Chapter 4
Common Fixed Point Theorems via

Technique of Nonexpansive Retracts

The main propose of this chapter is to obtain common fixed point theorems
for a commuting family of nonexpansive mappings one of which is multivalued

mappings by using nonexpansive retracts as a main tool.

4.1 Motivations and Basic Concepts

Recall that a bounded closed and convex subset E of a Banach space X has the
fized point property for nonexpansive mappings (FPP) (respectively, for multival-
ued nonezpansive mappings (MEFPP)) if every nonexpansive mapping of F into F
has a fixed point (respectively, every nonexpansive mapping of E into 2 with
compact convex values has a fixed point).

The following concepts were introduced by Bruck [9, 10]. For a bounded closed
and convex subset F of a Banach space X, a mapping ¢t : £ — X is said to satisfy
the conditional fized point property (CFP) if either ¢ has no fixed points, or ¢ has a
fixed point in each nonempty bounded closed convex set that leaves ¢ invariant. A
set F is said to have the hereditary fized point property for nonexpansive mappings
(HFPP) if every nonempty bounded closed convex subset of E has the fized point
property for nonexpansive mappings; E is said to have the conditional fixed point
property for nonexpansive mappings (CFPP) if every nonexpansive t : £ — E
satisfies (CFP).

A direct consequence of Theorem 3.1.2 is that every weakly compact convex
subset of a space having property (D) has both (MFPP) for multivalued nonex-
pansive mappings and (CFPP). The class of spaces having property (D) contains
several well-known ones including k-uniformly rotund, nearly uniformly convex,
uniformly convex in every direction spaces, and spaces satisfying Opial condition
(see [3,19-23] and references therein).

For a subset F' of E, a mapping r : E — F is a retraction if r is continuous
and

r(z) = x, for every z € F.

A subset F' is a nonexpansive retract of E if there exists a retraction of E onto F’

which is a nonexpansive mapping.
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Example 4.1.1. Let F = {(x,0) : z € R} C R% Define a mapping r : R*> — F' by
r((x,y)) = (x,0) for (z,y) € R%. Then F is nonexpansive retract of R

The following result was proved by Bruck:

Theorem 4.1.2. ([10, Theorem 1]) Let E be a nonempty closed convex subset
of a Banach space X. Suppose E is weakly compact or bounded and separable.
Suppose E has both (FPP) and (CFPP). Then for any commuting family S of
nonezpansive self-mappings of E, the set F(S) of common fized points of S is a

nonempty nonexpansive retract of E.

The object of this chapter is to extend Theorems 1.3.3 and 4.1.2 for a com-
muting family S of nonexpansive mappings one of which is multivalued. As con-

sequences,

(i) Theorem 1.3.3 is extended to a bigger class of Banach spaces while a class

of mappings is no longer finite;

(ii) Theorem 4.1.2 is extended so that one of its members in S can be multival-

ued.
The following result is a main tool of this chapter:

Theorem 4.1.3. ([9, Theorem 1]) Let E be a nonempty closed convex subset of a
Banach space X . Suppose E is locally weakly compact and F' is a nonempty subset
of E. Let N(F) = {f|f : E — E is nonexpansive and fx = z for all z € F}.
Suppose that for each z in E, there exists h in N(F') such that h(z) € F. Then,

F is a nonexpansive retract of E.

Let (M,d) be a metric space. A geodesic path joining x € X to y € X is
a map c¢ from a closed interval [0,7] C R to X such that ¢(0) = z,¢(r) = ¥y
and d(c(t),c(s)) = |t — s| for all s,t € [0,7]. The mapping ¢ is an isometry and
d(x,y) = r. The image of ¢ is called a geodesic segment joining x and y which when
unique is denoted by seglz,y]. A metric space (M,d) is said to be of hyperbolic
type if it is a metric space that contains a family L of geodesic segments such
that (a) each two points x,y in M are endpoints of exactly one member seg[z, y]
of L, and (b) if p,z,y € M and m € seg|x,y| satisfies d(x,m) = ad(z,y) for
a € [0,1], then d(p,m) < (1 — a)d(p,x) + ad(p,y). M is said to be metrically
convex if for any two points z,y € M with = # y there exists z € M,z # z # v,
such that d(x,y) = d(x, z) + d(z,y). Obviously, every metric space of hyperbolic
type is always metrically convex. The converse is true provided that the space is
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complete: If (M, d) is a complete metric space and metrically convex, then (M, d)
is of hyperbolic type (cf. [34, Page 24]). Clearly, every nonexpansive retract is of
hyperbolic type.

Proposition 4.1.4. ([33, Proposition 2|) Suppose (M,d) is of hyperbolic type, let
{a,} € [0,1), if {z,} and {y,} are sequences in M which satisfy for all i, n,

(i) Tpi1 € s€g|Tn, Yn] with d(Tn, Tni1) = 0nd(Tn, Yn),
(1) d(Yn41,Yn) < d(Tni1, Tn),
(1) d(Yin, Ti) < d < 00,

(lv) a, <b< 1, and

(v) D oesy s = +00.

Then lim,, o0 d(yn, z,) = 0.

4.2 Main Results

We begin with a useful result in order to prove our main theorem. If in Theorem
4.1.3, we put F' = Fiz(t) where t : E — FE is nonexpansive, then it was noted
in [10, Remark 1] that a retraction ¢ € N(F') can be chosen so that ¢cW C W
for all ¢-invariant closed and convex subsets W of E. With the same proof, we
can show that the same result is valid for F' = F(S). In this case, we define
N(F(S)) =A{f|f : E — E is nonexpansive, Fiz(f) D F(S), f(W) C W whenever
W is a closed convex S-invariant subset of E'}. Here, by an “S-invariant” subset,

we mean a subset that is left invariant under every member of S.

Lemma 4.2.1. Let E be a nonempty weakly compact convex subset of a Banach
space X and let S be any commuting family of nonexpansive self-mappings of E.
Suppose that E has (FPP) and (CFPP). Then, F(S) is a nonempty nonexpansive
retract of E, and a retraction ¢ can be chosen so that every S-invariant closed and

convex subset of E is also c-invariant.

Proof. Note by Theorem 4.1.2 that F'(S) is nonempty. According to Theorem
4.1.3, it suffices to show that for each z in F, there exists h in N(F'(S)) such that
h(z) € F(S).

Let z € E and K = {f(2)|f € N(F(5))} C E. Since K is weakly compact

convex and invariant under every member in S, we obtain by Theorem 4.1.2 that
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F(S)N K # 0, i.e., there exists h in N(F(S)) such that h(z) € F(S). Theorem
4.1.3 then implies that F'(.S) is a nonexpansive retract of £, where a retraction is
chosen from N (F'(S)). O

We are ready to prove our first main result.

Theorem 4.2.2. Let E be a weakly compact convex subset of a Banach space X.
Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonez-
pansive self-mappings of E. If T : E — KC(F) is a multivalued nonezpansive
mapping that commutes with every member of S, then F(S)N Fix(T) # 0.

Proof. Let ¢ be a nonexpansive retraction of E onto F(S) obtained in Lemma
4.2.1. Set Uz := Tcx for x € E. Clearly,

H(UI‘, Uy) < H(Tcx,Tcy) < ch 4 CyH < ||$ - yH for xr,y € E.

Thus, U is nonexpansive, and since E has (MFPP), there exists p € Up = Tcp.
Since T'cp is S-invariant, by the property of ¢, T'cp is also c-invariant, i.e., cp € T'cp.

Therefore, F(S) N Fix(T) # 0. O

For a subset A and € > 0, the e-neighborhood of A is defined as B.(A) := {y €
X : ||z —y| <e,Jxr € A}. Note that if A is convex, then B.(A) is also convex.

The following proposition is needed for a proof of Theorem 4.2.4.

Proposition 4.2.3. Let A be a compact convex subset of a Banach space X and let
a nonempty subset F' of A be a nonexpansive retract of A. Suppose a mapping

U:A— KC(A) is upper semicontinuous and satisfies:
(i) c(Ux) C Uz for all x € F where c is a nonexpansive retraction of A onto F,
(ii) F is U-invariant.

Then, U has a fized point in F.

Proof. Let e > 0. Since F'is compact, there exists a finite e-dense subset {21, 22, ..., 2, }
of F, ie, F C U, B(z,5). Put K := ©o(z,2,...,2,) and define Vz =
B.(Uczx)N K for v € K. Clearly, V : K — KC(K). Forx € K, cx € F
thus by (ii) there exists y € Ucx N F. Then, choose z; for some ¢ such that
|2; — y|| < %. Therefore, z; € B.(Ucz) N K, i.e., Vx is nonempty for z € K. We
now show that V' is upper semicontinuous. Let {z,} be a sequence in K converg-

ing to some x € K and y, € Vx, with y, — y. Choose a, € Ucz, such that
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|y — anl] < e. As A is compact, we may assume that a,, — a for some a € A. By

upper semicontinuity of U, a € Ucx. Consider

ly = all < lly = ynll + 1y = anll + llan = all

By letting n — oo, we obtain ||y — a| < e, i.e., y € Vz and the proof that V is
upper semicontinuous is complete. By Theorem 1.2.2, there exists p. € Vp,., that
is, ||p. — b|| < € for some b, € Ucp..

By the assumption on U, we see that cb. € Ucp. and ||cp.—cb. || < ||[pe—b:| < e.
Taking ¢ = % and write g, for cp1 and b,, for cb1, we obtain a sequence {¢,} C F
and b, € Ug, N F with ||, — bn||n—> 0. By the ct)mpactness of F', we assume that
¢n — q and b, — b. It is seen that ¢ = b € Ug. ]

The following is our second main result:

Theorem 4.2.4. Let E be a weakly compact convex subset of a Banach space X
satisfying the Kirk-Massa condition. Let S be any commuting family of nonezx-
pansive self-mappings of E. Suppose T : E — KC(FE) is a multivalued mapping
satisfying condition (Cy) for some X € (0,1) that commutes with every member of
S. If T is upper semicontinuous, then F(S) N Fix(T) # (.

Proof. As observed earlier, F has both (FPP) and (CFPP), thus we start with
a nonexpansive retraction ¢ of £ onto F'(S) obtained by Lemma 4.2.1. For each
x € F(S), Tz is invariant under every member of S and Tz is convex, thus Tz is
c-invariant. Clearly, ¢ is a nonexpansive retraction of Tx onto Tz N F'(S) that is
nonempty by Theorem 4.1.2.

Next, we show that there exists an afps for T'in F(S). Let zq € F(S). Since
TxoNF(S) # 0, we can choose yy € TxoN F(S). Since F(S) is of hyperbolic type,
there exists z; € F'(S) such that

[0 = x1[| = Allzo = gol[ and [lz1 = yol[ = (1 = Mz — yol-

Choose y'y € Ty for which |y, — ¢/1|| = dist(yo, Tx1). Set y1 = cy’y. Clearly,
lvo—yill = lleyo — /1]l < |lyo—¥'1]|- Therefore, we can choose y; € Tx; NF(S) so
that ||yo — y1|| = dist(yo, Tx1). In this way, we will find a sequence {z,,} C F(5)
satisfying

[0 = @il = Mlzn = ynll and zn 0 = yall = (L= Mz = yall,

where y, € Tz, N F(S) and ||y, — Yni1|| = dist(yn, TTpi1).
Since \dist(x,,, Tr,) < M|z — ynl| = |20 — Tnaa]]s

Hyn - yn+1H S H(TxnaTanrl) S Hxn - $n+1”-
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From Proposition 4.1.4, lim,, .« ||y, — 24| = 0 and {z,} is an afps for T" in F'(5).
Assume that {z,} is regular relative to E. By the Kirk-Massa condition, A :=
A(E,{z,}) is assumed to be nonempty compact and convex. Define Uz = Tx N A
for z € A. We are going to show that Ux is nonempty for each x € A. First, let
r:=r(E{x,}). f r =0 and if x € A, then z, — z and y, — z. Using upper
semicontinuity of T', we see that x € Tz, i.e., F(S)N Fiz(T) # 0.

Therefore, we assume for the rest of the proof that r > 0. Let x € A. If for some

subsequence {x,, } of {z,}, Adist(x,,,Tx,,) > ||z, — x| for each k, we have

0 = lim sup Adist(z,, , Tx,,) > limsup ||z, —z| >r

n—oo n—oo

since {z,} is regular relative to £ and this is a contradiction. Therefore,
Mist(z,, Tx,) < ||z, — z|| for sufficiently large n. (4.2.1)

Now, we show that Uz is nonempty. Choose vy, € Tz, so that ||z, — y,| =
dist(z,,Tx,) and choose z, € Tz such that ||y, — z,|| = dist(y,,Tz). As Tz is
compact, we may assume that {z,} converges to z € Txz. Using (4.2.1) and the

fact that T satisfies condition (Cl), we have

|20 — 2] < Zn = Ynll + |yn — 2all + |20 — 2|
= |lxn — ynl| + dist(yn, Tz) + |20 — 2|
< |aw — yull + H(Txp, Tz) + |20 — 2||

< Nxn — Ynll + |zn — || + ||2n — z]| for sufficiently large n.
Taking supremum limit in the above inequalities to obtain

limsup ||z, — 2| < limsup ||z, — | =
n—00 n—00

This implies that z € Ux proving that Ux is nonempty as claimed.
Now, we show that U is upper semicontinuous. Let {z;} be a sequence in A
converging to some z € A and y, € Uz, with y, — y. Consider the following

estimates:

limsup ||z, —y|| < limsup ||z, — yx| + limsup ||yx — y||

n—0o0 n—00 n—00

= r(E,{x,}) + limsup ||yx — y|| for each k.
n—oo

Letting k — o0, it follows that

lim sup Hxn - y” < T(E7 {xn}>

n—o0
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Hence y € A. From upper semicontinuity of 7', y € T'z. Therefore, y € Uz and
thus U is upper semicontinuous. Put F':= F(S) N A. Since A is c-invariant, it is
clear that F'is a nonexpansive retract of A by the retraction ¢. Now, if x € F,
then Uz is S-invariant which implies Uz is c-invariant. Therefore, condition (i) in
Proposition 4.2.3 is justified. To verify condition (ii), we let = € F'. Take y € Uxz.
It is obvious that cy € Uz N F(S), so U satisfies condition (ii) of Proposition 4.2.3.
Upon applying Proposition 4.2.3 we obtain a fixed point in F' of U and thus of T

and we are done. ]
Now, we are going to prove the last main theorem.

Theorem 4.2.5. Let E be a weakly compact convex subset of a Banach space X.
Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonex-
pansive self-mappings of E. If T : E — KC(F) is a multivalued nonezpansive
mapping that commutes with every member of S. Suppose in addition that T

satisfies:

(i) there exists a nonexpansive mapping s : E — E such that sx € Tx for each
r € F,

(it) Fix(T)={x € E: Tz = {a}} # 0.
Then, F(S)N Fix(T) is a nonempty nonexpansive retract of E.

Proof. By (i) and (ii), it is seen that Fiz(T) = Fixz(s). Note by Theorem 4.2.2
that F'(S) N Fiz(s) is nonempty. Let ¢ be a retraction from E onto F(S) ob-
tained by Lemma 4.2.1. Here, ¢ belongs to the set N(F'(S)) = {f|f : £ — E
is nonexpansive, Fiz(f) D F(S), f(W) C W whenever W is a closed convex
S-invariant subset of E'}. Put F' = F(S)N Fiz(s) and let N(F)={f|f: £ — FE
is nonexpansive, Fiz(f) D F}. Let z € E and consider the weakly compact and
convex set K := {f(2)|f € N(F)}. It is left to show that h(z) € F for some
h € N(F). Since K is S-invariant, K is therefore c-invariant. It is evident that
K is s-invariant. Thus sc : K — K. Therefore, sc has a fixed point, say z, in K,
i.e., sc(z) = x. By (i), sc(x) € Tcx. Since Tcx is c-invariant, we have cx € Tcx.
That is cx € Fix(T) = Fix(s). Hence scx = x = ca, i.e., cx € F(S) N Fix(s),
and the proof is complete. ]

Remark 4.2.6.

(i) As corollaries, the results in Theorems 4.2.2 and 4.2.5 are valid for spaces X

having property (D).
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(ii) Theorem 4.2.5 can be viewed as a generalization of Theorem 4.1.2 for weakly

compact convex domains.

When S consists of only the identity mapping of F, we immediately have the

following corollary:

Corollary 4.2.7. Let E be a weakly compact convexr subset of a Banach space
X. Suppose E has (MFPP). If T : E — KC(F) is a multivalued nonezpansive
mapping satisfying:

(i) there exists a nonexpansive mapping s : E — E such that sx € Tx for each
r e FE,

(i) Fix(T)={x € E: Tz = {x}} # 0.
Then Fix(T) is a nonempty nonexpansive retract of E.

Of course, when T is single valued, condition () is satisfied. Even a very simple

example shows that condition (i7) in Corollary 4.2.7 may not be dropped.

Example 4.2.8. Let X be the Hilbert space R? with the usual norm, and let
f:[0,1] = [0,1] be a continuous function that is strictly concave, f(0) = 3 and
f(1) = 1. Moreover let f'(z) < 1 for z € [0,1]. Let T : [0,1]* — KC([0,1]?)
be defined by T'(z,y) = [0,z] x [f(x),1]. We show that T is nonexpansive, but
Fix(T)# {z : Tx = {x}} and Fix(T") is not metrically convex. If (1, y1), (z2,92) €

0,1]%, then
H(T(z1,91), T(22,y2)) = |v1 — 22| < |[(201,91) — (w2, 92)]]-

Hence T is nonexpansive. However, a = (0,3) is a fixed point but Ta # {a}.
Finally, Fix(T') is not metrically convex since, putting b = (1,1), we see that

b€ Th, but 4 = (1, 2) ¢ T2 since f is strictly concave.

The following example show a mapping that satisfies condition in Theorem 4.2.7.

Example 4.2.9. Let a mapping 7' : [0,1] — 2[%U defined by T'(z) = [£,%] for
z € [0,1].

1
H(Tz,Ty) = H(G, 5112, 2) = 5lle = oll < llo = yll, for 2,y € 0,1].

Thus, T is nonexpansive and Fiz(T) = {0}. Moreover, there exists a nonexpansive
mapping s : [0,1] — [0,1] such that sz = § € T for z € [0,1]. Therefore, T
satisfies condition in Theorem 4.2.7.
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In [9, Lemma 6] it was stated that: Let £ be a nonempty weakly compact
convex subset of a Banach space X. Suppose E has (HFPP). Suppose F' is a
nonempty nonexpansive retract of £ and ¢ : £ — E is a nonexpansive mapping
which leaves F' invariant. Then Fiz(t) N F' is a nonempty nonexpansive retract of
E.

Here, we have a multivalued version (with a similar proof) of this result.

Corollary 4.2.10. Let E and T be as in Corollary 4.2.7. Suppose F' is a nonez-
pansive retract of E by a retraction c. If Tx is c-invariant for each x € F', then

Fix(T) N F is a nonempty nonexpansive retract of E.
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