
Chapter 4
Common Fixed Point Theorems via
Technique of Nonexpansive Retracts

The main propose of this chapter is to obtain common fixed point theorems
for a commuting family of nonexpansive mappings one of which is multivalued
mappings by using nonexpansive retracts as a main tool.

4.1 Motivations and Basic Concepts
Recall that a bounded closed and convex subset E of a Banach space X has the
fixed point property for nonexpansive mappings (FPP) (respectively, for multival-
ued nonexpansive mappings (MFPP)) if every nonexpansive mapping of E into E

has a fixed point (respectively, every nonexpansive mapping of E into 2E with
compact convex values has a fixed point).

The following concepts were introduced by Bruck [9, 10]. For a bounded closed
and convex subset E of a Banach space X, a mapping t : E → X is said to satisfy
the conditional fixed point property (CFP) if either t has no fixed points, or t has a
fixed point in each nonempty bounded closed convex set that leaves t invariant. A
set E is said to have the hereditary fixed point property for nonexpansive mappings
(HFPP) if every nonempty bounded closed convex subset of E has the fixed point
property for nonexpansive mappings; E is said to have the conditional fixed point
property for nonexpansive mappings (CFPP) if every nonexpansive t : E → E

satisfies (CFP).
A direct consequence of Theorem 3.1.2 is that every weakly compact convex

subset of a space having property (D) has both (MFPP) for multivalued nonex-
pansive mappings and (CFPP). The class of spaces having property (D) contains
several well-known ones including k-uniformly rotund, nearly uniformly convex,
uniformly convex in every direction spaces, and spaces satisfying Opial condition
(see [3,19-23] and references therein).

For a subset F of E, a mapping r : E → F is a retraction if r is continuous
and

r(x) = x, for every x ∈ F.

A subset F is a nonexpansive retract of E if there exists a retraction of E onto F

which is a nonexpansive mapping.
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Example 4.1.1. Let F = {(x, 0) : x ∈ R} ⊂ R2. Define a mapping r : R2 → F by
r((x, y)) = (x, 0) for (x, y) ∈ R2. Then F is nonexpansive retract of R2.

The following result was proved by Bruck:

Theorem 4.1.2. ([10, Theorem 1]) Let E be a nonempty closed convex subset
of a Banach space X. Suppose E is weakly compact or bounded and separable.
Suppose E has both (FPP) and (CFPP). Then for any commuting family S of
nonexpansive self-mappings of E, the set F (S) of common fixed points of S is a
nonempty nonexpansive retract of E.

The object of this chapter is to extend Theorems 1.3.3 and 4.1.2 for a com-
muting family S of nonexpansive mappings one of which is multivalued. As con-
sequences,

(i) Theorem 1.3.3 is extended to a bigger class of Banach spaces while a class
of mappings is no longer finite;

(ii) Theorem 4.1.2 is extended so that one of its members in S can be multival-
ued.

The following result is a main tool of this chapter:

Theorem 4.1.3. ([9, Theorem 1]) Let E be a nonempty closed convex subset of a
Banach space X. Suppose E is locally weakly compact and F is a nonempty subset
of E. Let N(F ) = {f |f : E → E is nonexpansive and fx = x for all x ∈ F}.
Suppose that for each z in E, there exists h in N(F ) such that h(z) ∈ F . Then,
F is a nonexpansive retract of E.

Let (M,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is
a map c from a closed interval [0, r] ⊂ R to X such that c(0) = x, c(r) = y

and d(c(t), c(s)) = |t − s| for all s, t ∈ [0, r]. The mapping c is an isometry and
d(x, y) = r. The image of c is called a geodesic segment joining x and y which when
unique is denoted by seg[x, y]. A metric space (M,d) is said to be of hyperbolic
type if it is a metric space that contains a family L of geodesic segments such
that (a) each two points x, y in M are endpoints of exactly one member seg[x, y]
of L, and (b) if p, x, y ∈ M and m ∈ seg[x, y] satisfies d(x,m) = αd(x, y) for
α ∈ [0, 1], then d(p,m) ≤ (1 − α)d(p, x) + αd(p, y). M is said to be metrically
convex if for any two points x, y ∈ M with x ̸= y there exists z ∈ M,x ̸= z ̸= y,
such that d(x, y) = d(x, z) + d(z, y). Obviously, every metric space of hyperbolic
type is always metrically convex. The converse is true provided that the space is
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complete: If (M,d) is a complete metric space and metrically convex, then (M,d)

is of hyperbolic type (cf. [34, Page 24]). Clearly, every nonexpansive retract is of
hyperbolic type.

Proposition 4.1.4. ([33, Proposition 2]) Suppose (M,d) is of hyperbolic type, let
{αn} ⊂ [0, 1), if {xn} and {yn} are sequences in M which satisfy for all i, n,

(i) xn+1 ∈ seg[xn, yn] with d(xn, xn+1) = αnd(xn, yn),

(ii) d(yn+1, yn) ≤ d(xn+1, xn),

(iii) d(yi+n, xi) ≤ d < ∞,

(iv) αn ≤ b < 1, and

(v)
∑∞

s=0 αs = +∞.

Then limn→∞ d(yn, xn) = 0.

4.2 Main Results
We begin with a useful result in order to prove our main theorem. If in Theorem
4.1.3, we put F = Fix(t) where t : E → E is nonexpansive, then it was noted
in [10, Remark 1] that a retraction c ∈ N(F ) can be chosen so that cW ⊂ W

for all t-invariant closed and convex subsets W of E. With the same proof, we
can show that the same result is valid for F = F (S). In this case, we define
N(F (S)) = {f |f : E → E is nonexpansive, Fix(f) ⊃ F (S), f(W ) ⊂ W whenever
W is a closed convex S-invariant subset of E}. Here, by an “S-invariant” subset,
we mean a subset that is left invariant under every member of S.

Lemma 4.2.1. Let E be a nonempty weakly compact convex subset of a Banach
space X and let S be any commuting family of nonexpansive self-mappings of E.
Suppose that E has (FPP) and (CFPP). Then, F (S) is a nonempty nonexpansive
retract of E, and a retraction c can be chosen so that every S-invariant closed and
convex subset of E is also c-invariant.

Proof. Note by Theorem 4.1.2 that F (S) is nonempty. According to Theorem
4.1.3, it suffices to show that for each z in E, there exists h in N(F (S)) such that
h(z) ∈ F (S).

Let z ∈ E and K = {f(z)|f ∈ N(F (S))} ⊂ E. Since K is weakly compact
convex and invariant under every member in S, we obtain by Theorem 4.1.2 that
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F (S) ∩K ̸= ∅, i.e., there exists h in N(F (S)) such that h(z) ∈ F (S). Theorem
4.1.3 then implies that F (S) is a nonexpansive retract of E, where a retraction is
chosen from N(F (S)).

We are ready to prove our first main result.

Theorem 4.2.2. Let E be a weakly compact convex subset of a Banach space X.
Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonex-
pansive self-mappings of E. If T : E → KC(E) is a multivalued nonexpansive
mapping that commutes with every member of S, then F (S) ∩ Fix(T ) ̸= ∅.

Proof. Let c be a nonexpansive retraction of E onto F (S) obtained in Lemma
4.2.1. Set Ux := Tcx for x ∈ E. Clearly,

H(Ux, Uy) = H(Tcx, Tcy) ≤ ∥cx− cy∥ ≤ ∥x− y∥ for x, y ∈ E.

Thus, U is nonexpansive, and since E has (MFPP), there exists p ∈ Up = Tcp.
Since Tcp is S-invariant, by the property of c, Tcp is also c-invariant, i.e., cp ∈ Tcp.
Therefore, F (S) ∩ Fix(T ) ̸= ∅.

For a subset A and ε > 0, the ε-neighborhood of A is defined as Bε(A) := {y ∈
X : ∥x − y∥ < ε, ∃x ∈ A}. Note that if A is convex, then Bε(A) is also convex.
The following proposition is needed for a proof of Theorem 4.2.4.

Proposition 4.2.3. Let A be a compact convex subset of a Banach space X and let
a nonempty subset F of A be a nonexpansive retract of A. Suppose a mapping
U : A → KC(A) is upper semicontinuous and satisfies:

(i) c(Ux) ⊂ Ux for all x ∈ F where c is a nonexpansive retraction of A onto F ,

(ii) F is U-invariant.

Then, U has a fixed point in F .

Proof. Let ε > 0. Since F is compact, there exists a finite ε-dense subset {z1, z2, . . . , zn}
of F , i.e., F ⊂

∪n
i=1B(zi,

ε
2
). Put K := co(z1, z2, . . . , zn) and define V x =

Bε(Ucx) ∩ K for x ∈ K. Clearly, V : K → KC(K). For x ∈ K, cx ∈ F

thus by (ii) there exists y ∈ Ucx ∩ F . Then, choose zi for some i such that
∥zi − y∥ ≤ ε

2
. Therefore, zi ∈ Bε(Ucx) ∩K, i.e., V x is nonempty for x ∈ K. We

now show that V is upper semicontinuous. Let {xn} be a sequence in K converg-
ing to some x ∈ K and yn ∈ V xn with yn → y. Choose an ∈ Ucxn such that
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∥yn − an∥ ≤ ε. As A is compact, we may assume that an → a for some a ∈ A. By
upper semicontinuity of U , a ∈ Ucx. Consider

∥y − a∥ ≤ ∥y − yn∥+ ∥yn − an∥+ ∥an − a∥.

By letting n → ∞, we obtain ∥y − a∥ ≤ ε, i.e., y ∈ V x and the proof that V is
upper semicontinuous is complete. By Theorem 1.2.2, there exists pε ∈ V pε, that
is, ∥pε − bε∥ ≤ ε for some bε ∈ Ucpε.

By the assumption on U , we see that cbε ∈ Ucpε and ∥cpε−cbε∥ ≤ ∥pε−bε∥ ≤ ε.
Taking ε = 1

n
and write qn for cp 1

n
and bn for cb 1

n
, we obtain a sequence {qn} ⊂ F

and bn ∈ Uqn ∩ F with ∥qn − bn∥ → 0. By the compactness of F , we assume that
qn → q and bn → b. It is seen that q = b ∈ Uq.

The following is our second main result:

Theorem 4.2.4. Let E be a weakly compact convex subset of a Banach space X

satisfying the Kirk-Massa condition. Let S be any commuting family of nonex-
pansive self-mappings of E. Suppose T : E → KC(E) is a multivalued mapping
satisfying condition (Cλ) for some λ ∈ (0, 1) that commutes with every member of
S. If T is upper semicontinuous, then F (S) ∩ Fix(T ) ̸= ∅.

Proof. As observed earlier, E has both (FPP) and (CFPP), thus we start with
a nonexpansive retraction c of E onto F (S) obtained by Lemma 4.2.1. For each
x ∈ F (S), Tx is invariant under every member of S and Tx is convex, thus Tx is
c-invariant. Clearly, c is a nonexpansive retraction of Tx onto Tx ∩ F (S) that is
nonempty by Theorem 4.1.2.

Next, we show that there exists an afps for T in F (S). Let x0 ∈ F (S). Since
Tx0∩F (S) ̸= ∅, we can choose y0 ∈ Tx0∩F (S). Since F (S) is of hyperbolic type,
there exists x1 ∈ F (S) such that

∥x0 − x1∥ = λ∥x0 − y0∥ and ∥x1 − y0∥ = (1− λ)∥x0 − y0∥.

Choose y′1 ∈ Tx1 for which ∥yo − y′1∥ = dist(y0, Tx1). Set y1 = cy′1. Clearly,
∥y0−y1∥ = ∥cy0−cy′1∥ ≤ ∥y0−y′1∥. Therefore, we can choose y1 ∈ Tx1∩F (S) so
that ∥y0 − y1∥ = dist(y0, Tx1). In this way, we will find a sequence {xn} ⊂ F (S)

satisfying

∥xn − xn+1∥ = λ∥xn − yn∥ and ∥xn+1 − yn∥ = (1− λ)∥xn − yn∥,

where yn ∈ Txn ∩ F (S) and ∥yn − yn+1∥ = dist(yn, Txn+1).
Since λdist(xn, Txn) ≤ λ∥xn − yn∥ = ∥xn − xn+1∥,

∥yn − yn+1∥ ≤ H(Txn, Txn+1) ≤ ∥xn − xn+1∥.
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From Proposition 4.1.4, limn→∞ ∥yn − xn∥ = 0 and {xn} is an afps for T in F (S).
Assume that {xn} is regular relative to E. By the Kirk-Massa condition, A :=

A(E, {xn}) is assumed to be nonempty compact and convex. Define Ux = Tx∩A

for x ∈ A. We are going to show that Ux is nonempty for each x ∈ A. First, let
r := r(E, {xn}). If r = 0 and if x ∈ A, then xn → x and yn → x. Using upper
semicontinuity of T , we see that x ∈ Tx, i.e., F (S) ∩ Fix(T ) ̸= ∅.
Therefore, we assume for the rest of the proof that r > 0. Let x ∈ A. If for some
subsequence {xnk

} of {xn}, λdist(xnk
, Txnk

) ≥ ∥xnk
− x∥ for each k, we have

0 = lim sup
n→∞

λdist(xnk
, Txnk

) ≥ lim sup
n→∞

∥xnk
− x∥ ≥ r

since {xn} is regular relative to E and this is a contradiction. Therefore,

λdist(xn, Txn) ≤ ∥xn − x∥ for sufficiently large n. (4.2.1)

Now, we show that Ux is nonempty. Choose yn ∈ Txn so that ∥xn − yn∥ =

dist(xn, Txn) and choose zn ∈ Tx such that ∥yn − zn∥ = dist(yn, Tx). As Tx is
compact, we may assume that {zn} converges to z ∈ Tx. Using (4.2.1) and the
fact that T satisfies condition (Cλ), we have

∥xn − z∥ ≤ ∥xn − yn∥+ ∥yn − zn∥+ ∥zn − z∥
= ∥xn − yn∥+ dist(yn, Tx) + ∥zn − z∥
≤ ∥xn − yn∥+H(Txn, Tx) + ∥zn − z∥
≤ ∥xn − yn∥+ ∥xn − x∥+ ∥zn − z∥ for sufficiently large n.

Taking supremum limit in the above inequalities to obtain

lim sup
n→∞

∥xn − z∥ ≤ lim sup
n→∞

∥xn − x∥ = r.

This implies that z ∈ Ux proving that Ux is nonempty as claimed.
Now, we show that U is upper semicontinuous. Let {zk} be a sequence in A

converging to some z ∈ A and yk ∈ Uzk with yk → y. Consider the following
estimates:

lim sup
n→∞

∥xn − y∥ ≤ lim sup
n→∞

∥xn − yk∥+ lim sup
n→∞

∥yk − y∥

= r(E, {xn}) + lim sup
n→∞

∥yk − y∥ for each k.

Letting k → ∞, it follows that

lim sup
n→∞

∥xn − y∥ ≤ r(E, {xn}).



39

Hence y ∈ A. From upper semicontinuity of T , y ∈ Tz. Therefore, y ∈ Uz and
thus U is upper semicontinuous. Put F := F (S) ∩ A. Since A is c-invariant, it is
clear that F is a nonexpansive retract of A by the retraction c. Now, if x ∈ F ,
then Ux is S-invariant which implies Ux is c-invariant. Therefore, condition (i) in
Proposition 4.2.3 is justified. To verify condition (ii), we let x ∈ F . Take y ∈ Ux.
It is obvious that cy ∈ Ux∩F (S), so U satisfies condition (ii) of Proposition 4.2.3.
Upon applying Proposition 4.2.3 we obtain a fixed point in F of U and thus of T
and we are done.

Now, we are going to prove the last main theorem.

Theorem 4.2.5. Let E be a weakly compact convex subset of a Banach space X.
Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonex-
pansive self-mappings of E. If T : E → KC(E) is a multivalued nonexpansive
mapping that commutes with every member of S. Suppose in addition that T

satisfies:

(i) there exists a nonexpansive mapping s : E → E such that sx ∈ Tx for each
x ∈ E,

(ii) Fix(T )= {x ∈ E : Tx = {x}} ̸= ∅.

Then, F (S) ∩ Fix(T ) is a nonempty nonexpansive retract of E.

Proof. By (i) and (ii), it is seen that Fix(T ) = Fix(s). Note by Theorem 4.2.2
that F (S) ∩ Fix(s) is nonempty. Let c be a retraction from E onto F (S) ob-
tained by Lemma 4.2.1. Here, c belongs to the set N(F (S)) = {f |f : E → E

is nonexpansive, Fix(f) ⊃ F (S), f(W ) ⊂ W whenever W is a closed convex
S-invariant subset of E}. Put F = F (S) ∩ Fix(s) and let N(F ) = {f |f : E → E

is nonexpansive, Fix(f) ⊃ F}. Let z ∈ E and consider the weakly compact and
convex set K := {f(z)|f ∈ N(F )}. It is left to show that h(z) ∈ F for some
h ∈ N(F ). Since K is S-invariant, K is therefore c-invariant. It is evident that
K is s-invariant. Thus sc : K → K. Therefore, sc has a fixed point, say x, in K,
i.e., sc(x) = x. By (i), sc(x) ∈ Tcx. Since Tcx is c-invariant, we have cx ∈ Tcx.
That is cx ∈ Fix(T ) = Fix(s). Hence scx = x = cx, i.e., cx ∈ F (S) ∩ Fix(s),
and the proof is complete.

Remark 4.2.6.

(i) As corollaries, the results in Theorems 4.2.2 and 4.2.5 are valid for spaces X
having property (D).
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(ii) Theorem 4.2.5 can be viewed as a generalization of Theorem 4.1.2 for weakly
compact convex domains.

When S consists of only the identity mapping of E, we immediately have the
following corollary:

Corollary 4.2.7. Let E be a weakly compact convex subset of a Banach space
X. Suppose E has (MFPP). If T : E → KC(E) is a multivalued nonexpansive
mapping satisfying:

(i) there exists a nonexpansive mapping s : E → E such that sx ∈ Tx for each
x ∈ E,

(ii) Fix(T )= {x ∈ E : Tx = {x}} ̸= ∅.

Then Fix(T ) is a nonempty nonexpansive retract of E.

Of course, when T is single valued, condition (i) is satisfied. Even a very simple
example shows that condition (ii) in Corollary 4.2.7 may not be dropped.

Example 4.2.8. Let X be the Hilbert space R2 with the usual norm, and let
f : [0, 1] → [0, 1] be a continuous function that is strictly concave, f(0) = 1

2
and

f(1) = 1. Moreover let f ′(x) ≤ 1 for x ∈ [0, 1]. Let T : [0, 1]2 → KC([0, 1]2)

be defined by T (x, y) = [0, x] × [f(x), 1]. We show that T is nonexpansive, but
Fix(T )̸= {x : Tx = {x}} and Fix(T ) is not metrically convex. If (x1, y1), (x2, y2) ∈
[0, 1]2, then

H(T (x1, y1), T (x2, y2)) = |x1 − x2| ≤ ∥(x1, y1)− (x2, y2)∥.

Hence T is nonexpansive. However, a = (0, 1
2
) is a fixed point but Ta ̸= {a}.

Finally, Fix(T ) is not metrically convex since, putting b = (1, 1), we see that
b ∈ Tb, but a+b

2
= (1

2
, 3
4
) /∈ T a+b

2
since f is strictly concave.

The following example show a mapping that satisfies condition in Theorem 4.2.7.

Example 4.2.9. Let a mapping T : [0, 1] → 2[0,1] defined by T (x) = [x
4
, x
2
] for

x ∈ [0, 1].

H(Tx, Ty) = H([
x

4
,
x

2
], [

y

4
,
y

2
]) =

1

2
∥x− y∥ ≤ ∥x− y∥, for x, y ∈ [0, 1].

Thus, T is nonexpansive and Fix(T ) = {0}. Moreover, there exists a nonexpansive
mapping s : [0, 1] → [0, 1] such that sx = x

2
∈ Tx for x ∈ [0, 1]. Therefore, T

satisfies condition in Theorem 4.2.7.
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In [9, Lemma 6] it was stated that: Let E be a nonempty weakly compact
convex subset of a Banach space X. Suppose E has (HFPP). Suppose F is a
nonempty nonexpansive retract of E and t : E → E is a nonexpansive mapping
which leaves F invariant. Then Fix(t)∩F is a nonempty nonexpansive retract of
E.

Here, we have a multivalued version (with a similar proof) of this result.

Corollary 4.2.10. Let E and T be as in Corollary 4.2.7. Suppose F is a nonex-
pansive retract of E by a retraction c. If Tx is c-invariant for each x ∈ F , then
Fix(T ) ∩ F is a nonempty nonexpansive retract of E.
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