Chapter 4

Common Fixed Point Theorems via Technique of Nonexpansive Retracts

The main propose of this chapter is to obtain common fixed point theorems for a commuting family of nonexpansive mappings one of which is multivalued mappings by using nonexpansive retracts as a main tool.

4.1 Motivations and Basic Concepts

Recall that a bounded closed and convex subset E of a Banach space X has the fixed point property for nonexpansive mappings (FPP) (respectively, for multivalued nonexpansive mappings (MFPP)) if every nonexpansive mapping of E into E has a fixed point (respectively, every nonexpansive mapping of E into 2^E with compact convex values has a fixed point).

The following concepts were introduced by Bruck [9, 10]. For a bounded closed and convex subset E of a Banach space X, a mapping $t : E \to X$ is said to satisfy the conditional fixed point property (CFP) if either t has no fixed points, or t has a fixed point in each nonempty bounded closed convex set that leaves t invariant. A set E is said to have the hereditary fixed point property for nonexpansive mappings (HFPP) if every nonempty bounded closed convex subset of E has the fixed point property for nonexpansive mappings; E is said to have the conditional fixed point property for nonexpansive mappings (CFPP) if every nonexpansive $t : E \to E$ satisfies (CFP).

A direct consequence of Theorem 3.1.2 is that every weakly compact convex subset of a space having property (D) has both (MFPP) for multivalued nonexpansive mappings and (CFPP). The class of spaces having property (D) contains several well-known ones including k-uniformly rotund, nearly uniformly convex, uniformly convex in every direction spaces, and spaces satisfying Opial condition (see [3,19-23] and references therein).

For a subset F of E, a mapping $r: E \to F$ is a *retraction* if r is continuous and

r(x) = x, for every $x \in F$.

A subset F is a nonexpansive retract of E if there exists a retraction of E onto F which is a nonexpansive mapping.

Example 4.1.1. Let $F = \{(x, 0) : x \in \mathbb{R}\} \subset \mathbb{R}^2$. Define a mapping $r : \mathbb{R}^2 \to F$ by r((x, y)) = (x, 0) for $(x, y) \in \mathbb{R}^2$. Then F is nonexpansive retract of \mathbb{R}^2 .

The following result was proved by Bruck:

Theorem 4.1.2. ([10, Theorem 1]) Let E be a nonempty closed convex subset of a Banach space X. Suppose E is weakly compact or bounded and separable. Suppose E has both (FPP) and (CFPP). Then for any commuting family S of nonexpansive self-mappings of E, the set F(S) of common fixed points of S is a nonempty nonexpansive retract of E.

The object of this chapter is to extend Theorems 1.3.3 and 4.1.2 for a commuting family S of nonexpansive mappings one of which is multivalued. As consequences,

- (i) Theorem 1.3.3 is extended to a bigger class of Banach spaces while a class of mappings is no longer finite;
- (ii) Theorem 4.1.2 is extended so that one of its members in S can be multivalued.

The following result is a main tool of this chapter:

Theorem 4.1.3. ([9, Theorem 1]) Let E be a nonempty closed convex subset of a Banach space X. Suppose E is locally weakly compact and F is a nonempty subset of E. Let $N(F) = \{f | f : E \to E \text{ is nonexpansive and } fx = x \text{ for all } x \in F\}$. Suppose that for each z in E, there exists h in N(F) such that $h(z) \in F$. Then, F is a nonexpansive retract of E.

Let (M, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ is a map c from a closed interval $[0, r] \subset \mathbb{R}$ to X such that c(0) = x, c(r) = yand d(c(t), c(s)) = |t - s| for all $s, t \in [0, r]$. The mapping c is an isometry and d(x, y) = r. The image of c is called a geodesic segment joining x and y which when unique is denoted by seg[x, y]. A metric space (M, d) is said to be of hyperbolic type if it is a metric space that contains a family L of geodesic segments such that (a) each two points x, y in M are endpoints of exactly one member seg[x, y]of L, and (b) if $p, x, y \in M$ and $m \in seg[x, y]$ satisfies $d(x, m) = \alpha d(x, y)$ for $\alpha \in [0, 1]$, then $d(p, m) \leq (1 - \alpha)d(p, x) + \alpha d(p, y)$. M is said to be metrically convex if for any two points $x, y \in M$ with $x \neq y$ there exists $z \in M, x \neq z \neq y$, such that d(x, y) = d(x, z) + d(z, y). Obviously, every metric space of hyperbolic type is always metrically convex. The converse is true provided that the space is complete: If (M, d) is a complete metric space and metrically convex, then (M, d) is of hyperbolic type (cf. [34, Page 24]). Clearly, every nonexpansive retract is of hyperbolic type.

Proposition 4.1.4. ([33, Proposition 2]) Suppose (M, d) is of hyperbolic type, let $\{\alpha_n\} \subset [0, 1)$, if $\{x_n\}$ and $\{y_n\}$ are sequences in M which satisfy for all i, n,

(i) $x_{n+1} \in seg[x_n, y_n]$ with $d(x_n, x_{n+1}) = \alpha_n d(x_n, y_n)$,

(*ii*)
$$d(y_{n+1}, y_n) \le d(x_{n+1}, x_n)$$
,

- (iii) $d(y_{i+n}, x_i) \le d < \infty$
- (iv) $\alpha_n \leq b < 1$, and

(v)
$$\sum_{s=0}^{\infty} \alpha_s = +\infty.$$

Then $\lim_{n\to\infty} d(y_n, x_n) = 0.$

4.2 Main Results

We begin with a useful result in order to prove our main theorem. If in Theorem 4.1.3, we put F = Fix(t) where $t : E \to E$ is nonexpansive, then it was noted in [10, Remark 1] that a retraction $c \in N(F)$ can be chosen so that $cW \subset W$ for all t-invariant closed and convex subsets W of E. With the same proof, we can show that the same result is valid for F = F(S). In this case, we define $N(F(S)) = \{f | f : E \to E \text{ is nonexpansive, } Fix(f) \supset F(S), f(W) \subset W \text{ whenever } W \text{ is a closed convex } S\text{-invariant subset of } E\}$. Here, by an "S-invariant" subset, we mean a subset that is left invariant under every member of S.

Lemma 4.2.1. Let E be a nonempty weakly compact convex subset of a Banach space X and let S be any commuting family of nonexpansive self-mappings of E. Suppose that E has (FPP) and (CFPP). Then, F(S) is a nonempty nonexpansive retract of E, and a retraction c can be chosen so that every S-invariant closed and convex subset of E is also c-invariant.

Proof. Note by Theorem 4.1.2 that F(S) is nonempty. According to Theorem 4.1.3, it suffices to show that for each z in E, there exists h in N(F(S)) such that $h(z) \in F(S)$.

Let $z \in E$ and $K = \{f(z) | f \in N(F(S))\} \subset E$. Since K is weakly compact convex and invariant under every member in S, we obtain by Theorem 4.1.2 that $F(S) \cap K \neq \emptyset$, i.e., there exists h in N(F(S)) such that $h(z) \in F(S)$. Theorem 4.1.3 then implies that F(S) is a nonexpansive retract of E, where a retraction is chosen from N(F(S)).

We are ready to prove our first main result.

Theorem 4.2.2. Let E be a weakly compact convex subset of a Banach space X. Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonexpansive self-mappings of E. If $T : E \to KC(E)$ is a multivalued nonexpansive mapping that commutes with every member of S, then $F(S) \cap Fix(T) \neq \emptyset$.

Proof. Let c be a nonexpansive retraction of E onto F(S) obtained in Lemma 4.2.1. Set Ux := Tcx for $x \in E$. Clearly,

$$H(Ux, Uy) = H(Tcx, Tcy) \le ||cx - cy|| \le ||x - y||$$
 for $x, y \in E$.

Thus, U is nonexpansive, and since E has (MFPP), there exists $p \in Up = Tcp$. Since Tcp is S-invariant, by the property of c, Tcp is also c-invariant, i.e., $cp \in Tcp$. Therefore, $F(S) \cap Fix(T) \neq \emptyset$.

For a subset A and $\varepsilon > 0$, the ε -neighborhood of A is defined as $B_{\varepsilon}(A) := \{y \in X : ||x - y|| < \varepsilon, \exists x \in A\}$. Note that if A is convex, then $B_{\varepsilon}(A)$ is also convex. The following proposition is needed for a proof of Theorem 4.2.4.

Proposition 4.2.3. Let A be a compact convex subset of a Banach space X and let a nonempty subset F of A be a nonexpansive retract of A. Suppose a mapping $U: A \to KC(A)$ is upper semicontinuous and satisfies:

- (i) $c(Ux) \subset Ux$ for all $x \in F$ where c is a nonexpansive retraction of A onto F,
- (ii) F is U-invariant.

Then, U has a fixed point in F.

Proof. Let $\varepsilon > 0$. Since F is compact, there exists a finite ε -dense subset $\{z_1, z_2, \ldots, z_n\}$ of F, i.e., $F \subset \bigcup_{i=1}^n B(z_i, \frac{\varepsilon}{2})$. Put $K := \overline{co}(z_1, z_2, \ldots, z_n)$ and define $Vx = \overline{B}_{\varepsilon}(Ucx) \cap K$ for $x \in K$. Clearly, $V : K \to KC(K)$. For $x \in K$, $cx \in F$ thus by (ii) there exists $y \in Ucx \cap F$. Then, choose z_i for some i such that $\|z_i - y\| \leq \frac{\varepsilon}{2}$. Therefore, $z_i \in \overline{B}_{\varepsilon}(Ucx) \cap K$, i.e., Vx is nonempty for $x \in K$. We now show that V is upper semicontinuous. Let $\{x_n\}$ be a sequence in K converging to some $x \in K$ and $y_n \in Vx_n$ with $y_n \to y$. Choose $a_n \in Ucx_n$ such that $||y_n - a_n|| \leq \varepsilon$. As A is compact, we may assume that $a_n \to a$ for some $a \in A$. By upper semicontinuity of $U, a \in Ucx$. Consider

$$||y - a|| \le ||y - y_n|| + ||y_n - a_n|| + ||a_n - a||.$$

By letting $n \to \infty$, we obtain $||y - a|| \le \varepsilon$, i.e., $y \in Vx$ and the proof that V is upper semicontinuous is complete. By Theorem 1.2.2, there exists $p_{\varepsilon} \in Vp_{\varepsilon}$, that is, $||p_{\varepsilon} - b_{\varepsilon}|| \le \varepsilon$ for some $b_{\varepsilon} \in Ucp_{\varepsilon}$.

By the assumption on U, we see that $cb_{\varepsilon} \in Ucp_{\varepsilon}$ and $||cp_{\varepsilon}-cb_{\varepsilon}|| \leq ||p_{\varepsilon}-b_{\varepsilon}|| \leq \varepsilon$. Taking $\varepsilon = \frac{1}{n}$ and write q_n for $cp_{\frac{1}{n}}$ and b_n for $cb_{\frac{1}{n}}$, we obtain a sequence $\{q_n\} \subset F$ and $b_n \in Uq_n \cap F$ with $||q_n - b_n|| \to 0$. By the compactness of F, we assume that $q_n \to q$ and $b_n \to b$. It is seen that $q = b \in Uq$.

The following is our second main result:

Theorem 4.2.4. Let E be a weakly compact convex subset of a Banach space X satisfying the Kirk-Massa condition. Let S be any commuting family of nonexpansive self-mappings of E. Suppose $T : E \to KC(E)$ is a multivalued mapping satisfying condition (C_{λ}) for some $\lambda \in (0, 1)$ that commutes with every member of S. If T is upper semicontinuous, then $F(S) \cap Fix(T) \neq \emptyset$.

Proof. As observed earlier, E has both (FPP) and (CFPP), thus we start with a nonexpansive retraction c of E onto F(S) obtained by Lemma 4.2.1. For each $x \in F(S)$, Tx is invariant under every member of S and Tx is convex, thus Tx is c-invariant. Clearly, c is a nonexpansive retraction of Tx onto $Tx \cap F(S)$ that is nonempty by Theorem 4.1.2.

Next, we show that there exists an afps for T in F(S). Let $x_0 \in F(S)$. Since $Tx_0 \cap F(S) \neq \emptyset$, we can choose $y_0 \in Tx_0 \cap F(S)$. Since F(S) is of hyperbolic type, there exists $x_1 \in F(S)$ such that

 $||x_0 - x_1|| = \lambda ||x_0 - y_0||$ and $||x_1 - y_0|| = (1 - \lambda) ||x_0 - y_0||$.

Choose $y'_1 \in Tx_1$ for which $||y_o - y'_1|| = dist(y_0, Tx_1)$. Set $y_1 = cy'_1$. Clearly, $||y_0 - y_1|| = ||cy_0 - cy'_1|| \le ||y_0 - y'_1||$. Therefore, we can choose $y_1 \in Tx_1 \cap F(S)$ so that $||y_0 - y_1|| = dist(y_0, Tx_1)$. In this way, we will find a sequence $\{x_n\} \subset F(S)$ satisfying

$$||x_n - x_{n+1}|| = \lambda ||x_n - y_n||$$
 and $||x_{n+1} - y_n|| = (1 - \lambda) ||x_n - y_n||$

where $y_n \in Tx_n \cap F(S)$ and $||y_n - y_{n+1}|| = dist(y_n, Tx_{n+1}).$ Since $\lambda dist(x_n, Tx_n) \le \lambda ||x_n - y_n|| = ||x_n - x_{n+1}||,$

$$||y_n - y_{n+1}|| \le H(Tx_n, Tx_{n+1}) \le ||x_n - x_{n+1}||.$$

From Proposition 4.1.4, $\lim_{n\to\infty} ||y_n - x_n|| = 0$ and $\{x_n\}$ is an afps for T in F(S). Assume that $\{x_n\}$ is regular relative to E. By the Kirk-Massa condition, $A := A(E, \{x_n\})$ is assumed to be nonempty compact and convex. Define $Ux = Tx \cap A$ for $x \in A$. We are going to show that Ux is nonempty for each $x \in A$. First, let $r := r(E, \{x_n\})$. If r = 0 and if $x \in A$, then $x_n \to x$ and $y_n \to x$. Using upper semicontinuity of T, we see that $x \in Tx$, i.e., $F(S) \cap Fix(T) \neq \emptyset$.

Therefore, we assume for the rest of the proof that r > 0. Let $x \in A$. If for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$, $\lambda dist(x_{n_k}, Tx_{n_k}) \ge ||x_{n_k} - x||$ for each k, we have

$$0 = \limsup_{n \to \infty} \lambda dist(x_{n_k}, Tx_{n_k}) \ge \limsup_{n \to \infty} \|x_{n_k} - x\| \ge r$$

since $\{x_n\}$ is regular relative to E and this is a contradiction. Therefore,

$$\lambda dist(x_n, Tx_n) \le ||x_n - x|| \text{ for sufficiently large } n.$$
(4.2.1)

Now, we show that Ux is nonempty. Choose $y_n \in Tx_n$ so that $||x_n - y_n|| = dist(x_n, Tx_n)$ and choose $z_n \in Tx$ such that $||y_n - z_n|| = dist(y_n, Tx)$. As Tx is compact, we may assume that $\{z_n\}$ converges to $z \in Tx$. Using (4.2.1) and the fact that T satisfies condition (C_{λ}) , we have

$$\begin{aligned} \|x_n - z\| &\leq \|x_n - y_n\| + \|y_n - z_n\| + \|z_n - z\| \\ &= \|x_n - y_n\| + dist(y_n, Tx) + \|z_n - z\| \\ &\leq \|x_n - y_n\| + H(Tx_n, Tx) + \|z_n - z\| \\ &\leq \|x_n - y_n\| + \|x_n - x\| + \|z_n - z\| \text{ for sufficiently large } n. \end{aligned}$$

Taking supremum limit in the above inequalities to obtain

$$\limsup_{n \to \infty} \|x_n - z\| \le \limsup_{n \to \infty} \|x_n - x\| = r.$$

This implies that $z \in Ux$ proving that Ux is nonempty as claimed.

Now, we show that U is upper semicontinuous. Let $\{z_k\}$ be a sequence in A converging to some $z \in A$ and $y_k \in Uz_k$ with $y_k \to y$. Consider the following estimates:

$$\limsup_{n \to \infty} \|x_n - y\| \leq \limsup_{n \to \infty} \|x_n - y_k\| + \limsup_{n \to \infty} \|y_k - y\|$$
$$= r(E, \{x_n\}) + \limsup_{n \to \infty} \|y_k - y\| \text{ for each } k$$

Letting $k \to \infty$, it follows that

$$\limsup_{n \to \infty} \|x_n - y\| \le r(E, \{x_n\}).$$

Hence $y \in A$. From upper semicontinuity of $T, y \in Tz$. Therefore, $y \in Uz$ and thus U is upper semicontinuous. Put $F := F(S) \cap A$. Since A is c-invariant, it is clear that F is a nonexpansive retract of A by the retraction c. Now, if $x \in F$, then Ux is S-invariant which implies Ux is c-invariant. Therefore, condition (i) in Proposition 4.2.3 is justified. To verify condition (ii), we let $x \in F$. Take $y \in Ux$. It is obvious that $cy \in Ux \cap F(S)$, so U satisfies condition (ii) of Proposition 4.2.3. Upon applying Proposition 4.2.3 we obtain a fixed point in F of U and thus of Tand we are done.

Now, we are going to prove the last main theorem.

Theorem 4.2.5. Let E be a weakly compact convex subset of a Banach space X. Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonexpansive self-mappings of E. If $T : E \to KC(E)$ is a multivalued nonexpansive mapping that commutes with every member of S. Suppose in addition that Tsatisfies:

- (i) there exists a nonexpansive mapping $s: E \to E$ such that $sx \in Tx$ for each $x \in E$,
- (ii) $Fix(T) = \{x \in E : Tx = \{x\}\} \neq \emptyset.$

Then, $F(S) \cap Fix(T)$ is a nonempty nonexpansive retract of E.

Proof. By (i) and (ii), it is seen that Fix(T) = Fix(s). Note by Theorem 4.2.2 that $F(S) \cap Fix(s)$ is nonempty. Let c be a retraction from E onto F(S) obtained by Lemma 4.2.1. Here, c belongs to the set $N(F(S)) = \{f | f : E \to E \text{ is nonexpansive, } Fix(f) \supset F(S), f(W) \subset W$ whenever W is a closed convex S-invariant subset of E}. Put $F = F(S) \cap Fix(s)$ and let $N(F) = \{f | f : E \to E \text{ is nonexpansive, } Fix(f) \supset F\}$. Let $z \in E$ and consider the weakly compact and convex set $K := \{f(z) | f \in N(F)\}$. It is left to show that $h(z) \in F$ for some $h \in N(F)$. Since K is S-invariant, K is therefore c-invariant. It is evident that K is s-invariant. Thus $sc : K \to K$. Therefore, sc has a fixed point, say x, in K, i.e., sc(x) = x. By (i), $sc(x) \in Tcx$. Since Tcx is c-invariant, we have $cx \in Tcx$. That is $cx \in Fix(T) = Fix(s)$. Hence scx = x = cx, i.e., $cx \in F(S) \cap Fix(s)$, and the proof is complete. □

Remark 4.2.6.

(i) As corollaries, the results in Theorems 4.2.2 and 4.2.5 are valid for spaces X having property (D).

(ii) Theorem 4.2.5 can be viewed as a generalization of Theorem 4.1.2 for weakly compact convex domains.

When S consists of only the identity mapping of E, we immediately have the following corollary:

Corollary 4.2.7. Let E be a weakly compact convex subset of a Banach space X. Suppose E has (MFPP). If $T : E \to KC(E)$ is a multivalued nonexpansive mapping satisfying:

(i) there exists a nonexpansive mapping $s: E \to E$ such that $sx \in Tx$ for each $x \in E$,

(*ii*)
$$Fix(T) = \{x \in E : Tx = \{x\}\} \neq \emptyset.$$

Then Fix(T) is a nonempty nonexpansive retract of E.

Of course, when T is single valued, condition (i) is satisfied. Even a very simple example shows that condition (ii) in Corollary 4.2.7 may not be dropped.

Example 4.2.8. Let X be the Hilbert space \mathbb{R}^2 with the usual norm, and let $f: [0,1] \to [0,1]$ be a continuous function that is strictly concave, $f(0) = \frac{1}{2}$ and f(1) = 1. Moreover let $f'(x) \leq 1$ for $x \in [0,1]$. Let $T: [0,1]^2 \to KC([0,1]^2)$ be defined by $T(x,y) = [0,x] \times [f(x),1]$. We show that T is nonexpansive, but $Fix(T) \neq \{x: Tx = \{x\}\}$ and Fix(T) is not metrically convex. If $(x_1, y_1), (x_2, y_2) \in [0,1]^2$, then

$$H(T(x_1, y_1), T(x_2, y_2)) = |x_1 - x_2| \le ||(x_1, y_1) - (x_2, y_2)||.$$

Hence T is nonexpansive. However, $a = (0, \frac{1}{2})$ is a fixed point but $Ta \neq \{a\}$. Finally, Fix(T) is not metrically convex since, putting b = (1, 1), we see that $b \in Tb$, but $\frac{a+b}{2} = (\frac{1}{2}, \frac{3}{4}) \notin T\frac{a+b}{2}$ since f is strictly concave.

The following example show a mapping that satisfies condition in Theorem 4.2.7. **Example 4.2.9.** Let a mapping $T : [0,1] \to 2^{[0,1]}$ defined by $T(x) = [\frac{x}{4}, \frac{x}{2}]$ for $x \in [0,1]$.

$$H(Tx,Ty) = H([\frac{x}{4},\frac{x}{2}], [\frac{y}{4},\frac{y}{2}]) = \frac{1}{2}||x-y|| \le ||x-y||, \text{ for } x,y \in [0,1].$$

Thus, T is nonexpansive and $Fix(T) = \{0\}$. Moreover, there exists a nonexpansive mapping $s : [0,1] \rightarrow [0,1]$ such that $sx = \frac{x}{2} \in Tx$ for $x \in [0,1]$. Therefore, T satisfies condition in Theorem 4.2.7.

In [9, Lemma 6] it was stated that: Let E be a nonempty weakly compact convex subset of a Banach space X. Suppose E has (HFPP). Suppose F is a nonempty nonexpansive retract of E and $t : E \to E$ is a nonexpansive mapping which leaves F invariant. Then $Fix(t) \cap F$ is a nonempty nonexpansive retract of E.

Here, we have a multivalued version (with a similar proof) of this result.

Corollary 4.2.10. Let E and T be as in Corollary 4.2.7. Suppose F is a nonexpansive retract of E by a retraction c. If Tx is c-invariant for each $x \in F$, then $Fix(T) \cap F$ is a nonempty nonexpansive retract of E.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved