
Chapter 2

Basic Concepts and Preliminaries

For understanding the thesis, we collect some notations, terminologies and elemen-

tary results. Although details are included in some cases, many well-known results

are merely stated without proofs.

2.1 Metric Spaces

Definition 2.1. A metric (or distance function) d onX is a real-valued function defined

on X ×X satisfying the following conditions for any x, y, z ∈ X:

(M1) d(x, y) ≥ 0;

(M2) d(x, y) = 0 if and only if x = y;

(M3) d(x, y) = d(y, x) (symmetry);

(M4) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A pair (X, d) is called a metric space if d is a metric onX . Whenever it can be done

without causing confusion, we denote the metric space (X, d) by the symbol X .

Example 2.2. Examples of metric spaces.

(i) Euclidean space Rn. Let Rn be the set of all ordered n-tuples of real numbers.

Then Rn is a metric space with the metric defined by

d(x, y) =
√
(x1 − y1)2 + · · ·+ (xn − yn)2

for all x = (x1, ..., xn) and y = (y1, ..., yn) in Rn.
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(ii) Sequence space ℓ2. Let ℓ2 be the set of all sequences x = {xn} ⊂ R such that∑∞
n=1 |xn|2 < ∞. Then ℓ2 is a metric space with the metric defined by

d(x, y) =

(
∞∑
n=1

|xn − yn|2
) 1

2

for all x = {xn} and y = {yn} in ℓ2.

(iii) Sequence space ℓ∞. Let ℓ∞ be the set of all bounded sequences x = {xn} ⊂ R.

Then ℓ∞ is a metric space with the metric defined by

d(x, y) = sup
n∈N

|xn − yn|

for all x = {xn} and y = {yn} in ℓ∞.

(iv) Function spaceB(S). Let S be a nonempty set andB(S) be the set of all bounded

real-valued function on S. Then B(S) is a metric space with the metric defined

by

d(f, g) = sup
t∈S

|f(t)− g(t)|

for all f, g ∈ B(S).

(v) Space of bounded closed subsets FB(X). Let X be a metric space and FB(X)

a family of nonempty bounded closed subsets of X . For each A,B ∈ FB(X),

define the Hausdorff distance (or Hausdorff metric) on FB(X) by

H(A,B) := max
{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
, (2.1)

where dist(a,B) := infb∈B d(a, b) is the distance from the point a to the subset

B. Then (FB(X), H) is a metric space.

Definition 2.3. Let X be a metric space. The set

B(x0, r) := {x ∈ X : d(x0, x) < r},

where r > 0 and x0 ∈ X , is called the open ball of radius r and centre x0. The set

B(x0, r) := {x ∈ X : d(x0, x) ≤ r},

where r > 0 and x0 ∈ X , is called the closed ball of radius r and centre x0.
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A subset G of X is called an open set, if there exists r > 0 such that B(x, r) ⊂ G

for any x ∈ X . A subset F ofX is called a closed set if its complementX \ F is open.

Definition 2.4. For any nonempty subsetC of a metric spaceX , we define the diameter

δ(C) of C by

δ(C) = sup
x,y∈C

d(x, y).

In case δ(C) is finite, we call C a bounded set.

Definition 2.5. Let D be a nonempty set and < a relation on D. Then the ordered pair

(D,<) is said to be directed if

(i) < is reflexive: α < α for all α ∈ D;

(ii) < is transitive: whenever α < β and β < γ ⇒ α < γ for all α, β, γ ∈ D;

(iii) for any two elements α and β, there exists γ such that γ < α and γ < β.

In this case, we call D a directed set with the relation <.

A net (or a generalized sequence) in X is a mapping from a directed set D into X .

We use the notation {xα : α ∈ D} to stand for a net (sometimes it is simply written as

{xα}). When we consider N as the directed set with the usual order ≥, we call {xn} a

sequence in X .

Definition 2.6. Let {xα : α ∈ D} be a net in a setX and letD′ be another directed set.

A net {xαβ
: β ∈ D′} in X is said to be a subnet of {xα : α ∈ D} if it satisfies the

following conditions:

(i) {xαβ
: β ∈ D′} ⊂ {xα : α ∈ D};

(ii) for any α ∈ D, there exists β0 ∈ D′ such that αβ < α for all β < β0.

Definition 2.7. Let X be a metric space. A net {xα} in X is said to be convergent

if it converges to some x0 ∈ X , i.e., for any ε > 0 there exists α0 ∈ D such that

d(xα, x0) < ε for all α < α0. In this case we write limα xα = x0 and call x0 the limit

of {xα}.
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When a sequence {xn} converges to a point x0 ∈ X , we usually use the notation

limn→∞ xn = x0 or xn → x0 as n → ∞.

Definition 2.8. A sequence {xn} in a metric space X is said to be Cauchy if for any

ε > 0 there exists a positive integer n0 such that d(xm, xn) < ε for all m,n ≥ n0.

Definition 2.9. A metric space X is said to be complete if every Cauchy sequence is

convergent.

Definition 2.10. A subsetC of a metric spaceX is said to be compact if every sequence

in C has a convergent subsequence in C.

The following is a general property of compact sets in metric spaces but the converse is

not true.

Theorem 2.11. (cf. [33]) A compact subset of a metric space is closed and bounded.

2.2 Banach Spaces and Hilbert Spaces

A vector space (or linear space) over field F (R or C) is the set X of objects along

with binary operations + (called the addition) and · (called the scalar multiplication)

satisfying the following conditions for any x, y ∈ X and α, β ∈ F:

(V1) x = y = y + x;

(V2) x+ (y + x) = (x+ y) + z;

(V3) there exists a unique 0 ∈ X (called the zero element) such that x+ 0 = x;

(V4) there exists a unique −x ∈ X (called the negative of x) such that x+ (−x) = 0;

(V5) α(x+ y) = αx+ αy;

(V6) (α + β)x = αx+ βx;

(V7) (αβ)x = α(βx);

(V8) 1 · x = x.
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A nonempty subset Y of a vector space X is called a subspace of X if Y is also a

vector space with respect to the binary operations defined onX . As a simple proof, we

can show that Y is a subspace if and only if αx+ βy ∈ y for all x, y ∈ y and α, β ∈ F.

Definition 2.12. Let C be a subset of a vector space X . Then C is said to be convex if

(1−α)x+ αy ∈ C for all x, y ∈ C and all scalar α ∈ [0, 1].

Definition 2.13. Let C be a subset (not necessarily convex) of a vector space X . Then

the convex hull of C inX , denoted by co(C) is the intersection of all convex subsets of

X containing C.

Definition 2.14. A norm ∥ · ∥ on a vector spaceX is a real-valued function defined on

X which satisfies the followings for any x, y ∈ X and α ∈ F:

(N1) ∥x∥ ≥ 0;

(N2) ∥x∥ = 0 if and only if x = 0;

(N3) ∥αx∥ = |α|∥x∥;

(N4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).

A normed spaceX is a vector space with a norm. It is easy to see that every normed

space is a metric space with the metric d∥·∥ (called the metric induced by the norm)

defined by

d∥·∥(x, y) = ∥x− y∥

for all x, y ∈ X . When (X, d∥·∥) is a complete metric space, we callX a Banach space.

Example 2.15. Examples of Banach spaces.

(i) Euclidean space Rn. The space Rn is a Banach space with the norm defined by

∥x∥ =

(
n∑

i=1

|xi|2
) 1

2

=
√

|x1|2 + · · ·+ |xn|2

for all x = (x1, ..., xn) ∈ Rn.
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(ii) Sequence space ℓ2. The space ℓ2 is a Banach space with the norm defined by

∥x∥ =

(
∞∑
n=1

|xn|2
) 1

2

for all x = {xn} ∈ ℓ2.

(iii) Sequence space ℓ∞. The space ℓ∞ is a Banach space with the norm defined by

∥x∥ = sup
n∈N

|xn|

for all x = {xn} ∈ ℓ∞.

(iv) Function space B(S). The space B(S) is a Banach space with the norm defined

by

∥f∥ = sup
t∈S

|f(t)|

for all f ∈ B(S).

(v) Dual spaceX∗. LetX∗ be the set of all continuous linear functional on a normed

space X . Then X∗ is a Banach space space under the norm

∥f∥ = sup
∥x∥=1

|f(x)|

for all f ∈ X∗.

Definition 2.16. Let x0 be a vector in a Banach space X and f ∈ X∗. For each ε > 0,

define

U(x0 : f, ε) = {x ∈ X : |f(x− x0)| < ε}.

The weak topology on X is the topology generated by the class of all sets which are

expressible in the form U(x0 : f, ε).

Definition 2.17. Let f0 be a vector in X∗ and x ∈ X . For each ε > 0, define

U(f0 : x, ε) = {f ∈ X∗ : |f0(x)− f(x)| < ε}.

The weak∗ topology on X is the topology generated by the class of all sets which are

expressible in the form U(f0 : x, ε).
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Theorem 2.18 (Alaoglu's Theorem). Let X be a normed space. Then the closed unit

ball

{f ∈ X∗ : ∥f∥ ≤ 1}

is compact in the weak∗ topology.

In this thesis, we consider about some Banach spaces with the special conditions.

Here is their definitions and important properties.

Definition 2.19. A Banach space X is said to be strictly convex if ∥x∥ = ∥y∥ =

1 and x ̸= y implies ∥∥∥∥x+ y

2

∥∥∥∥ < 1.

Definition 2.20. A Banach space X is said to be uniformly convex if for any ε ∈ (0, 2]

there exists δ > 0 such that ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ,

for all x, y ∈ X satisfying ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x− y∥ ≥ ε.

Theorem 2.21. (cf. [44]) Every uniformly convex Banach space is strictly convex.

Definition 2.22. Let X be a vector space over field R. An inner product on X is a

real-valued function ⟨·, ·⟩ defined on X ×X with the following properties:

(I1) ⟨x, x⟩ ≥ 0 for all x ∈ X;

(I2) ⟨x, x⟩ = 0 if and only if x = 0;

(I3) ⟨x, y⟩ = ⟨y, x⟩;

(I4) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩ for all x, y, z ∈ X and α, β ∈ R.

An inner product space is a vector space with an inner product. It is easy to see that

every inner product space is a normed space with the norm (called the norm induced by

the inner product)

∥x∥ =
√

⟨x, x⟩

for all x ∈ X . We call X a Hilbert space when it is complete under the metric induced

by the norm.
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Example 2.23. Example of Hilbert spaces.

(i) Euclidean space Rn. The space Rn is a Hilbert space with the inner product de-

fined by

⟨x, y⟩ = x1y1 + · · ·+ xnyn

for all x = (x1, ..., xn) and y = (y1, ..., yn) in Rn.

(ii) Sequence space ℓ2. The space ℓ2 is a Hilbert space with the inner product defined

by

⟨x, y⟩ =
∞∑
n=1

xnyn

for all x = {xn} and y = {yn} in ℓ2.

The following properties are important for inner product spaces (see [33] for more

details).

Proposition 2.24 (The Cauchy-Schwarz inequality). Let X be an inner product space.

Then

|⟨x, y⟩| ≤ ∥x∥∥y∥,

for all x, y ∈ X .

Proposition 2.25 (The parallelogram law). Let X be an inner product space. Then

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2,

for all x, y ∈ X .

Theorem 2.26 (Reisz's representation theorem). LetX be a Hilbert space and f ∈ X∗.

Then there exists a unique element y0 ∈ X such that f(x) = ⟨x, y0⟩ for each x ∈ X. In

this case, ∥f∥ = ∥y0∥.
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2.3 Fixed Point Theorems for Nonexpansive Semigroups

In this section, we collect some definitions and the well-known fixed point theorems for

nonexpansive semigroups in Hilbert spaces.

Definition 2.27. Let S be a semigroup. A continuous linear functional µ ∈ B(S)∗ is

called a mean on B(S) if ∥µ∥ = µ(1) = 1.

For any f ∈ B(S) we use the following notation: µ(f) = µs(f(s)).

When we consider the semigroup S = N under the usual addition, we can see that

B(S) = B(N) = ℓ∞. A continuous linear functional µ ∈ ℓ∞ is said to be a Banach

limit if it is a mean on ℓ∞ and µn(xn) = µn(xn+1) for all x = {x1, x2, ...} ∈ ℓ∞.

Definition 2.28. Let S be a semigroup. A mean µ on B(S) is said to be left invariant

[resp. right invariant] if µs(f(ts)) = µs(f(s)) [resp. µs(f(st)) = µs(f(s)) ] for all

f ∈ B(S) and for all t ∈ S.

We will say that µ is an invariant mean if it is both left and right invariant. If B(S)

has an invariant mean, we call S an amenable semigroup.

It is well-known that every commutative semigroup is amenable [13]. For each s ∈

S and f ∈ B(S), we define elements lsf and rsf in B(S) by (lsf)(t) = f(st) and

(rsf)(t) = f(ts) for any t ∈ S, respectively.

Definition 2.29. A net {µα} of means on B(S) is said to be asymptotically invariant if

lim
α
(µα(lsf)− µα(f)) = 0 = lim

α
(µα(rsf)− µα(f)).

Remark 2.30. For each asymptotically net of means {µα}, there exists a subnet {µα′}

of {µα} such that {µα′} w∗-converges to some invariant mean in B(S)∗

Proof. Since {µα} is a closed subset of {γ ∈ B(S)∗ : ∥γ∥ ≤ 1}, by the Alaoglu's

Theorem, it is compact in the weak∗ topology. So there exists a subnet {µα′} of {µα}

such that {µα′} w∗-converges to some µ in B(S)∗. We can obtain, from the proof of

Theorem 3.4.4 in [44], that µ is invariant.
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Proposition 2.31. (cf. [44]) Let µ be a right invariant mean on B(S). Then,

sup
s

inf
t
f(ts) ≤ µ(f(s)) ≤ inf

s
sup
t
f(ts)

for each f ∈ B(S). Similarly, let µ be a left invariant mean on B(S). Then,

sup
s

inf
t
f(st) ≤ µ(f(s)) ≤ inf

s
sup
t
f(st)

for each f ∈ B(S).

Remark 2.32. If lims f(s) = a for some a ∈ R and {s′} is a subnet of {s} satisfying

s′ ≻ s for each s, then

µs′(f(s
′)) = a.

Proof. This is an easy consequence of Proposition 2.31 since µs′(f(s
′)) = µs(f(s

′)) =

lims f(s
′) = a.

Theorem 2.33. (cf. [44]) Let S be an amenable semigroup and C be a closed convex

subset of a Hilbert space X . Let S = {Ts : s ∈ S} be a nonexpansive semigroup on C.

Then the followings are equivalent:

(i) {Tsx : s ∈ S} is bounded for some x ∈ C;

(ii) {Tsx : s ∈ S} is bounded for all x ∈ C;

(iii) Fix(S) ̸= ∅.

Theorem 2.34. (cf. [44]) Let S be an amenable semigroup and C be a closed convex

subset of a Hilbert space X . Let S = {Ts : s ∈ S} be a nonexpansive semigroup on C

with Fix(S) ̸= ∅. Then for each invariant mean µ on B(S), Tµ satisfies the followings:

(i) Tµ : C → C is nonexpansive;

(ii) TµTs = Tµ = TsTµ for all s ∈ S;

(iii) Tµx ∈ co{Tsx : t ∈ S} for all x ∈ C.
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2.4 CAT(0) Spaces

For studying the definition and basic properties of CAT(0) spaces, we begin with intro-

ducing some geometric concepts in metric spaces.

Definition 2.35. Let X be a metric space. A geodesic joining x ∈ X to y ∈ X is a

mapping c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and

d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.

The image γ of c is called a geodesic (or metric) segment joining x and y. When it

is unique this geodesic is denoted [x, y]. Write c(α 0 + (1− α)l) = αx⊕ (1− α)y and

for α = 1
2
we write 1

2
x⊕ 1

2
y as x⊕y

2
, the midpoint of x and y.

0 𝑙𝛼0 + 1 − 𝛼 𝑙

𝛼𝑥 ⊕ 1 − 𝛼 𝑦

𝛼

𝛼

𝑐(𝛼0 + 1 − 𝛼 𝑙)

≔𝑋

ℝ

𝑦 = 𝑐(𝑙)

𝑐 0 = 𝑥

Figure 2.1: Geodesic segment

The space X is said to be a (uniquely) geodesic space if every two points of X are

joined by a (unique) geodesic. We can define a convex set in a geodesic space as follow:

Definition 2.36. A subset C of a geodesic space X is said to be convex if C includes

every geodesic segment joining between x and y for all x, y ∈ C.

A geodesic triangle△(x, y, x) in a geodesic spaceX consists of three points x, y, z

inX (the vertices of△) and three geodesic segments joining between each pair of its ver-

tices. A comparison triangle for a geodesic triangle△(x, y, x) is a triangle△(x, y, z) :=

△(x, y, v) in the Euclidean plane R2 such that d(x, y) = d(x, y), d(x, z) = d(x, z) and

d(y, z) = d(y, z).

Definition 2.37. A geodesic space X is said to be a CAT(0) space if every geodesic

triangle in X is at least as thin as its comparison triangle in the Euclidean plane, i.e.,

d(a, b) ≤ dR2(a, b)
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for any a, b ∈ △(x, y, z) and a, b ∈ △(x, y, z) (see Figure 2.2).

𝑥 𝑦

𝑧

 𝑥  𝑦

 𝑧𝑋 ℝ2

𝑎

𝑏

 𝑎

 𝑏

Figure 2.2: Geodesic triangle in a CAT(0) space and its comparison triangle

Example 2.38. Example of CAT(0) spaces.

(i) Hilbert spaces.

(ii) R−trees: A uniquely geodesic space X is an R−tree if

[x, y] ∩ [y, z] = {y} =⇒ [x, z] = [x, y] ∪ [y, z].

(iii) Classical hyperbolic space Hn: A vector space Rn+1 is a hyperbolic space of

n-dimension if
n∑

i=1

u2
i − u2

n+1 = −1 and un+1 > 0

for all (u1, ..., un+1) ∈ Rn+1.

(iv) Let X = {0} × [0, 1] × R and Y = [−1, 1] × {0} × {0} ∪ {0} × [0, 1] × {0}.

Then Z = X ∪ Y is a CAT(0) space1 (see Figure 2.3).

1

-1

1

𝑿

𝒀

Figure 2.3: An example of CAT(0) spaces
1This example, constructed by Dr. Santi Tasena, is the one of CAT(0) space which does not be a

Hilbert space or an R−tree.
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Let X be a geodesic space. The Alexandrov angle between two geodesics c1 :

[0, t1] → X and c2 : [0, t2] → X with c1(0) = c2(0) is the number ξ ∈ [0, π] such

that

ξ = lim sup
t1,t2→0

](c1(t1), c1(0), c2(t2)),

where ](c1(t1), c1(0), c2(t2)) is the interior angle at c1(0) in △(c1(t1), c1(0), c2(t2)).

The following is the characterization of CAT(0) spaces (see [9] for more details):

Theorem 2.39. The followings are equivalent for a uniquely geodesic space X

(i) X is a CAT(0) space.

(ii) X satisfies the (CN) inequality: If x, y ∈ X and α ∈ (0, 1), then

d2 (z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)− α(1− α)d2(x, y),

for all z ∈ X .

(iii) X satisfies the law of cosine: If a = d(x, z), b = d(y, z), c = d(x, y) and ξ is the

Alexandrov angle at z between [x, z] and [y, z], then

c2 ≥ a2 + b2 − 2ab cos ξ.

Lemma 2.40. [9, Proposition 2.2] Let X be a CAT(0) space. Then for each p, q, x, y ∈

X and α ∈ [0, 1],

d(αp⊕ (1− α)q, αx⊕ (1− α)y) ≤ αd(p, x) + (1− α)d(q, y).

In particular, a CAT(0) space is of hyperbolic type, i.e., it satisfies the below inequality:

d(p, αx⊕ (1− α)y) ≤ αd(p, x) + (1− α)d(p, y). (2.2)

For any nonempty subset C of X , let π = πC be the projection mapping from X

to C. It is known by [9, p.176 - 177] that if C is closed and convex, the mapping π is

well-defined, nonexpansive, and satisfies

d2(x, y) ≥ d2(x, πx) + d2(πx, y) for all x ∈ X and y ∈ C (2.3)

(see Figure 2.4).
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𝑥

𝑦

𝜋𝑥

𝐶

Figure 2.4: The projection mapping

Definition 2.41. [18, Definition 5.13] A complete CAT(0) space X has the property

of the nice projection onto geodesics (property (N) for short) if, given any geodesic

segment I ⊂ X , it is the case that πI(m) ∈ [πI(x), πI(y)] for any x, y in X and m ∈

[x, y] (see Figure 2.5).

𝐼

𝑥

𝑦

𝑚

𝜋𝐼(𝑥) 𝜋𝐼(𝑚)

𝜋𝐼(𝑦)

Figure 2.5: Property (N)

As noted in [18], we do not know of any example of a CAT(0) space which does not

enjoy the property (N).

Definition 2.42. For any bounded net {xα} in a closed convex subset C of a CAT(0)

space X , put

r(x, {xα}) = lim sup
α

d(x, xα)

for each x ∈ C. The asymptotic radius of {xα} on C is given by

r(C, {xα}) = inf
x∈C

r(x, {xα}),

and the asymptotic center of {xα} in C is the set

A(C, {xα}) = {x ∈ C : r(x, {xα}) = r(C, {xα})}.
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It is known that in a complete CAT(0) space, A(C, {xα}) consists of exactly one

point and A(X, {xα}) = A(C, {xα}) [17].

Remark 2.43.

(i) Let D,D′ be directed sets. If {xαβ
: β ∈ D′} is a subnet of a bounded net

{xα : α ∈ D}, then r(C, {xαβ
}) ≤ r(C, {xα}).

(ii) LetC be a closed convex subset of a CAT(0) spaceX , T : C → C a nonexpansive

mapping and x ∈ C. If {T nx} is bounded and z ∈ A(C, {T nx}), then z ∈ F (T ).

Proof. (i) Let α0 ∈ D. By the definition of subnets, there exists β0 ∈ D′ such that

ν(β) < α0 for all β < β0. For eachx ∈ C, we have supα<α0
d(x, xα) ≥ supβ<β0

d(x, xαβ
).

Thus

sup
α<α0

d(x, xα) ≥ inf
β1

sup
β<β1

d(x, xαβ
),

for all α0. Hence

r(x, {xα}) = inf
α0

sup
α<α0

d(x, xα) ≥ r(x, {xαβ
})

Since the above inequality holds for all x ∈ C, we see that

r(C, {xα}) = inf
x∈C

r(x, {xα}) ≥ inf
x∈C

r(x, xν(β)) = r(C, {xν(β)}).

(ii) By the nonexpansiveness of T , lim supn d(T nx, Tz) = lim supn d(TT nx, Tz)

≤ lim supn d(T nx, z). As every asymptotic center is unique, we have z = Tz.

2.5 Weak Convergence in CAT(0) Spaces

In 1976, Lim [30] introduced a concept of convergence in a general metric space, called

strong∆−convergence. Many years later, Kirk and Panyanak [25] introduced a concept

of convergence in a CAT(0) space, called ∆−convergence.

Definition 2.44. A net {xα} in a CAT(0) spaceX is said to∆−converge to x ∈ X if x

is the unique asymptotic center of {uβ} for every subnet {uβ} of {xα}. In this case, we

write ∆− limα xα = x and call x the ∆−limit of {xα}.
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Proposition 2.45. [25, Proposition 3.4] Every bounded net in X has a ∆−convergent

subnet.

Remark 2.46.

(i) LetD be a directed set, {xα : α ∈ D} a net inX andx ∈ X . If lim supα d(x, xα) >

ρ for some ρ > 0, Then there exists a subnet {xβα} of {xα} such that d(x, xβα) ≥ ρ

for all α.

(ii) Let {xα} be a net in X . Then {xα} ∆−converges to x ∈ X if and only if every

subnet {xα′} of {xα} has a subnet {xα′′} which ∆−converges to x.

Proof. (i): For each α ∈ D we have supα′<α d(x, xα′) > ρ. Thus there exists βα ≻ α

such that d(x, xβα) ≥ ρ, and this holds for all α. Set a setD′ = {βα : α ∈ D}. Clearly,

D′ is a directed set. Let α0 ∈ D, thus βα < α0 for all βα < βα0 . This shows that {xβα}

is a subnet of {xα} satisfying d(x, xβα) ≥ ρ for all α.

(ii): It is easy to see that if {xα}∆−converges to x, then every subnet of {xα} also

∆−converges to x. On the other hand, suppose {xα} does not ∆−converge to x. Thus

there exists a subnet {xβ} of {xα} such that x /∈ A(C, {xβ}), and so lim supβ d(x, xβ) >

ρ > r(C, {xβ}) for some ρ > 0. By (i), there exists a subnet {xγβ} of {xβ} satisfy-

ing d(x, xγβ) ≥ ρ for all β. By assumption, there exists a subnet {x(γβ)η} of {xγβ}

∆−converging to x. Using Remark 2.43, ρ ≤ lim supγ d(x, x(γβ)η) = r(C, {x(γβ)η}) ≤

r(C, {xγβ}) ≤ r(C, {xβ}), a contradiction.

In 2008, Berg and Nikolaev [8] introduced a concept of quasilinearization as follow.

For any metric spaceX , we call an order pair (a, b) ∈ X ×X a vector and denote it by
−→
ab. The quasilinearization is defined as a map ⟨·, ·⟩ : (X ×X)× (X ×X) → R by

⟨
−→
ab,

−→
cd⟩ = 1

2
d2(a, d) +

1

2
d2(b, c)− 1

2
d2(a, c)− 1

2
d2(b, d)

for all a, b, c, d ∈ X . By using the above concept, Kakavandi and Amini [22] introduced

another concept of weak convergence in CAT(0) spaces, called w-convergence.

Definition 2.47. A sequence {xn} in a CAT(0) spaceX is said to w-converge to x ∈ X

if limn→∞⟨−−→xnx,
−→
ab⟩ = 0 for all a, b ∈ X .
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Proposition 2.48. [22, Proposition 2.5] For sequences in a complete CAT(0) space X ,

w-convergence implies ∆−convergence (to the same limit).

A simple example shows that the converse of this proposition does not hold:

Example 2.49. Consider an R−tree in R∞ defined as follow: Let {en} be the standard

basis, x0 = e1 = (1, 0, 0, 0, ...), and for each n, let xn = x0 + en+1. An R−tree is

formed by the segments [x1, xn] for n = 0, 1, 2, ... (see Figure 2.6).

𝑥1

𝑥0

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

Figure 2.6: The R−tree in Example 2.49

It is easy to see that {xn}∆-converges to x1. But {xn} does not w-converge to x1 since

⟨−−→xnx1,
−−→x0x1⟩ = −1 for all n ≥ 2. Thus a bounded sequence does not necessary contain

an w-convergent subsequence.

2.6 Convex Combination in CAT(0) Spaces

In this section we give a method for finding the convex combination in CAT(0) spaces

introduced by Dhompongsa et al. [16]. Let {v1, v2, ..., vn} ⊂ X and λ1, λ2, ..., λn ∈

(0, 1) with
∑n

i=1 λi = 1. Following [12] we write, by induction,

n⊕
i=1

λivi := (1− λn)
( λ1

1− λn

v1 ⊕
λ2

1− λn

v2 ⊕ · · · ⊕ λn−1

1− λn

vn−1

)
⊕ λnvn. (2.4)

Note for an example that 1
3
v1⊕ 1

3
v2⊕ 1

3
v3 and 1

3
v1⊕ 1

3
v3⊕ 1

3
v2 are not necessary coincide

(see Figure 2.7).
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�ଶ

�ଷ

�ଵ
ͳ͵ �ଵ⊕ ͳ͵�ଶ⊕ ͳ͵�ଷ
ͳ͵ �ଵ⊕ ͳ͵�ଷ⊕ ͳ͵�ଶ

ͳʹ �ଵ⊕ ͳʹ�ଶ
ͳʹ �ଵ⊕ ͳʹ �ଷ

Figure 2.7: Convex combination of three points in a CAT(0) space

It is straightforward, using (2.2), to show that

d

(
n⊕

i=1

λivi, x

)
≤

n∑
n=1

λid(vi, x) (2.5)

for each x ∈ X .

Let {λn} be a given sequence in (0, 1) such that
∑∞

n=1 λn = 1, let {vn} be a bounded

sequence in X and let v0 be an arbitrary point in X . Let λ′
n =

∑∞
i=n+1 λi and assume

that
∑∞

i=n λ
′
i → 0 as n → ∞. We present the description of

⊕∞
n=1 λnvn, defined in

[16], as follow. First, we set

sn := λ1v1 ⊕ λ2v2 ⊕ · · · ⊕ λnvn ⊕ λ′
nv0.

Thus, by (2.4),

sn =
( n∑

i=1

λi

)
wn ⊕ λ′

nv0, (2.6)

where w1 = v1 and for each n ≥ 2,

wn =
λ1∑n
i=1 λi

v1 ⊕
λ2∑n
i=1 λi

v2 ⊕ · · · ⊕ λn∑n
i=1 λi

vn.

We can see that {sn} is a Cauchy sequence. Thus sn → x as n → ∞ for some x ∈ X .

Write

x =
∞⊕
n=1

λnvn.

By (2.6), d(sn, wn) ≤ λ′
nd(wn, v0), it is seen that limn→∞ sn = limn→∞ wn. Thus

the limit x is independent of the choice of v0. It had been noted in [16] that the se-

quence
{
λn = 1

2n

}
satisfies the condition

∑∞
i=n λ

′
i → 0 as n → ∞ but this does
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not generally follow from the condition
∑∞

n=1 λn = 1. For example, consider the se-

quence
{
λn = 1

M
1

n3/2

}
where M =

∑∞
i=1

1
n3/2 . Observe that M

∑∞
i=n λ

′
i ≥ ∞. Thus∑∞

i=n λ
′
i ≥ ∞ 9 0 as n → ∞.

The following is an extension of Bruck's result (Theorem 1.7).

Lemma 2.50. [16, Lemma 3.8] LetC be a nonempty closed convex subset of a complete

CAT(0) space X , let {tn : n ∈ N} be a family of single-valued nonexpansive mappings

on C. Suppose
∩∞

n=1 Fix(tn) is nonempty. Define t : C → C by

tx =
∞⊕
n=1

λntnx

for all x ∈ C where {λn} ⊂ (0, 1) with
∑∞

n=1 λn = 1 and
∑∞

i=n λ
′
i → 0 as n → ∞.

Then t is nonexpansive and Fix(t) =
∩∞

n=1 Fix(tn).


