Chapter 2

Basic Concepts and Preliminaries

For understanding the thesis, we collect some notations, terminologies and elementary results. Although details are included in some cases, many well-known results are merely stated without proofs.

2.1 Metric Spaces

Definition 2.1. A *metric* (or *distance function*) d on X is a real-valued function defined on $X \times X$ satisfying the following conditions for any $x, y, z \in X$:

(M1)
$$d(x,y) \ge 0$$
;

(M2)
$$d(x,y) = 0$$
 if and only if $x = y$;

(M3)
$$d(x,y) = d(y,x)$$
 (symmetry);

(M4)
$$d(x,y) \le d(x,z) + d(z,y)$$
 (triangle inequality).

A pair (X, d) is called a *metric space* if d is a metric on X. Whenever it can be done without causing confusion, we denote the metric space (X, d) by the symbol X.

Example 2.2. Examples of metric spaces.

(i) Euclidean space \mathbb{R}^n . Let \mathbb{R}^n be the set of all ordered n-tuples of real numbers. Then \mathbb{R}^n is a metric space with the metric defined by

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

for all $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in \mathbb{R}^n .

(ii) Sequence space ℓ^2 . Let ℓ^2 be the set of all sequences $x = \{x_n\} \subset \mathbb{R}$ such that $\sum_{n=1}^{\infty} |x_n|^2 < \infty$. Then ℓ^2 is a metric space with the metric defined by

$$d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^2\right)^{\frac{1}{2}}$$

for all $x = \{x_n\}$ and $y = \{y_n\}$ in ℓ^2 .

(iii) Sequence space ℓ^{∞} . Let ℓ^{∞} be the set of all bounded sequences $x = \{x_n\} \subset \mathbb{R}$. Then ℓ^{∞} is a metric space with the metric defined by

$$d(x,y) = \sup_{n \in \mathbb{N}} |x_n - y_n|$$

for all $x = \{x_n\}$ and $y = \{y_n\}$ in ℓ^{∞} .

(iv) Function space B(S). Let S be a nonempty set and B(S) be the set of all bounded real-valued function on S. Then B(S) is a metric space with the metric defined by

$$d(f,g) = \sup_{t \in S} |f(t) - g(t)|$$

for all $f, g \in B(S)$.

(v) Space of bounded closed subsets FB(X). Let X be a metric space and FB(X) a family of nonempty bounded closed subsets of X. For each $A, B \in FB(X)$, define the Hausdorff distance (or Hausdorff metric) on FB(X) by

$$H(A,B) := \max \left\{ \sup_{a \in A} dist(a,B), \sup_{b \in B} dist(b,A) \right\}, \tag{2.1}$$

where $dist(a, B) := \inf_{b \in B} d(a, b)$ is the distance from the point a to the subset B. Then (FB(X), H) is a metric space.

Definition 2.3. Let X be a metric space. The set

$$B(x_0, r) := \{ x \in X : d(x_0, x) < r \},$$

where r > 0 and $x_0 \in X$, is called the *open ball* of radius r and centre x_0 . The set

$$\overline{B}(x_0,r) := \{ x \in X : d(x_0,x) \le r \},$$

where r > 0 and $x_0 \in X$, is called the *closed ball* of radius r and centre x_0 .

A subset G of X is called an *open set*, if there exists r > 0 such that $B(x, r) \subset G$ for any $x \in X$. A subset F of X is called a *closed set* if its complement $X \setminus F$ is open.

Definition 2.4. For any nonempty subset C of a metric space X, we define the *diameter* $\delta(C)$ of C by

$$\delta(C) = \sup_{x,y \in C} d(x,y).$$

In case $\delta(C)$ is finite, we call C a bounded set.

Definition 2.5. Let D be a nonempty set and \geq a relation on D. Then the ordered pair (D, \geq) is said to be *directed* if

- (i) \succcurlyeq is reflexive: $\alpha \succcurlyeq \alpha$ for all $\alpha \in D$;
- (ii) \succcurlyeq is transitive: whenever $\alpha \succcurlyeq \beta$ and $\beta \succcurlyeq \gamma \Rightarrow \alpha \succcurlyeq \gamma$ for all $\alpha, \beta, \gamma \in D$;
- (iii) for any two elements α and β , there exists γ such that $\gamma \succcurlyeq \alpha$ and $\gamma \succcurlyeq \beta$.

In this case, we call D a directed set with the relation \succeq .

A net (or a generalized sequence) in X is a mapping from a directed set D into X. We use the notation $\{x_{\alpha} : \alpha \in D\}$ to stand for a net (sometimes it is simply written as $\{x_{\alpha}\}$). When we consider \mathbb{N} as the directed set with the usual order \geq , we call $\{x_n\}$ a sequence in X.

Definition 2.6. Let $\{x_{\alpha} : \alpha \in D\}$ be a net in a set X and let D' be another directed set. A net $\{x_{\alpha_{\beta}} : \beta \in D'\}$ in X is said to be a *subnet* of $\{x_{\alpha} : \alpha \in D\}$ if it satisfies the following conditions:

- (i) $\{x_{\alpha_{\beta}}: \beta \in D'\} \subset \{x_{\alpha}: \alpha \in D\};$
- (ii) for any $\alpha \in D$, there exists $\beta_0 \in D'$ such that $\alpha_\beta \succcurlyeq \alpha$ for all $\beta \succcurlyeq \beta_0$.

Definition 2.7. Let X be a metric space. A net $\{x_{\alpha}\}$ in X is said to be *convergent* if it converges to some $x_0 \in X$, i.e., for any $\varepsilon > 0$ there exists $\alpha_0 \in D$ such that $d(x_{\alpha}, x_0) < \varepsilon$ for all $\alpha \succcurlyeq \alpha_0$. In this case we write $\lim_{\alpha} x_{\alpha} = x_0$ and call x_0 the limit of $\{x_{\alpha}\}$.

When a sequence $\{x_n\}$ converges to a point $x_0 \in X$, we usually use the notation $\lim_{n\to\infty} x_n = x_0$ or $x_n \to x_0$ as $n \to \infty$.

Definition 2.8. A sequence $\{x_n\}$ in a metric space X is said to be *Cauchy* if for any $\varepsilon > 0$ there exists a positive integer n_0 such that $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

Definition 2.9. A metric space X is said to be *complete* if every Cauchy sequence is convergent.

Definition 2.10. A subset C of a metric space X is said to be *compact* if every sequence in C has a convergent subsequence in C.

The following is a general property of compact sets in metric spaces but the converse is not true.

Theorem 2.11. (cf. [33]) A compact subset of a metric space is closed and bounded.

2.2 Banach Spaces and Hilbert Spaces

A vector space (or linear space) over field \mathbb{F} (\mathbb{R} or \mathbb{C}) is the set X of objects along with binary operations + (called the addition) and \cdot (called the scalar multiplication) satisfying the following conditions for any $x, y \in X$ and $\alpha, \beta \in \mathbb{F}$:

(V1)
$$x = y = y + x$$
;

(V2)
$$x + (y + x) = (x + y) + z;$$

- (V3) there exists a unique $0 \in X$ (called the zero element) such that x + 0 = x;
- (V4) there exists a unique $-x \in X$ (called the negative of x) such that x + (-x) = 0;

(V5)
$$\alpha(x+y) = \alpha x + \alpha y$$
;

(V6)
$$(\alpha + \beta)x = \alpha x + \beta x$$
;

(V7)
$$(\alpha\beta)x = \alpha(\beta x)$$
;

(V8)
$$1 \cdot x = x$$
.

A nonempty subset Y of a vector space X is called a *subspace* of X if Y is also a vector space with respect to the binary operations defined on X. As a simple proof, we can show that Y is a subspace if and only if $\alpha x + \beta y \in y$ for all $x, y \in y$ and $\alpha, \beta \in \mathbb{F}$.

Definition 2.12. Let C be a subset of a vector space X. Then C is said to be *convex* if $(1-\alpha)x + \alpha y \in C$ for all $x, y \in C$ and all scalar $\alpha \in [0, 1]$.

Definition 2.13. Let C be a subset (not necessarily convex) of a vector space X. Then the *convex hull* of C in X, denoted by co(C) is the intersection of all convex subsets of X containing C.

Definition 2.14. A *norm* $\|\cdot\|$ on a vector space X is a real-valued function defined on X which satisfies the followings for any $x, y \in X$ and $\alpha \in \mathbb{F}$:

- (N1) $||x|| \ge 0$;
- (N2) ||x|| = 0 if and only if x = 0;
- (N3) $\|\alpha x\| = |\alpha| \|x\|$;
- (N4) $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

A normed space X is a vector space with a norm. It is easy to see that every normed space is a metric space with the metric $d_{\|\cdot\|}$ (called the metric induced by the norm) defined by

$$d_{\|.\|}(x,y) = \|x - y\|$$

for all $x, y \in X$. When $(X, d_{\|\cdot\|})$ is a complete metric space, we call X a *Banach space*.

Example 2.15. Examples of Banach spaces.

(i) Euclidean space \mathbb{R}^n . The space \mathbb{R}^n is a Banach space with the norm defined by

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$

for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$.

(ii) Sequence space ℓ^2 . The space ℓ^2 is a Banach space with the norm defined by

$$||x|| = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{\frac{1}{2}}$$

for all $x = \{x_n\} \in \ell^2$.

(iii) Sequence space ℓ^{∞} . The space ℓ^{∞} is a Banach space with the norm defined by

$$||x|| = \sup_{n \in \mathbb{N}} |x_n|$$

for all $x = \{x_n\} \in \ell^{\infty}$.

(iv) Function space B(S). The space B(S) is a Banach space with the norm defined by

$$||f|| = \sup_{t \in S} |f(t)|$$

for all $f \in B(S)$.

(v) Dual space X^* . Let X^* be the set of all continuous linear functional on a normed space X. Then X^* is a Banach space space under the norm

$$||f|| = \sup_{\|x\|=1} |f(x)|$$

for all $f \in X^*$.

Definition 2.16. Let x_0 be a vector in a Banach space X and $f \in X^*$. For each $\varepsilon > 0$, define

$$U(x_0:f,\varepsilon) = \{x \in X: |f(x-x_0)| < \varepsilon\}.$$

The weak topology on X is the topology generated by the class of all sets which are expressible in the form $U(x_0:f,\varepsilon)$.

Definition 2.17. Let f_0 be a vector in X^* and $x \in X$. For each $\varepsilon > 0$, define

$$U(f_0: x, \varepsilon) = \{ f \in X^* : |f_0(x) - f(x)| < \varepsilon \}.$$

The weak* topology on X is the topology generated by the class of all sets which are expressible in the form $U(f_0: x, \varepsilon)$.

Theorem 2.18 (Alaoglu's Theorem). Let X be a normed space. Then the closed unit ball

$$\{f \in X^* : ||f|| \le 1\}$$

is compact in the weak* topology.

In this thesis, we consider about some Banach spaces with the special conditions. Here is their definitions and important properties.

Definition 2.19. A Banach space X is said to be *strictly convex* if ||x|| = ||y|| = 1 and $x \neq y$ implies

$$\left\| \frac{x+y}{2} \right\| < 1.$$

Definition 2.20. A Banach space X is said to be *uniformly convex* if for any $\varepsilon \in (0, 2]$ there exists $\delta > 0$ such that

$$\left\| \frac{x+y}{2} \right\| \le 1 - \delta,$$

 $\text{ for all } x,y \in X \text{ satisfying } \|x\| \leq 1, \, \|y\| \leq 1 \text{ and } \|x-y\| \geq \varepsilon.$

Theorem 2.21. (cf. [44]) Every uniformly convex Banach space is strictly convex.

Definition 2.22. Let X be a vector space over field \mathbb{R} . An *inner product* on X is a real-valued function $\langle \cdot, \cdot \rangle$ defined on $X \times X$ with the following properties:

- (I1) $\langle x, x \rangle \ge 0$ for all $x \in X$;
- (I2) $\langle x, x \rangle = 0$ if and only if x = 0;
- (I3) $\langle x, y \rangle = \langle y, x \rangle$;
- $(\text{I4}) \ \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \text{ for all } x, y, z \in X \text{ and } \alpha, \beta \in \mathbb{R}.$

An *inner product space* is a vector space with an inner product. It is easy to see that every inner product space is a normed space with the norm (called the norm induced by the inner product)

$$||x|| = \sqrt{\langle x, x \rangle}$$

for all $x \in X$. We call X a *Hilbert space* when it is complete under the metric induced by the norm.

Example 2.23. Example of Hilbert spaces.

(i) Euclidean space \mathbb{R}^n . The space \mathbb{R}^n is a Hilbert space with the inner product defined by

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n$$

for all $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in \mathbb{R}^n .

(ii) Sequence space ℓ^2 . The space ℓ^2 is a Hilbert space with the inner product defined by

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$$

for all $x = \{x_n\}$ and $y = \{y_n\}$ in ℓ^2 .

The following properties are important for inner product spaces (see [33] for more details).

Proposition 2.24 (The Cauchy-Schwarz inequality). *Let X be an inner product space. Then*

$$|\langle x, y \rangle| \le ||x|| ||y||,$$

for all $x, y \in X$.

Proposition 2.25 (The parallelogram law). Let X be an inner product space. Then

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

for all $x, y \in X$.

Theorem 2.26 (Reisz's representation theorem). Let X be a Hilbert space and $f \in X^*$. Then there exists a unique element $y_0 \in X$ such that $f(x) = \langle x, y_0 \rangle$ for each $x \in X$. In this case, $||f|| = ||y_0||$.

2.3 Fixed Point Theorems for Nonexpansive Semigroups

In this section, we collect some definitions and the well-known fixed point theorems for nonexpansive semigroups in Hilbert spaces.

Definition 2.27. Let S be a semigroup. A continuous linear functional $\mu \in B(S)^*$ is called a *mean* on B(S) if $\|\mu\| = \mu(1) = 1$.

For any $f \in B(S)$ we use the following notation: $\mu(f) = \mu_s(f(s))$.

When we consider the semigroup $S=\mathbb{N}$ under the usual addition, we can see that $B(S)=B(\mathbb{N})=\ell^{\infty}$. A continuous linear functional $\mu\in\ell^{\infty}$ is said to be a *Banach limit* if it is a mean on ℓ^{∞} and $\mu_n(x_n)=\mu_n(x_{n+1})$ for all $x=\{x_1,x_2,...\}\in\ell^{\infty}$.

Definition 2.28. Let S be a semigroup. A mean μ on B(S) is said to be *left invariant* [resp. *right invariant*] if $\mu_s(f(ts)) = \mu_s(f(s))$ [resp. $\mu_s(f(st)) = \mu_s(f(s))$] for all $f \in B(S)$ and for all $t \in S$.

We will say that μ is an *invariant mean* if it is both left and right invariant. If B(S) has an invariant mean, we call S an *amenable semigroup*.

It is well-known that every commutative semigroup is amenable [13]. For each $s \in S$ and $f \in B(S)$, we define elements $l_s f$ and $r_s f$ in B(S) by $(l_s f)(t) = f(st)$ and $(r_s f)(t) = f(ts)$ for any $t \in S$, respectively.

Definition 2.29. A net $\{\mu_{\alpha}\}$ of means on B(S) is said to be asymptotically invariant if

$$\lim_{\alpha} (\mu_{\alpha}(l_s f) - \mu_{\alpha}(f)) = 0 = \lim_{\alpha} (\mu_{\alpha}(r_s f) - \mu_{\alpha}(f)).$$

Remark 2.30. For each asymptotically net of means $\{\mu_{\alpha}\}$, there exists a subnet $\{\mu_{\alpha'}\}$ of $\{\mu_{\alpha}\}$ such that $\{\mu_{\alpha'}\}$ w*-converges to some invariant mean in $B(S)^*$

Proof. Since $\{\mu_{\alpha}\}$ is a closed subset of $\{\gamma \in B(S)^* : \|\gamma\| \leq 1\}$, by the Alaoglu's Theorem, it is compact in the weak* topology. So there exists a subnet $\{\mu_{\alpha'}\}$ of $\{\mu_{\alpha}\}$ such that $\{\mu_{\alpha'}\}$ w*-converges to some μ in $B(S)^*$. We can obtain, from the proof of Theorem 3.4.4 in [44], that μ is invariant.

Proposition 2.31. (cf. [44]) Let μ be a right invariant mean on B(S). Then,

$$\sup_s \inf_t f(ts) \leq \mu(f(s)) \leq \inf_s \sup_t f(ts)$$

for each $f \in B(S)$. Similarly, let μ be a left invariant mean on B(S). Then,

$$\sup_s \inf_t f(st) \le \mu(f(s)) \le \inf_s \sup_t f(st)$$

for each $f \in B(S)$.

Remark 2.32. If $\lim_s f(s) = a$ for some $a \in \mathbb{R}$ and $\{s'\}$ is a subnet of $\{s\}$ satisfying $s' \succ s$ for each s, then

$$\mu_{s'}(f(s')) = a.$$

Proof. This is an easy consequence of Proposition 2.31 since $\mu_{s'}(f(s')) = \mu_s(f(s')) = \lim_s f(s') = a$.

Theorem 2.33. (cf. [44]) Let S be an amenable semigroup and C be a closed convex subset of a Hilbert space X. Let $S = \{T_s : s \in S\}$ be a nonexpansive semigroup on C. Then the followings are equivalent:

- (i) $\{T_sx: s \in S\}$ is bounded for some $x \in C$;
- (ii) $\{T_s x : s \in S\}$ is bounded for all $x \in C$;
- (iii) $Fix(S) \neq \emptyset$.

Theorem 2.34. (cf. [44]) Let S be an amenable semigroup and C be a closed convex subset of a Hilbert space X. Let $S = \{T_s : s \in S\}$ be a nonexpansive semigroup on C with $Fix(S) \neq \emptyset$. Then for each invariant mean μ on B(S), T_{μ} satisfies the followings:

- (i) $T_{\mu}: C \to C$ is nonexpansive;
- (ii) $T_{\mu}T_{s} = T_{\mu} = T_{s}T_{\mu}$ for all $s \in S$;
- (iii) $T_u x \in \overline{co}\{T_s x : t \in S\}$ for all $x \in C$.

2.4 CAT(0) Spaces

For studying the definition and basic properties of CAT(0) spaces, we begin with introducing some geometric concepts in metric spaces.

Definition 2.35. Let X be a metric space. A *geodesic* joining $x \in X$ to $y \in X$ is a mapping c from a closed interval $[0,l] \subset \mathbb{R}$ to X such that c(0)=x, c(l)=y and d(c(t),c(t'))=|t-t'| for all $t,t'\in [0,l]$. In particular, c is an isometry and d(x,y)=l.

The image γ of c is called a *geodesic (or metric) segment* joining x and y. When it is unique this geodesic is denoted [x,y]. Write $c(\alpha\,0+(1-\alpha)l)=\alpha x\oplus (1-\alpha)y$ and for $\alpha=\frac{1}{2}$ we write $\frac{1}{2}x\oplus \frac{1}{2}y$ as $\frac{x\oplus y}{2}$, the midpoint of x and y.

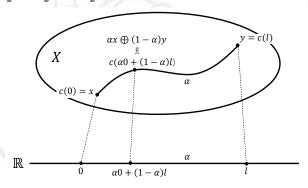


Figure 2.1: Geodesic segment

The space X is said to be a *(uniquely) geodesic space* if every two points of X are joined by a (unique) geodesic. We can define a convex set in a geodesic space as follow:

Definition 2.36. A subset C of a geodesic space X is said to be *convex* if C includes every geodesic segment joining between x and y for all $x, y \in C$.

A geodesic triangle $\triangle(x,y,x)$ in a geodesic space X consists of three points x,y,z in X (the vertices of \triangle) and three geodesic segments joining between each pair of its vertices. A comparison triangle for a geodesic triangle $\triangle(x,y,x)$ is a triangle $\overline{\triangle}(x,y,z) := \triangle(\overline{x},\overline{y},\overline{v})$ in the Euclidean plane \mathbb{R}^2 such that $d(x,y) = d(\overline{x},\overline{y})$, $d(x,z) = d(\overline{x},\overline{z})$ and $d(y,z) = d(\overline{y},\overline{z})$.

Definition 2.37. A geodesic space X is said to be a CAT(0) space if every geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean plane, i.e.,

$$d(a,b) \le d_{\mathbb{R}^2}(\overline{a},\overline{b})$$

for any $a, b \in \triangle(x, y, z)$ and $\overline{a}, \overline{b} \in \overline{\triangle}(x, y, z)$ (see Figure 2.2).

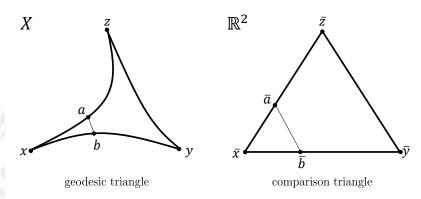


Figure 2.2: Geodesic triangle in a CAT(0) space and its comparison triangle

Example 2.38. Example of CAT(0) spaces.

- (i) Hilbert spaces.
- (ii) \mathbb{R} -trees: A uniquely geodesic space X is an \mathbb{R} -tree if

$$[x,y]\cap [y,z]=\{y\}\Longrightarrow [x,z]=[x,y]\cup [y,z].$$

(iii) Classical hyperbolic space H^n : A vector space \mathbb{R}^{n+1} is a hyperbolic space of n-dimension if

$$\sum_{i=1}^n u_i^2 - u_{n+1}^2 = -1 \ \ \text{and} \ \ u_{n+1} > 0$$
 for all $(u_1,...,u_{n+1}) \in \mathbb{R}^{n+1}.$

(iv) Let $X = \{0\} \times [0, 1] \times \mathbb{R}$ and $Y = [-1, 1] \times \{0\} \times \{0\} \cup \{0\} \times [0, 1] \times \{0\}$. Then $Z = X \cup Y$ is a CAT(0) space¹ (see Figure 2.3).

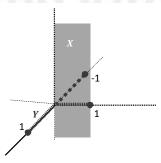


Figure 2.3: An example of CAT(0) spaces

¹This example, constructed by Dr. Santi Tasena, is the one of CAT(0) space which does not be a Hilbert space or an \mathbb{R} -tree.

Let X be a geodesic space. The *Alexandrov angle* between two geodesics $c_1:[0,t_1]\to X$ and $c_2:[0,t_2]\to X$ with $c_1(0)=c_2(0)$ is the number $\xi\in[0,\pi]$ such that

$$\xi = \limsup_{t_1, t_2 \to 0} \measuredangle(c_1(t_1), c_1(0), c_2(t_2)),$$

where $\angle(c_1(t_1), c_1(0), c_2(t_2))$ is the interior angle at $\overline{c_1(0)}$ in $\overline{\triangle}(c_1(t_1), c_1(0), c_2(t_2))$.

The following is the characterization of CAT(0) spaces (see [9] for more details):

Theorem 2.39. The followings are equivalent for a uniquely geodesic space X

- (i) X is a CAT(0) space.
- (ii) X satisfies the **(CN) inequality**: If $x, y \in X$ and $\alpha \in (0, 1)$, then $d^2(z, \alpha x \oplus (1 \alpha)y) \leq \alpha d^2(z, x) + (1 \alpha)d^2(z, y) \alpha(1 \alpha)d^2(x, y),$ for all $z \in X$.
- (iii) X satisfies the **law of cosine**: If a = d(x, z), b = d(y, z), c = d(x, y) and ξ is the Alexandrov angle at z between [x, z] and [y, z], then

$$c^2 \ge a^2 + b^2 - 2ab\cos\xi.$$

Lemma 2.40. [9, Proposition 2.2] Let X be a CAT(0) space. Then for each $p, q, x, y \in X$ and $\alpha \in [0, 1]$,

$$d(\alpha p \oplus (1 - \alpha)q, \alpha x \oplus (1 - \alpha)y) \le \alpha d(p, x) + (1 - \alpha)d(q, y).$$

In particular, a CAT(0) space is of hyperbolic type, i.e., it satisfies the below inequality:

$$d(p, \alpha x \oplus (1 - \alpha)y) \le \alpha d(p, x) + (1 - \alpha)d(p, y). \tag{2.2}$$

For any nonempty subset C of X, let $\pi = \pi_C$ be the projection mapping from X to C. It is known by [9, p.176 - 177] that if C is closed and convex, the mapping π is well-defined, nonexpansive, and satisfies

$$d^{2}(x,y) \ge d^{2}(x,\pi x) + d^{2}(\pi x,y) \text{ for all } x \in X \text{ and } y \in C$$
 (2.3)

(see Figure 2.4).

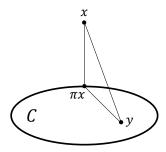


Figure 2.4: The projection mapping

Definition 2.41. [18, Definition 5.13] A complete CAT(0) space X has the *property* of the nice projection onto geodesics (property (N) for short) if, given any geodesic segment $I \subset X$, it is the case that $\pi_I(m) \in [\pi_I(x), \pi_I(y)]$ for any x, y in X and $m \in [x, y]$ (see Figure 2.5).

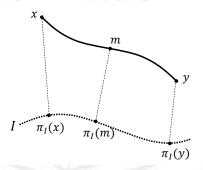


Figure 2.5: Property (N)

As noted in [18], we do not know of any example of a CAT(0) space which does not enjoy the property (N).

Definition 2.42. For any bounded net $\{x_{\alpha}\}$ in a closed convex subset C of a CAT(0) space X, put

$$r(x, \{x_{\alpha}\}) = \limsup_{\alpha} d(x, x_{\alpha})$$

for each $x \in C$. The asymptotic radius of $\{x_{\alpha}\}$ on C is given by

$$r(C, \{x_{\alpha}\}) = \inf_{x \in C} r(x, \{x_{\alpha}\}),$$

and the asymptotic center of $\{x_{\alpha}\}$ in C is the set

$$A(C, \{x_{\alpha}\}) = \{x \in C : r(x, \{x_{\alpha}\}) = r(C, \{x_{\alpha}\})\}.$$

It is known that in a complete CAT(0) space, $A(C, \{x_{\alpha}\})$ consists of exactly one point and $A(X, \{x_{\alpha}\}) = A(C, \{x_{\alpha}\})$ [17].

Remark 2.43.

- (i) Let D, D' be directed sets. If $\{x_{\alpha_{\beta}} : \beta \in D'\}$ is a subnet of a bounded net $\{x_{\alpha} : \alpha \in D\}$, then $r(C, \{x_{\alpha_{\beta}}\}) \leq r(C, \{x_{\alpha}\})$.
- (ii) Let C be a closed convex subset of a CAT(0) space $X, T : C \to C$ a nonexpansive mapping and $x \in C$. If $\{T^n x\}$ is bounded and $z \in A(C, \{T^n x\})$, then $z \in F(T)$.

Proof. (i) Let $\alpha_0 \in D$. By the definition of subnets, there exists $\beta_0 \in D'$ such that $\nu(\beta) \succcurlyeq \alpha_0$ for all $\beta \succcurlyeq \beta_0$. For each $x \in C$, we have $\sup_{\alpha \succcurlyeq \alpha_0} d(x, x_\alpha) \ge \sup_{\beta \succcurlyeq \beta_0} d(x, x_{\alpha_\beta})$. Thus

$$\sup_{\alpha \succcurlyeq \alpha_0} d(x, x_\alpha) \ge \inf_{\beta_1} \sup_{\beta \succcurlyeq \beta_1} d(x, x_{\alpha_\beta}),$$

for all α_0 . Hence

$$r(x, \{x_{\alpha}\}) = \inf_{\alpha_0} \sup_{\alpha \models \alpha_0} d(x, x_{\alpha}) \ge r(x, \{x_{\alpha_{\beta}}\})$$

Since the above inequality holds for all $x \in C$, we see that

$$r(C, \{x_{\alpha}\}) = \inf_{x \in C} r(x, \{x_{\alpha}\}) \ge \inf_{x \in C} r(x, x_{\nu(\beta)}) = r(C, \{x_{\nu(\beta)}\}).$$

(ii) By the nonexpansiveness of T, $\limsup_n d(T^nx,Tz) = \limsup_n d(TT^nx,Tz)$ $\leq \limsup_n d(T^nx,z)$. As every asymptotic center is unique, we have z=Tz.

2.5 Weak Convergence in CAT(0) Spaces

In 1976, Lim [30] introduced a concept of convergence in a general metric space, called strong Δ -convergence. Many years later, Kirk and Panyanak [25] introduced a concept of convergence in a CAT(0) space, called Δ -convergence.

Definition 2.44. A net $\{x_{\alpha}\}$ in a CAT(0) space X is said to Δ -converge to $x \in X$ if x is the unique asymptotic center of $\{u_{\beta}\}$ for every subnet $\{u_{\beta}\}$ of $\{x_{\alpha}\}$. In this case, we write $\Delta - \lim_{\alpha} x_{\alpha} = x$ and call x the Δ -limit of $\{x_{\alpha}\}$.

Proposition 2.45. [25, Proposition 3.4] *Every bounded net in X has a* Δ -convergent subnet.

Remark 2.46.

- (i) Let D be a directed set, $\{x_{\alpha} : \alpha \in D\}$ a net in X and $x \in X$. If $\limsup_{\alpha} d(x, x_{\alpha}) > \rho$ for some $\rho > 0$, Then there exists a subnet $\{x_{\beta_{\alpha}}\}$ of $\{x_{\alpha}\}$ such that $d(x, x_{\beta_{\alpha}}) \geq \rho$ for all α .
- (ii) Let $\{x_{\alpha}\}$ be a net in X. Then $\{x_{\alpha}\}$ Δ -converges to $x \in X$ if and only if every subnet $\{x_{\alpha'}\}$ of $\{x_{\alpha}\}$ has a subnet $\{x_{\alpha''}\}$ which Δ -converges to x.
- *Proof.* (i): For each $\alpha \in D$ we have $\sup_{\alpha' \succcurlyeq \alpha} d(x, x_{\alpha'}) > \rho$. Thus there exists $\beta_{\alpha} \succ \alpha$ such that $d(x, x_{\beta_{\alpha}}) \ge \rho$, and this holds for all α . Set a set $D' = \{\beta_{\alpha} : \alpha \in D\}$. Clearly, D' is a directed set. Let $\alpha_0 \in D$, thus $\beta_{\alpha} \succcurlyeq \alpha_0$ for all $\beta_{\alpha} \succcurlyeq \beta_{\alpha_0}$. This shows that $\{x_{\beta_{\alpha}}\}$ is a subnet of $\{x_{\alpha}\}$ satisfying $d(x, x_{\beta_{\alpha}}) \ge \rho$ for all α .
- (ii): It is easy to see that if $\{x_{\alpha}\}$ $\Delta-$ converges to x, then every subnet of $\{x_{\alpha}\}$ also $\Delta-$ converges to x. On the other hand, suppose $\{x_{\alpha}\}$ does not $\Delta-$ converge to x. Thus there exists a subnet $\{x_{\beta}\}$ of $\{x_{\alpha}\}$ such that $x \notin A(C, \{x_{\beta}\})$, and so $\limsup_{\beta} d(x, x_{\beta}) > \rho > r(C, \{x_{\beta}\})$ for some $\rho > 0$. By (i), there exists a subnet $\{x_{\gamma_{\beta}}\}$ of $\{x_{\beta}\}$ satisfying $d(x, x_{\gamma_{\beta}}) \geq \rho$ for all β . By assumption, there exists a subnet $\{x_{(\gamma_{\beta})_{\eta}}\}$ of $\{x_{\gamma_{\beta}}\}$ $\Delta-$ converging to x. Using Remark 2.43, $\rho \leq \limsup_{\gamma} d(x, x_{(\gamma_{\beta})_{\eta}}) = r(C, \{x_{(\gamma_{\beta})_{\eta}}\}) \leq r(C, \{x_{\gamma_{\beta}}\})$, a contradiction.

In 2008, Berg and Nikolaev [8] introduced a concept of quasilinearization as follow. For any metric space X, we call an order pair $(a,b) \in X \times X$ a vector and denote it by \overrightarrow{ab} . The *quasilinearization* is defined as a map $\langle \cdot, \cdot \rangle : (X \times X) \times (X \times X) \to \mathbb{R}$ by

$$\langle \overrightarrow{ab}, \overrightarrow{cd} \rangle = \frac{1}{2}d^2(a, d) + \frac{1}{2}d^2(b, c) - \frac{1}{2}d^2(a, c) - \frac{1}{2}d^2(b, d)$$

for all $a, b, c, d \in X$. By using the above concept, Kakavandi and Amini [22] introduced another concept of weak convergence in CAT(0) spaces, called w-convergence.

Definition 2.47. A sequence $\{x_n\}$ in a CAT(0) space X is said to w-converge to $x \in X$ if $\lim_{n\to\infty}\langle \overrightarrow{x_nx}, \overrightarrow{ab}\rangle = 0$ for all $a,b\in X$.

Proposition 2.48. [22, Proposition 2.5] For sequences in a complete CAT(0) space X, w-convergence implies Δ -convergence (to the same limit).

A simple example shows that the converse of this proposition does not hold:

Example 2.49. Consider an \mathbb{R} -tree in \mathbb{R}^{∞} defined as follow: Let $\{e_n\}$ be the standard basis, $x_0 = e_1 = (1, 0, 0, 0, ...)$, and for each n, let $x_n = x_0 + e_{n+1}$. An \mathbb{R} -tree is formed by the segments $[x_1, x_n]$ for n = 0, 1, 2, ... (see Figure 2.6).

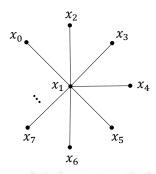


Figure 2.6: The \mathbb{R} -tree in Example 2.49

It is easy to see that $\{x_n\}$ Δ -converges to x_1 . But $\{x_n\}$ does not w-converge to x_1 since $\langle \overrightarrow{x_nx_1}, \overrightarrow{x_0x_1} \rangle = -1$ for all $n \geq 2$. Thus a bounded sequence does not necessary contain an w-convergent subsequence.

2.6 Convex Combination in CAT(0) Spaces

In this section we give a method for finding the convex combination in CAT(0) spaces introduced by Dhompongsa et al. [16]. Let $\{v_1, v_2, ..., v_n\} \subset X$ and $\lambda_1, \lambda_2, ..., \lambda_n \in (0,1)$ with $\sum_{i=1}^n \lambda_i = 1$. Following [12] we write, by induction,

$$\bigoplus_{i=1}^{n} \lambda_i v_i := (1 - \lambda_n) \left(\frac{\lambda_1}{1 - \lambda_n} v_1 \oplus \frac{\lambda_2}{1 - \lambda_n} v_2 \oplus \dots \oplus \frac{\lambda_{n-1}}{1 - \lambda_n} v_{n-1} \right) \oplus \lambda_n v_n.$$
 (2.4)

Note for an example that $\frac{1}{3}v_1 \oplus \frac{1}{3}v_2 \oplus \frac{1}{3}v_3$ and $\frac{1}{3}v_1 \oplus \frac{1}{3}v_3 \oplus \frac{1}{3}v_2$ are not necessary coincide (see Figure 2.7).

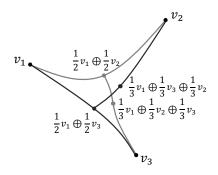


Figure 2.7: Convex combination of three points in a CAT(0) space

It is straightforward, using (2.2), to show that

$$d\left(\bigoplus_{i=1}^{n} \lambda_{i} v_{i}, x\right) \leq \sum_{n=1}^{n} \lambda_{i} d(v_{i}, x)$$
(2.5)

for each $x \in X$.

Let $\{\lambda_n\}$ be a given sequence in (0,1) such that $\sum_{n=1}^{\infty} \lambda_n = 1$, let $\{v_n\}$ be a bounded sequence in X and let v_0 be an arbitrary point in X. Let $\lambda'_n = \sum_{i=n+1}^{\infty} \lambda_i$ and assume that $\sum_{i=n}^{\infty} \lambda'_i \to 0$ as $n \to \infty$. We present the description of $\bigoplus_{n=1}^{\infty} \lambda_n v_n$, defined in [16], as follow. First, we set

$$s_n := \lambda_1 v_1 \oplus \lambda_2 v_2 \oplus \cdots \oplus \lambda_n v_n \oplus \lambda'_n v_0.$$

Thus, by (2.4),

$$s_n = \left(\sum_{i=1}^n \lambda_i\right) w_n \oplus \lambda'_n v_0, \tag{2.6}$$

where $w_1 = v_1$ and for each $n \ge 2$,

$$w_n = \frac{\lambda_1}{\sum_{i=1}^n \lambda_i} v_1 \oplus \frac{\lambda_2}{\sum_{i=1}^n \lambda_i} v_2 \oplus \cdots \oplus \frac{\lambda_n}{\sum_{i=1}^n \lambda_i} v_n$$

We can see that $\{s_n\}$ is a Cauchy sequence. Thus $s_n \to x$ as $n \to \infty$ for some $x \in X$. Write

$$x = \bigoplus_{n=1}^{\infty} \lambda_n v_n.$$

By (2.6), $d(s_n, w_n) \leq \lambda'_n d(w_n, v_0)$, it is seen that $\lim_{n\to\infty} s_n = \lim_{n\to\infty} w_n$. Thus the limit x is independent of the choice of v_0 . It had been noted in [16] that the sequence $\left\{\lambda_n = \frac{1}{2^n}\right\}$ satisfies the condition $\sum_{i=n}^{\infty} \lambda'_i \to 0$ as $n \to \infty$ but this does

not generally follow from the condition $\sum_{n=1}^{\infty} \lambda_n = 1$. For example, consider the sequence $\left\{\lambda_n = \frac{1}{M} \frac{1}{n^{3/2}}\right\}$ where $M = \sum_{i=1}^{\infty} \frac{1}{n^{3/2}}$. Observe that $M \sum_{i=n}^{\infty} \lambda_i' \geq \infty$. Thus $\sum_{i=n}^{\infty} \lambda_i' \geq \infty \nrightarrow 0$ as $n \to \infty$.

The following is an extension of Bruck's result (Theorem 1.7).

Lemma 2.50. [16, Lemma 3.8] Let C be a nonempty closed convex subset of a complete CAT(0) space X, let $\{t_n : n \in \mathbb{N}\}$ be a family of single-valued nonexpansive mappings on C. Suppose $\bigcap_{n=1}^{\infty} Fix(t_n)$ is nonempty. Define $t : C \to C$ by

$$tx = \bigoplus_{n=1}^{\infty} \lambda_n t_n x$$

for all $x \in C$ where $\{\lambda_n\} \subset (0,1)$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ and $\sum_{i=n}^{\infty} \lambda_i' \to 0$ as $n \to \infty$. Then t is nonexpansive and $Fix(t) = \bigcap_{n=1}^{\infty} Fix(t_n)$.

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม** Copyright[©] by Chiang Mai University All rights reserved