let Tx = [0, x − log(x + 1)] for x ∈ [0, 100]. If A is a bounded
closed subset of [0, 100], then for some a, b > 0 we have A ⊂ [a, b], and δ(A) = b−a.
Clearly, TA ⊂ [0, b − log(b + 1)]. Therefore TA ∩ A ⊂ [a, b − log(b + 1)]. This
implies that δ(TA∩A) < δ(A). 0 is the unique fixed point of T . We observe that
T does not satisfy the condition in Theorem 3.1.11 because δ(T [0.6, 1]) = 0.7 >

0.4 = δ([0.6, 1]).

The following result extends Theorem 3.1.12 partially.

Proposition 3.1.14. Let E be a nonempty weakly compact convex subset of a Banach
space X and let T : E → KC(X) be a multivalued mapping such that δ(TK) ≤
δ(K) for all closed sets K with δ(K) > 0 and E is invariant under T . Then T

satisfies condition (∗).

Proof. First, we will see that T has an afps in E. Let y0 ∈ E and consider, for
each n ≥ 1, the contraction Tn : E → KC(X) defined by

Tn(x) =
1

n
y0 + (1− 1

n
)Tx, x ∈ E.

For x ∈ E, let a ∈ Tx∩E. Thus 1
n
y0+(1− 1

n
)a ∈ Tnx∩E and therefore Tnx∩E ̸= ∅

for every x ∈ E. We show that δ(TnK) < δ(K) for all closed sets K with δ(K) >

0. Let K be a closed subset of E with δ(K) > 0. For x, y ∈ TnK, there exist
x′, y′ ∈ TK such that

x =
1

n
y0 + (1− 1

n
)x′,

y =
1

n
y0 + (1− 1

n
)y′.

and this entails ∥x − y∥ = (1 − 1
n
)∥x′ − y′∥ ≤ (1 − 1

n
)δ(TK). Hence δ(TnK) ≤

(1 − 1
n
)δ(TK) < δ(K). By Theorem 3.1.12, there exists a fixed point xn of Tn,

and thus the sequence {xn} forms an afps for T in E.
Next, let us see that T has an afps in A(E, {xn′}) for some subsequence {xn′}

of an afps {xn} for T in E. Let {xn} be an afps in E. We can assume that {xn}
is regular relative to E. Let AU = AU(E, {xn}). First, we show that

AU ∩ Tx ̸= ∅ for every x ∈ AU . (3.1.3)

Let x ∈ AU and for each n ≥ 1, we see that

H(Txn, Tx) ≤ δ(T{xn, x}) ≤ δ({xn, x}) = ∥xn − x∥.

Take yn ∈ Txn so that
∥xn − yn∥ = dist(xn, Txn),



25

and select zn ∈ Tx for each n such that

∥zn − yn∥ = dist(yn, Tx).

Let limn→U zn = z ∈ Tx. Note that

∥xn − z∥ ≤ ∥xn − yn∥+ ∥yn − zn∥+ ∥zn − z∥.

We obtain

lim
n→U

∥xn − z∥ ≤ lim
n→U

∥yn − zn∥ = lim
n→U

dist(yn, Tx) ≤ lim
n→U

H(Txn, Tx)

≤ lim
n→U

∥xn − x∥ = rU(E, {xn})

proving that z ∈ AU . Thus (3.1.3) is satisfied. Fix y0 ∈ AU and consider, for each
n ≥ 1, the contraction Tn : AU → KC(X) defined by

Tn(x) =
1

n
y0 + (1− 1

n
)Tx, x ∈ AU .

For x ∈ AU , let a ∈ AU ∩ Tx. Thus 1
n
y0 + (1 − 1

n
)a ∈ AU ∩ Tnx. Therefore

AU ∩ Tnx ̸= ∅ for every x ∈ AU . Let K be a closed subset of E with δ(K) > 0.
As before, δ(TnK) ≤ (1− 1

n
)δ(TK) < δ(K). By Theorem 3.1.12 (or we can apply

Theorem 2.2.4), there exists a fixed point zn of Tn. Again, as above, {zn} is an
afps for T in AU . Finally, by Lemma 2.3.14, there exists a subsequence {xn′} of
{xn} such that {zn} ⊂ A(E, {xn′}).

3.2 Kirk-Massa Condition
We aim to extend Theorem 1.2.4 to a wider class of mappings. Thus, the domains
of mappings are more general than the ones in Section 3.1. Obviously, every
space that satisfies the Kirk-Massa condition always has property (D′). Thus,
particularly, the fixed point result in Section 3.1 holds for uniform convex Banach
spaces, uniformly convex in every direction (UCED) and spaces satisfying the
Opial condition.

Definition 3.2.1. Let U be a free ultrafilter defined on N. Let E be a bounded
closed and convex subset of a Banach space X. A mapping T : E → CB(X) is
said to satisfy condition (∗∗) if it fulfills the following conditions.

(1) T has an afps in E, and

(2) if {xn} is an afps for T in E and x ∈ E, then lim
n→U

H(Txn, Tx) ≤ lim
n→U

∥xn−x∥.
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Remark 3.2.2.

(i) Let E be a bounded closed and convex subset of a Banach space X, and let
a mapping T : E → KC(X) satisfy condition (∗∗) and E is T -invariant. If
in addition, T satisfies:

(A) every T -invariant, closed, and convex subset possesses an afps,

then T satisfies condition (∗).

Proof. By (1) of condition (∗∗), let {xn} be an afps for T in E. From
Proposition 2.3.11 by passing through a subsequence, we may assume that
{xn} is regular relative to E. Let AU = AU(E, {xn}) and x ∈ AU . The
compactness of Txn implies that for each n we can take yn ∈ Txn so that

∥xn − yn∥ = dist(xn, Txn).

Since Tx is compact, select zn ∈ Tx for each n such that

∥zn − yn∥ = dist(yn, Tx).

Let limn→U zn = z ∈ Tx. Note that

∥xn − z∥ ≤ ∥xn − yn∥+ ∥yn − zn∥+ ∥zn − z∥.

We obtain

lim
n→U

∥xn − z∥ ≤ lim
n→U

∥yn − zn∥ = lim
n→U

dist(yn, Tx) ≤ lim
n→U

H(Txn, Tx)

≤ lim
n→U

∥xn − x∥ = rU(E, {xn})

proving that z ∈ AU and hence AU ∩ Tx ̸= ∅ for all x ∈ AU i.e. AU is
T -invariant. By assumption, there exists an afps in AU . By Lemma 2.3.14,
there exists a subsequence {xn′} of {xn} such that {zn} ⊂ A(E, {xn′}).
Thus, T satisfies condition (∗).

We wonder if we can drop condition (A) in proving the implication: (∗∗) ⇒
(∗).

(ii) A mapping that satisfies condition (∗) need not satisfy condition (∗∗). Con-
sider a mapping T : [0, 1

2
] → 2[0,

1
2
] defined by T (x) = [

√
x, 3

√
x]. Since 0 is a

fixed point of T , the sequence {xn} given by xn ≡ 0 for all n forms an afps
for T . Thus, T fulfills condition (1) of Definition 3.1.6. If {xn} is an afps
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for T , then {xn} converges to 0 and A(E, {xn}) = {0}. This implies that
A(E, {xn}) has an afps for T , and T satisfies condition (∗). On the other
hand, for the afps {xn} given by xn ≡ 0, if x ∈ (0, 1

2
], then

lim
n→U

H(Txn, Tx) =
3
√
x > x = lim

n→U
∥xn − x∥.

Thus, T fails to satisfy condition (∗∗).
As mentioned earlier, it is unclear if a mapping satisfies condition (∗∗) also
satisfies condition (∗).

The main idea of the proof of the following theorem is originated from Kirk and
Massa [45].

Theorem 3.2.3. Let E be a nonempty bounded closed and convex subset of a
Banach space X satisfying the Kirk-Massa condition. Let T : E → KC(X) be a
multivalued mapping satisfying condition (∗∗). If T is an upper semicontinuous
mapping and invariant under E, then T has a fixed point.

Proof. Let {xn} be an afps for T in E. From Proposition 2.3.11 by passing through
a subsequence, we may assume that {xn} is regular relative to E. Let AU =

AU(E, {xn}). The compactness of Txn implies that for each n we can take yn ∈
Txn such that

∥xn − yn∥ = dist(xn, Txn).

If x ∈ AU , since Tx is compact, select zn ∈ Tx for each n such that

∥zn − yn∥ = dist(yn, Tx).

Let limn→U zn = z ∈ Tx. Note that

∥xn − z∥ ≤ ∥xn − yn∥+ ∥yn − zn∥+ ∥zn − z∥.

Thus

lim
n→U

∥xn − z∥ ≤ lim
n→U

∥yn − zn∥ = lim
n→U

dist(yn, Tx) ≤ lim
n→U

H(Txn, Tx)

≤ lim
n→U

∥xn − x∥ = rU(E, {xn}) (3.2.1)

proving that z ∈ AU and hence AU ∩ Tx ̸= ∅ for all x ∈ AU . By assumption,
A(E, {xn}) is nonempty and compact which implies that AU is also nonempty
and compact. Now define a mapping F : AU → KC(AU) by Fx := AU ∩ Tx for
all x ∈ AU . Thus F is upper semicontinuous. Indeed, let {un} ⊂ AU be such that
limn→∞ un = u and vn ∈ Fun be such that limn→∞ vn = v . Since T is upper
semicontinuous and AU is compact, we have v ∈ Tu and v ∈ AU , that is v ∈ Fu.
By Theorem 1.2.2, F and hence T , has a fixed point in AU .
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Remark 3.2.4.

(i) Recently, García-Falset, Lorens-Fuster and Morena-Gálvez [29] proved that
condition (2) of Definition 3.2.1 is equivalent to

lim sup
n→∞

H(Txn, Tx) ≤ lim sup
n→∞

∥xn − x∥.

Therefore, we obtain the following result:

Corollary 3.2.5. Let E be a nonempty bounded closed and convex subset of a
Banach space X satisfying the Kirk-Massa condition. Let T : E → KC(X)

be a multivalued mapping satisfying these conditions.

(1) T has an afps in E, and
(2) if {xn} is an afps for T in E and x ∈ E, then

lim sup
n→∞

H(Txn, Tx) ≤ lim sup
n→∞

∥xn − x∥.

If T is an upper semicontinuous mapping, then T has a fixed point.

However, we can not follow the prove of Theorem 3.2.3 line-by-line to obtain
this corollary. Therefore, the ultra-asymptitic center is a powerful tool in
our proof.

(ii) In [49, Definition 3.1], the following concept of mappings is defined: A map-
ping t : E → E satisfy condition (L) on E provided that it fulfills the
following two conditions.

(1) If a set D ⊂ E is nonempty, closed, convex and t-invariant, then there
exists an afps for t in D.

(2) For any afps {xn} of t in E and each x ∈ E,

lim sup
n→∞

∥xn − tx∥ ≤ lim sup
n→∞

∥xn − x∥.

Therefore, Remark 3.2.2 (i) shows that the class of mappings satisfying con-
dition (∗) contains and extends mappings satisfying condition (L) as a single-
valued version.

(iii) If, in addition, mappings in Theorem 3.2.3 also satisfy conditon (A), then
the condition on “upper semicontinuity” can be dropped. This is because an
afps in a compact set can be chosen so that its asymptotic center is only a
singleton, and a fixed point can be easily derived. Consequently, Theorem
3.1.7 can be extended to a bigger class of domains, namely the bounded,
closed, and convex ones. And the following results are immediate:
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Corollary 3.2.6. ([49, Theorem 4.2]) Let E be a nonempty compact convex
subset of a Banach space X and t : E → E a mapping satisfying condition
(L). Then, t has a fixed point.

Corollary 3.2.7. ([49, Corollary 4.3]) Let E be a nonempty compact convex
subset of a Banach space X and t : E → E a mapping satisfying condition
(L). Suppose that the asymptotic center in E of each sequence in E is
nonempty and compact. Then, t has a fixed point.

We give some examples of mappings satisfying condition (∗∗). The first exam-
ple is of course the mapping described in Theorem 1.2.5.

Condition (Cλ)

Follows from [40, Lemma 2.8], we obtain the following result:

Proposition 3.2.8. Let E be a nonempty bounded closed and convex subset of a
Banach space X. If T : E → CB(E) satisfies condition (Cλ) for some λ ∈ (0, 1),
then T satisfies condition (A), that is, T satisfies condition (1) of condition (∗∗).

Generalized Nonexpansive Mappings
Let E be a nonempty subset of a Banach space X. Following [6], a mapping
t : E → X is a generalized nonexpansive mapping if for some nonnegative con-
stants α1, ..., α5 with

∑5
i=1 αi = 1,

∥tx− ty∥ ≤ α1∥x− y∥+ α2∥x− tx∥+ α3∥y − ty∥+ α4∥x− ty∥+ α5∥y − tx∥,

for each x, y ∈ E.
We will use the following equivalent condition:

For some nonnegative constants α, β, γ with α + 2β + 2γ ≤ 1, for all x, y ∈ E.

∥tx− ty∥ ≤ α∥x− y∥+ β(∥x− tx∥+ ∥y − ty∥) + γ(∥x− ty∥+ ∥y − tx∥).

We introduce a multivalued version of these mappings. Let T : E → CB(X)

be a multivalued mapping. T is called a generalized nonexpansive mapping if
there exist nonnegative constants α, β, γ with α+ 2β + 2γ ≤ 1 such that for each
x, y ∈ E, there holds

H(Tx, Ty) ≤ α∥x−y∥+β(dist(x, Tx)+dist(y, Ty))+γ(dist(x, Ty)+dist(y, Tx)).

Obviously, nonexpansive mapping implies generalized nonexpansive mapping.
The following example shows that the converse is not true:
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Example 3.2.9. Define a mapping T on [0, 5] by

T (x) =

[0, x
5
], x ̸= 5;

{1}, x = 5.

In Example 2.2.2. we know that T is not nonexpansive. It is easy to see that T is
generalized nonexpansive where β ∈ [1

4
, 1
2
] and α, γ ∈ [0, 1] such that α+2β+2γ ≤

1. Indeed, for x, y ̸= 5 or x, y = 5, we know that T is a contraction mapping which
implies generalized nonexpansive. For x ̸= 5 and y = 5,

H(Tx, Ty) = H([0,
x

5
], {1}) = 1 =

1

4
· 4 ≤ β · 4 = β|5− 1| = βdist(y, Ty)

≤ α∥x− y∥+ β(dist(x, Tx) + dist(y, Ty)) + γ(dist(x, Ty) + dist(y, Tx)).

Proposition 3.2.10. Let E be a nonempty subset of a Banach space X. Suppose
T : E → CB(X) is a generalized nonexpansive mapping, then T satisfies (2) of
condition (∗∗).

Proof. Let {xn} be an afps for T in E and x ∈ E. By assumption, we obtain

H(Txn, Tx) ≤ α∥xn − x∥+ β(dist(xn, Txn) + dist(x, Tx))

+γ(dist(xn, Tx) + dist(x, Txn)). (3.2.2)

Since dist(x, Tx) ≤ ∥x− xn∥+ dist(xn, Txn) +H(Txn, Tx),
dist(xn, Tx) ≤ dist(xn, Txn)+H(Txn, Tx), dist(x, Txn) ≤ ∥x−xn∥+dist(xn, Txn),

dist(x, Tx) ≤ lim
n→U

∥x− xn∥+ lim
n→U

H(Txn, Tx), (3.2.3)

lim
n→U

dist(xn, Tx) ≤ lim
n→U

H(Txn, Tx), (3.2.4)

and
lim
n→U

dist(x, Txn) ≤ lim
n→U

∥x− xn∥. (3.2.5)

By (3.2.2),

lim
n→U

H(Txn, Tx) ≤ α lim
n→U

∥xn − x∥

+β lim
n→U

∥x− xn∥+ β lim
n→U

H(Txn, Tx)

+γ lim
n→U

H(Txn, Tx) + γ lim
n→U

∥x− xn∥.

Thus

(1− β − γ) lim
n→U

H(Txn, Tx) ≤ (α + β + γ) lim
n→U

∥x− xn∥,

and therefore
lim
n→U

H(Txn, Tx) ≤ lim
n→U

∥xn − x∥.
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Takahashi Generalized Nonexpansive Mappings
Definition 3.2.11. Let E be a nonempty subset of a Banach space X. A mapping
t : E → X is said to be a Takahashi generalized nonexpansive mapping if for some
α, β ∈ [0, 1] with α + 2β ≤ 1, there holds

∥tx− ty∥2 ≤ α∥x− y∥2 + β(∥y − tx∥2 + ∥x− ty∥2) for x, y ∈ E.

The following are examples of Takahashi generalized nonexpansive mappings:

• nonexpansive mappings t : ∥tx− ty∥ ≤ ∥x− y∥;

• nonspreading mappings t [46] : 2∥tx− ty∥2 ≤ ∥y − tx∥2 + ∥x− ty∥2;

• hybrid mappings t [60] : 3∥tx− ty∥2 ≤ ∥y − tx∥2 + ∥x− ty∥2;

• mappings t [60] : 2∥tx− ty∥2 ≤ ∥x− y∥2 + ∥y − tx∥2;

• mappings t : 3∥tx− ty∥2 ≤ 2∥y − tx∥2 + ∥x− ty∥2.

We define a multivalued version of Takahashi generalized nonexpansive map-
pings and prove that these mappings satisfy (2) of condition (∗∗).

Proposition 3.2.12. Let E be a nonempty subset of a Banach space X. For non-
negative constants α, β with α + 2β ≤ 1. If T : E → KC(X) is a multivalued
mapping such that

H2(Tx, Ty) ≤ α∥x− y∥2 + β(dist2(x, Ty) + dist2(y, Tx)),

then T satisfies (2) of condition (∗∗).

Proof. Let {xn} be an afps for T in E and x ∈ E. By (3.2.4) and (3.2.5),

lim
n→U

H2(Txn, Tx) ≤ α lim
n→U

∥xn − x∥2

+β lim
n→U

dist2(x, Txn) + β lim
n→U

dist2(xn, Tx)

≤ α lim
n→U

∥xn − x∥2

+β lim
n→U

∥xn − x∥2 + β lim
n→U

H2(Txn, Tx).

Thus

(1− β) lim
n→U

H2(Txn, Tx) ≤ (α + β) lim
n→U

∥x− xn∥2.

Therefore
lim
n→U

H(Txn, Tx) ≤ lim
n→U

∥xn − x∥.



32

Remark 3.2.13.

(i) If T is a mapping in Example 3.2.9, then T also satisfies condition in Theorem
3.2.12.

(ii) If t : E → E is a generalized nonexpansive mapping with any of the following
conditions holds, then t satisfies condition (∗∗):

(1) α + 2β + 2γ < 1 (see [52, Theorem 4]);

(2) α + 2β + 2γ = 1 and β > 0, γ > 0, α ≥ 0 (see [6, Theorem 1]);

(3) α + 2β + 2γ = 1 and β > 0, γ = 0, α > 0 (see [35, Theorem 1.1]);

(4) α + 2β + 2γ = 1 and β = 0, γ > 0, α ≥ 0 (see [5, Lemma 2.1]).

(iii) Regarding the proof of Theorem 3.2.3, the fixed point result also holds for
weak*-nonexpansive mappings T : E → KC(E)([1]): for each x, y ∈ E and
ux ∈ Tx such that 1

2
∥x − ux∥ ≤ ∥x − y∥, there exists uy ∈ Ty such that

∥ux − uy∥ ≤ ∥x − y∥. Thereby [1, Theorem 1.7] is extended to another
circumstance.
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