Chapter 2

Basic Concepts and Preliminaries

For understanding the thesis, we collect some notations, terminologies and elemen-
tary results. Although details are included in some cases, many well-known results

are merely stated without proofs.

2.1 Metric Spaces

Definition 2.1. A metric (or distance function) d on X is a real-valued function defined

on X x X satisfying the following conditions for any x,y, z € X:
(M1) d(z,y) = 0;

(M2) d(z,y) = 0ifand only if x = y;

(M3) d(z,y) = d(y, x) (symmetry);

(M4) d(z,y) < d(z,2) + d(z,y) (triangle inequality).

A pair (X, d) is called a metric space if d is a metric on X. Whenever it can be done

without causing confusion, we denote the metric space (X, d) by the symbol X.

Example 2.2. Examples of metric spaces.

(1) Euclidean space R™. Let R™ be the set of all ordered n-tuples of real numbers.

Then R" is a metric space with the metric defined by

d(z,y) = V(@1 —y1)* + - + (20— ya)?

forall x = (21, ...,2,) and y = (y1, ..., yn) iIn R™.



(i) Sequence space (*. Let (* be the set of all sequences © = {z,} C R such that

>0 | |#n]? < oco. Then % is a metric space with the metric defined by

d($, y) = (Z |:En 53 yn|2>
n=1
forall z = {x,} and y = {y,} in (2.

(iii) Sequence space (>°. Let (> be the set of all bounded sequences x = {z,,} C R.

Then ¢°° is a metric space with the metric defined by

d(J:,y) = sup |xn - ynl
neN

forallz = {z,} and y = {y,,} in £>°.

(iv) Function space B(S). Let S be a nonempty set and B(S) be the set of all bounded

real-valued function on S. Then B(S) is a metric space with the metric defined
by
d(f,g) = sup | f(t) — g(t)]
tes

forall f,g € B(95).

(v) Space of bounded closed subsets F'B(X). Let X be a metric space and F' B(X)
a family of nonempty bounded closed subsets of X. For each A, B € FB(X),
define the Hausdorff distance (or Hausdorff metric) on F'B(X) by

H(A, B) := max {sup dist(a, B), sup dist(b, A)} : (2.1)
acA beB

where dist(a, B) := infycp d(a, b) is the distance from the point a to the subset
B. Then (FB(X), H) is a metric space.

Definition 2.3. Let X be a metric space. The set
B(zg,r) :={z € X : d(xg,x) <71},
where r > 0 and z( € X, is called the open ball of radius r and centre x,. The set

B(zg,r) :={z € X : d(zg,x) <1},

where r > 0 and xq € X, is called the closed ball of radius r and centre z.



A subset G of X is called an open set, if there exists r > 0 such that B(x,r) C G

for any = € X. A subset F' of X is called a closed set if its complement X \ F' is open.

Definition 2.4. For any nonempty subset C' of a metric space X, we define the diameter
d(C) of C by
5(C) = sup d(z,y).

z,yeC

In case §(C) is finite, we call C' a bounded set.

Definition 2.5. Let D be a nonempty set and >= a relation on D. Then the ordered pair

(D, =) is said to be directed if
(1) = isreflexive: a = a forall « € D;
(i1) = is transitive: whenever « >= fand 8 = v = « = vy forall a, 5,y € D;
(ii1) for any two elements « and (3, there exists v such that v = avand v = .
In this case, we call D a directed set with the relation »=.

A net (or a generalized sequence) in X is a mapping from a directed set D into X.
We use the notation {z,, : @ € D} to stand for a net (sometimes it is simply written as
{z,}). When we consider N as the directed set with the usual order >, we call {z,} a

sequence in X.

Definition 2.6. Let {z, : & € D} be anetinaset X and let D’ be another directed set.
A net {z,, : f € D'} in X is said to be a subnet of {z, : o € D} if it satisfies the

following conditions:
D HERIEE D'} C Y o€ i}
(if) for any o € D, there exists 5, € D’ such that ag = o for all 5 = f.

Definition 2.7. Let X be a metric space. A net {z,} in X is said to be convergent
if it converges to some xy € X, i.e., for any ¢ > 0 there exists oy € D such that

d(xq,x0) < € forall « = ap. In this case we write lim,, =, = xo and call z the limit

of {z,}.
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When a sequence {z,,} converges to a point o € X, we usually use the notation

lim,,_,o &, = Tg O T,, — Tg as n —> 0O.

Definition 2.8. A sequence {x,} in a metric space X is said to be Cauchy if for any

e > 0 there exists a positive integer ng such that d(x,,, x,) < ¢ for all m,n > ny.

Definition 2.9. A metric space X is said to be complete if every Cauchy sequence is

convergent.

Definition 2.10. A subset C' of a metric space X is said to be compact if every sequence

in C has a convergent subsequence in C'.

The following is a general property of compact sets in metric spaces but the converse is

not true.

Theorem 2.11. (cf. [33]) 4 compact subset of a metric space is closed and bounded.

2.2 Banach Spaces and Hilbert Spaces

A vector space (or linear space) over field F (R or C) is the set X of objects along
with binary operations + (called the addition) and - (called the scalar multiplication)

satisfying the following conditions for any x,y € X and o, 5 € F:

VD) z=y=y+u

V2) 2+ (y+2)=(z+y) + 2

(V3) there exists a unique 0 € X (called the zero element) such that x + 0 = z;

(V4) there exists a unique —z € X (called the negative of x) such that x 4+ (—z) = 0;
(VS) a(z +vy) = az + ay;

(V6) (a+ fB)xr = ax + Bz

(V7) (af)z = aBx);

(V&) 1-z=u=.
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A nonempty subset Y of a vector space X is called a subspace of X if Y is also a
vector space with respect to the binary operations defined on X. As a simple proof, we

can show that Y is a subspace if and only if ax + By € y forall z,y € yand o, 5 € F.

Definition 2.12. Let C be a subset of a vector space X. Then C' is said to be convex if

(I-—a)x + ay € C forall x,y € C and all scalar « € [0, 1].

Definition 2.13. Let C' be a subset (not necessarily convex) of a vector space X. Then
the convex hull of C' in X, denoted by co(C') is the intersection of all convex subsets of

X containing C'.

Definition 2.14. A norm || - || on a vector space X is a real-valued function defined on

X which satisfies the followings for any =,y € X and o € F:
(N1) [|lz]} = 0;

(N2) ||z|| = 0if and only if z = 0;

(N3) [laz| = |af||=];

(N4) ||z +y| < ||z|| + [|y]| (triangle inequality).

A normed space X is a vector space with a norm. It is easy to see that every normed
space is a metric space with the metric d|.| (called the metric induced by the norm)

defined by
dj.j(z,y) = |z =y

forall z,y € X. When (X, dj.|) is a complete metric space, we call X a Banach space.

Example 2.15. Examples of Banach spaces.

(1) Euclidean space R™. The space R" is a Banach space with the norm defined by

1
n 2

]| = (ZI%IQ) = Ve + -+ fz,)?
i=1

forall x = (21, ...,z,) € R™
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(ii) Sequence space (. The space ¢* is a Banach space with the norm defined by
1
oo 2
]| = (Z |1‘n|2>
n=1

(ii1) Sequence space (>°. The space (> is a Banach space with the norm defined by

forall z = {z,} € (*.

]| = sup |2y
neN
forall z = {z,} € (.
(iv) Function space B(S). The space B(S) is a Banach space with the norm defined
by
11| = sup | f ()]
tes

forall f € B(95).

(v) Dual space X*. Let X* be the set of all continuous linear functional on a normed

space X. Then X* is a Banach space space under the norm

IfII = sup |f(x)|

flzfl=1

forall f € X*.

Definition 2.16. Let x( be a vector in a Banach space X and f € X*. For each ¢ > 0,
define

Uxo: f,e)={z € X :|f(x — xp)| < €}

The weak topology on X is the topology generated by the class of all sets which are

expressible in the form U(xg : f,€).
Definition 2.17. Let f, be a vector in X* and z € X. For each ¢ > 0, define
Ulfo:a,e)={f€ X" :|fo(z) — fz)| <e}.

The weak* topology on X 1is the topology generated by the class of all sets which are

expressible in the form U(fy : z,¢).
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Theorem 2.18 (Alaoglu's Theorem). Let X be a normed space. Then the closed unit
ball

e el

is compact in the weak* topology.

In this thesis, we consider about some Banach spaces with the special conditions.

Here is their definitions and important properties.

Definition 2.19. A Banach space X is said to be strictly convex if ||z|| = ||y|| =

1 and x # y implies

x+y” <1

Definition 2.20. A Banach space X is said to be uniformly convex if for any ¢ € (0, 2]

there exists 4 > 0 such that
Tty
2

or-
forall z,y € X satisfying ||z]| <1, ||y|| < 1land |z —y| > e.
Theorem 2.21. (cf. [44]) Every uniformly convex Banach space is strictly convex.

Definition 2.22. Let X be a vector space over field R. An inner product on X is a

real-valued function (-, -) defined on X x X with the following properties:
(I1) (z,z) > 0forallz € X;
(I2) (z,z) = 0ifand only if z = 0;

13) (z,y) = (y,z);
(I4) (ax + By, z) = alz, z) + By, z) forall z,y,z € X and «, 5 € R.

An inner product space 1s a vector space with an inner product. It is easy to see that
every inner product space is a normed space with the norm (called the norm induced by
the inner product)

]l = v/ {z, z)

for all x € X. We call X a Hilbert space when it is complete under the metric induced

by the norm.
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Example 2.23. Example of Hilbert spaces.

(1) Euclidean space R". The space R" is a Hilbert space with the inner product de-
fined by

(x,y) = 2191+ + TpYn

forall x = (21, ...,x,) and y = (y1, ..., yn) in R™.

(i) Sequence space (*. The space /? is a Hilbert space with the inner product defined

by
(@,9) = Tayn
n=1

forallz = {x,} and y = {y,} in /2.

The following properties are important for inner product spaces (see [33] for more

details).

Proposition 2.24 (The Cauchy-Schwarz inequality). Let X be an inner product space.
Then

[{z )| < llzllllyll;

forall x,y € X.

Proposition 2.25 (The parallelogram law). Let X be an inner product space. Then
lz +yl* + ll = ylI* = 2]z ]|* + 2]y,

forall x,y € X.

Theorem 2.26 (Reisz's representation theorem). Let X be a Hilbert space and f € X*.
Then there exists a unique element yo € X such that f(x) = (x,yo) for each x € X. In

this case, || f|| = ||lvoll-
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2.3 Fixed Point Theorems for Nonexpansive Semigroups

In this section, we collect some definitions and the well-known fixed point theorems for

nonexpansive semigroups in Hilbert spaces.

Definition 2.27. Let S be a semigroup. A continuous linear functional p € B(S)* is
called a mean on B(5) if ||u]| = (1) = 1.
For any f € B(S) we use the following notation: u(f) = us(f(s)).

When we consider the semigroup S = N under the usual addition, we can see that
B(S) = B(N) = ¢. A continuous linear functional x € ¢ is said to be a Banach

limit if it is a mean on ¢*° and pu,,(x,,) = pn(xp11) forall x = {x1, 29, ...} € £°°.

Definition 2.28. Let S be a semigroup. A mean p on B(S) is said to be left invariant

[resp. right invariant] if p1,(f(£5)) = po(f(s)) [resp. pa(f(st)) = pa(f(s)) ] for all
f e B(S)andforallt € S.
We will say that y is an invariant mean if it is both left and right invariant. If B(S)

has an invariant mean, we call S an amenable semigroup.

It is well-known that every commutative semigroup is amenable [13]. For each s €
S and f € B(S), we define elements [ f and r,f in B(S) by (Isf)(t) = f(st) and
(rsf)(t) = f(ts) forany t € S, respectively.

Definition 2.29. A net {/,} of means on B(S) is said to be asymptotically invariant if

lior(n(:“a(ls,f) B :“oc(f)) U lién(ﬂa(rsf) W Moc(f))'

Remark 2.30. For each asymptotically net of means {/., }, there exists a subnet {1,/ }

of {1} such that { .} w*-converges to some invariant mean in B(.S)*

Proof. Since {p,} is a closed subset of {y € B(S)* : ||v|| < 1}, by the Alaoglu's
Theorem, it is compact in the weak* topology. So there exists a subnet {1,/ } of {110}
such that {y./} w*-converges to some p in B(S)*. We can obtain, from the proof of

Theorem 3.4.4 in [44], that x is invariant. O]
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Proposition 2.31. (cf. [44]) Let u be a right invariant mean on B(S). Then,
supinf f (ts) < p(f(s)) < inf sup (ts)

foreach f € B(S). Similarly, let 1 be a left invariant mean on B(S). Then,
sup inf f (st) < p(f(s)) < inf sup f (st)

for each f € B(S).

Remark 2.32. If lim f(s) = a for some a € R and {s'} is a subnet of {s} satisfying

s’ = s for each s, then
ps (f(s) = a.

Proof. This is an easy consequence of Proposition 2.31 since uy (f(s")) = pus(f(s")) =
lim, f(s') = a.

Theorem 2.33. (cf. [44]) Let S be an amenable semigroup and C' be a closed convex

subset of a Hilbert space X. Let 8§ = {T; : s € S} be a nonexpansive semigroup on C.

Then the followings are equivalent:
(i) {Tsz : s € S} is bounded for some x € C;
(ii) {Tsx : s € S} is bounded for all v € C;
(iii) Fix(8) # .

Theorem 2.34. (cf. [44]) Let S be an amenable semigroup and C' be a closed convex
subset of a Hilbert space X. Let § = {Ts : s € S} be a nonexpansive semigroup on C

with Fixz(8) # 0. Then for each invariant mean p on B(S), T), satisfies the followings:
(i) T, : C — C is nonexpansive;
(ii) T,Ts =T, =TT, forall s € S;

(iii) T,x € co{Tsx : t € S} forall x € C.
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2.4 CAT(0) Spaces

For studying the definition and basic properties of CAT(0) spaces, we begin with intro-

ducing some geometric concepts in metric spaces.

Definition 2.35. Let X be a metric space. A geodesic joiningx € X toy € X isa
mapping c¢ from a closed interval [0,/] C R to X such that ¢(0) = z, ¢(l) = y and
d(c(t),c(t')) = |t—t'| forall t,t' € [0,1]. In particular, ¢ is an isometry and d(z, y) = [.

The image v of c is called a geodesic (or metric) segment joining x and y. When it

is unique this geodesic is denoted [z, y]. Write c(a 0 + (1 — a)l) = az @ (1 — a)y and

DY
2

for o = 1 we write 1z @ Ly as 2%, the midpoint of = and .
2 2 2 p

ax ® (1 -a)y y=c()
Il '

c(a0 +“(1 —a)l)

R ,"' i a

0 a0+ (1—a)l l

Figure 2.1: Geodesic segment

The space X is said to be a (uniquely) geodesic space if every two points of X are

joined by a (unique) geodesic. We can define a convex set in a geodesic space as follow:

Definition 2.36. A subset C' of a geodesic space X is said to be convex if C' includes

every geodesic segment joining between x and y for all z,y € C.

A geodesic triangle /\(z, y, z) in a geodesic space X consists of three points x, y, z
in X (the vertices of /) and three geodesic segments joining between each pair of'its ver-
tices. A comparison triangle for a geodesic triangle A (z, y, x) is a triangle A(z, y, 2) =
/\(7,7,v) in the Euclidean plane R? such that d(x,y) = d(T,%), d(z, z) = d(T,Z) and
d(y, z) = d(y, ).

Definition 2.37. A geodesic space X is said to be a CAT(0) space if every geodesic

triangle in X is at least as thin as its comparison triangle in the Euclidean plane, i.e.,

d(a,b) < dge(a,b)
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for any a,b € A(z,y,2) and @, b € A(x,y, 2) (see Figure 2.2).

X z R2 Z

Ql

X y X - y
b

geodesic triangle comparison triangle
Figure 2.2: Geodesic triangle in a CAT(0) space and its comparison triangle
Example 2.38. Example of CAT(0) spaces.
(1) Hilbert spaces.
(i1)) R—trees: A uniquely geodesic space X is an R—tree if
[z,9] Ny, 2]l ={y} = [z,2] = [z, 9] U [y, 2].

(iii) Classical hyperbolic space H™: A vector space R"*! is a hyperbolic space of
n-dimension if

n
Zuf _U31+1 =—1 and wu,4; >0
=1
for all (uy, ..., Upyq1) € R,

(iv) Let X = {0} x [0,1] x Rand Y = [—1,1] x {0} x {0} U {0} x [0,1] x {0}.
Then Z = X UY is a CAT(0) space! (see Figure 2.3).

Figure 2.3: An example of CAT(0) spaces

This example, constructed by Dr. Santi Tasena, is the one of CAT(0) space which does not be a

Hilbert space or an R—tree.
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Let X be a geodesic space. The Alexandrov angle between two geodesics c¢; :
0,#] — X and ¢p : [0,t3] — X with ¢1(0) = ¢2(0) is the number £ € [0, 7] such
that

& = limsup £ (e (1), 1 (0), e (t2)).

t1,t2—0

where £(c;(t1),¢1(0), c2(t2)) is the interior angle at ¢1(0) in A(cy(t1), ¢1(0), c2(t2)).

The following is the characterization of CAT(0) spaces (see [9] for more details):
Theorem 2.39. The followings are equivalent for a uniquely geodesic space X
(i) X is a CAT(0) space.
(ii) X satisfies the (CN) inequality: If v,y € X and o € (0,1), then
& (z,az ® (1 —a)y) < ad*(z,2) + (1 — a)d*(z,y) — a(l — a)d*(z,y),
forall z € X.

(iii) X satisfies the law of cosine: If a = d(x,2),b = d(y,z),c = d(x,y) and £ is the

Alexandrov angle at =z between |x, z| and [y, z|, then

> a®+b* — 2abcos €.

Lemma 2.40. [9, Proposition 2.2] Let X be a CAT(0) space. Then for each p,q,x,y €
X and o € [0, 1],
dlap® (1 — a)g,az @ (1 — a)y) < ad(p,z) + (1 — a)d(q, y).
In particular, a CAT(0) space is of hyperbolic type, i.e., it satisfies the below inequality:
d(p,ax ® (1 - a)y) < ad(p,z) + (1 — a)d(p,y). (2.2)

For any nonempty subset C' of X, let 7 = 7 be the projection mapping from X
to C'. It is known by [9, p.176 - 177] that if C is closed and convex, the mapping 7 is

well-defined, nonexpansive, and satisfies
d*(z,y) > d*(z,7x) + d*(7x,y) forallz € X and y € C (2.3)

(see Figure 2.4).
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N

Figure 2.4: The projection mapping

Definition 2.41. [18, Definition 5.13] A complete CAT(0) space X has the property
of the nice projection onto geodesics (property (N) for short) if, given any geodesic
segment [ C X, it is the case that 7;(m) € [m;(x),m;(y)] for any z,y in X and m €

[z, y| (see Figure 2.5).

Figure 2.5: Property (N)

As noted in [18], we do not know of any example of a CAT(0) space which does not

enjoy the property (N).

Definition 2.42. For any bounded net {z,} in a closed convex subset C' of a CAT(0)
space X, put
r(z,{x}) = limsupd(z, z,)

«

for each = € C. The asymptotic radius of {x,} on C'is given by

T(C7 {1‘&}) = l}ggr<x7 {xa}>7

and the asymptotic center of {z,} in C is the set

A(CAz.}) ={x € C:r(z,{za}) =r(C,{za})}.
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It is known that in a complete CAT(0) space, A(C,{z,}) consists of exactly one
point and A(X, {z,}) = A(C, {z.}) [17].

Remark 2.43.

(i) Let D, D’ be directed sets. If {x,, : B € D'} is a subnet of a bounded net
{7a : @ € D}, thenr(C, {za,}) < 7(C, {2a}).

(i) Let C' be a closed convex subset of a CAT(0) space X, T : C' — C anonexpansive
mapping and z € C. If {T"x} is bounded and z € A(C,{T"z}), then z € F(T).

Proof. (i) Let oy € D. By the definition of subnets, there exists 5y € D’ such that
v(B) = ap forall 3 3= fy. Foreachz € C,wehavesup,,_,, d(z,2a) > sups_g d(z, Tap).
Thus

sup d(z,r,) > inf sup d(z,v4,),
a=ao PL Bxp1

for all oy. Hence

r(z,{x.}) = inf sup d(z,2,) > r(z,{Ta,})

QA0 =g

Since the above inequality holds for all x € C', we see that

T(Ow {xa}) o ;ggr(l‘7 {xa}) > ;257“(1:7 :EV(,B)) . T(C’ {:E,,(ﬂ)}).

(i) By the nonexpansiveness of 7', limsup,, d(1"z,Tz) = limsup, d(T1T"x,Tz)

< limsup, d(T"x, z). As every asymptotic center is unique, we have z = T'z. O

2.5 Weak Convergence in CAT(0) Spaces

In 1976, Lim [30] introduced a concept of convergence in a general metric space, called
strong A—convergence. Many years later, Kirk and Panyanak [25] introduced a concept

of convergence in a CAT(0) space, called A—convergence.

Definition 2.44. A net {z,} in a CAT(0) space X is said to A—convergeto z € X ifx
is the unique asymptotic center of {uz} for every subnet {ug} of {x,}. In this case, we

write A — lim, 2, = x and call x the A—limit of {z,}.
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Proposition 2.45. [25, Proposition 3.4] Every bounded net in X has a A—convergent

subnet.

Remark 2.46.

(i) Let D beadirectedset, {x, : @ € D} anetin X andx € X. Iflimsup,, d(x,z,) >
p forsome p > 0, Then there exists asubnet {z g, } of {x,} suchthatd(z,z5,) > p

for all .

(ii) Let {z,} be anetin X. Then {z,} A—converges to x € X if and only if every

subnet {z,/ } of {z,} has a subnet {z,~} which A—converges to x.

Proof. (i): For each a € D we have sup,,._, d(z,z,) > p. Thus there exists 3, > a
such that d(z, z3,) > p, and this holds for all a. Setaset D' = {f3, : « € D}. Clearly,
D' is a directed set. Let oy € D, thus 3, = o for all 3, = B,,. This shows that {x, }
is a subnet of {x, } satisfying d(z, z4,) > p for all .

(ii): It is easy to see that if {x,} A—converges to x, then every subnet of {x,} also
A—converges to x. On the other hand, suppose {z,,} does not A—converge to z. Thus
there exists a subnet {x3} of {x,} such thatx ¢ A(C,{zs}), and so limsup, d(x, z5) >
p > r(C,{xs}) for some p > 0. By (i), there exists a subnet {x,,} of {zs} satisfy-
ing d(z,v,,) > p for all 5. By assumption, there exists a subnet {z(,,), } of {z,}
A—converging to x. Using Remark 2.43, p < limsup, d(, 7(,,),) = 7(C, {7(y,),}) <
r(C,{x.,}) < 7(C,{xs}), a contradiction. O

In 2008, Berg and Nikolaev [8] introduced a concept of quasilinearization as follow.
For any metric space X, we call an order pair (a,b) € X x X a vector and denote it by

ab. The quasilinearization is defined as amap (-,-) : (X x X) x (X x X) = Rby

1 1 1 1
(ab, cd) = S0, d) + 5 (b,¢) = 5d(a,0) — 5d(b,d)

foralla, b, c,d € X. By using the above concept, Kakavandi and Amini [22] introduced

another concept of weak convergence in CAT(0) spaces, called w-convergence.

Definition 2.47. A sequence {x, } in a CAT(0) space X is said to w-converge to z € X
£ 1imy, o0 (70, ab) = 0 for all a,b € X.
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Proposition 2.48. [22, Proposition 2.5] For sequences in a complete CAT(0) space X,

w-convergence implies A—convergence (to the same limit).
A simple example shows that the converse of this proposition does not hold:

Example 2.49. Consider an R—tree in R defined as follow: Let {e,, } be the standard
basis, rg = e; = (1,0,0,0,...), and for each n, let x,, = xy + e,4+1. An R—tree is

formed by the segments [z1, x,] forn = 0, 1,2, ... (see Figure 2.6).

X2
L

Xo X3

X1 X4

X7 X5
L

X6
Figure 2.6: The R—tree in Example 2.49

It is easy to see that {x,, } A-converges to x;. But {x,,} does not w-converge to x; since
(Tpai, a:osci ) = —1 for all n > 2. Thus a bounded sequence does not necessary contain

an w—convergent subsequence.

2.6 Convex Combination in CAT(0) Spaces

In this section we give a method for finding the convex combination in CAT(0) spaces
introduced by Dhompongsa et al. [16]. Let {vy,va,...,v,} C X and Ay, Ay, ..., A, €
(0,1) with >~ | \; = 1. Following [12] we write, by induction,

T 2 A o
26:? Aiv; = (1 — )\n)<1 _1)mv1 D 0 —QAHUQ DD = ;nvn1> D My, (2.4)

Note for an example that $v; & v, ® $v3 and 1 B 503D 50, are not necessary coincide

(see Figure 2.7).
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Figure 2.7: Convex combination of three points in a CAT(0) space

It is straightforward, using (2.2), to show that

=1 n=1

for each x € X.
Let {)\,} bea givensequencein (0, 1) suchthat Y >° | A\, = 1, let {v,,} be a bounded

o0

sequence in X and let vy be an arbitrary point in X. Let A}, = >°° | A; and assume

that ) .° A, — 0asn — oo. We present the description of @, , A, v,,, defined in

[16], as follow. First, we set
Sy = /\1@1 D )\21)2 D---D )\nvn D )\;Uo.

Thus, by (2.4),
5= (302w ® X0, (2.6)
i=1
where w; = v; and for each n > 2,

AL SN, P SO SA
—n U O VO O=n
Zi:l Ai Zi:l Ai Zi:l Ai

We can see that {s,, } is a Cauchy sequence. Thus s,, — = as n — oo for some z € X.

Write

Wy, = Uy

oo
T = @ AnUp,.-
n=1

By (2.6), d(s,,w,) < X d(w,,vp), it is seen that lim,, ., s, = lim,_,,, w,. Thus
the limit x is independent of the choice of vy. It had been noted in [16] that the se-

> X — 0asn — oo but this does

1=n "

quence {\, = 5} satisfies the condition )
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not generally follow from the condition ZOO_ A, = 1. For example, consider the se-
quence {\, = 17 } where M = 3 —L-. Observe that M ) ° X > oco. Thus

S N> 00+ 0asn — oo.

=n "1

The following is an extension of Bruck's result (Theorem 1.7).

Lemma 2.50. [16, Lemma 3.8] Let C' be a nonempty closed convex subset of a complete
CAT(0) space X, let {t,, : n € N} be a family of single-valued nonexpansive mappings
on C. Suppose (\,__, Fix(t,) is nonempty. Definet : C'— C by

o
= EB Aptnx
n=1

Jor all x € C where {\,} C (0,1) withY >> A\, =1land >~ N, — 0asn — oc.

1=n 3

Then t is nonexpansive and Fix(t) = (., Fix(t,).



