Chapter 3
A— Convergence Theorems for Nonexpansive

Semigroups on CAT(0) Spaces

The aim of this chapter is to prove the nonlinear ergodic theorems in the framework
of CAT(0) spaces. The first section contains some preliminary results and the main
theorem. We also show its applications in the second section. All of results in this
chapter have been published in the paper: W. Anakkamatee and S. Dhompongsa, Rodé's
theorem on common fixed points of semigroup of nonexpansive mappings in CAT(0)

spaces, Fixed Point Theory Appl., 2011, 2011:34 [1].

3.1 A— Convergence Theorems

In 2011, Kakavandi and Amini [23] first introduced the notation 7}, for the CAT(0) space

setting. Here is a mild generalization of their result (see [23, Lemma 2.1]).

Lemma 3.1. Let S be a semigroup and C' be a closed convex subset of a CAT(0) space
X and p be a mean on B(S). For a bounded function h : S — C, define

Puly) = ps(d*(h(s), y))
Jorally € X. Then @, attains its unique minimum at a point of co{h(s) : s € S}.
In this case, we put
T, (1) = argmin{y — 1ma(d2(h(s), 1))}, G.1)

and for h(s) of the form 7,2 we write T),(h) shortly as 7),x. We have already mentioned

in Chapter 1 that for a Hilbert space X, we can find the unique element xq € C' such
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that
ps{Tsz,y) = (2o, y) (3.2)
for all y € X. The following is our observation for Hilbert spaces.

Remark 3.2. 1f X is a Hilbert space, then

(i) T,,x = xo where x, verifies (3.2), and

(ii) [lzoll* = sup,ex(2(zo, y) — llyl*)-
Proof. (i): Let x( be such that u,(Tsz,y) = (xo,y) forally € X. We have ¢, (o) =
2u(0)+oll* = 2(z0, 7o) = ©u(0) = llzo|1* < 9, (0)+ [T,z ll* = 2(0, Tyuw) = u(Ty)-
Therefore xy = T),x.

(ii): Forany z,y € X, weknow that | Tyz—y||* = || Tsx||*—2(T,x, y)+||y||*. By the
linearity of p and (3.2), we have u, (|| Tsx — y||?) = ps(|| Tsx||?) — 2(z0, y) + ||y||*. Thus
infyex f1s(| Tz = ylI*) = ps(||Ts]|*) — supye x (2(z0, y) — ||y[|*). On the other hand, by
@), infyex ps(1Tsx —yl1?) = ps(IITsw = @ol1?) = ps (| Tl|*) — 20T, o) + |0 |* =
ps(1Tsx[1*) — llwol*. Hence [|zol|* = sup,ex (2(xo,y) — Ily[I*).

Fixed point theorems for nonexpansive semigroups on CAT(0) spaces, stated below,

was also proved by Kakavandi and Amini [23].

Lemma 3.3. [23, Lemma 3.1] If C is a closed convex subset of a CAT(0) space X and

T : C — C'is a nonexpansive mapping, then Fix(T) is closed and convex.

Lemma 3.4. [23, Proposition 3.2] Let C' be a closed convex subset of a CAT(0) space
X and S an amenable semigroup. If § = {T : s € S} is a nonexpansive semigroup on

C then the following conditions are equivalent:
(i) {Tsx : s € S} is bounded for some x € C;
(ii) {Tsx : s € S} is bounded for all x € C;

(iii) Fix(8) # .

Proposition 3.5. [23, Theorem 3.3] Let C be a closed convex subset of a complete
CAT(0) space X, S an amenable semigroup, 8 = {Ts : s € S} a nonexpansive semi-
group on C with Fix(8) # 0. Then T, x € Fix(8) for any invariant mean p on B(5S).
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We now let S be a commutative semigroup and define a relation = on S by s = t if
s = t or there exists u € S such that s = ut. When s = t but s # ¢, we simply write
s > t. We can see that S is a directed set with the relation =. Examples of such S are

the usual ordered sets (N, +, >) and ([0, c0), +, >).

Proposition 3.6. [23, Proposition 4.1] Let C' be a closed convex subset of a complete
CAT(0) space X, S a commutative semigroup, § = {Ts : s € S} a nonexpansive
semigroup on C with Fix(8) # 0. Then, for each x € C, the net {wT,x}scs converges

to a point Px in Fix(8), where m = Tpiys) : C' — Fixz(8) is the projection mapping.
By using the above results, we can obtain a useful property of 7},.

Proposition 3.7. Let C be a closed convex subset of a complete CAT(0) space X, S
a commutative semigroup, 8 = {Ts : s € S} a nonexpansive semigroup on C' with
Fix(8) # 0. Let 7 be the projection mapping onto Fix(8). Then, for any invariant
mean v on B(S), T,x = lim, 1T,z = Px forall x € C.

Proof. Fix x € C and let ¢ > 0. By Proposition 3.6, there exists sy € S such that
d(nTsx, Pr) < ¢ forall s = so. We know, by Proposition 3.5, that 7,z € Fixz(8).
Thus

d(Pz,T,x) < d(Px,nTyx)+ d(nT,x, Tsx)
< d(rTsz,Tsx) + €

< d(T,x, Tex)+¢

for all s = sg. Since {Tsz : s € S} is bounded by Lemma 3.4, there exists M/ > 0 such
that d(T,z, Tsx) < M forall s € S. Therefore d*( Pz, Tsx) < d*(T,x, Tsx)+2Me+&>

for each s = sy. Since p is invariant, we have

,us(dQ(Pm,Tsm)) = ,us(dZ(PJ},TSSO:E))
< ps(d®(Tyw, Tosyz)) + 2Me + €

= ps(d*(T,x, Tyw)) + 2Me + €°

for any € > 0. By the argminimality of 7,z (see Lemma 3.1), T),x = Px. ]
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In order to obtain the Rodé¢'s Theorem (Theorem 1.4) in the framework of CAT(0)
spaces, we need to restrict the asymptotically invariant net of means {, } to those that

satisfy an additional condition: for each ¢ € .5,
o (A2(Ty, ) — o (2(Tuw, y)) = O uniformly for y € C. (3.3)

In the Hilbert space setting, condition (3.3) is not required because the weak convergence

can obtain from (3.2) directly.

Lemma 3.8. Let X be a complete CAT(0) space, C a closed convex subset of X, S
a commutative semigroup, and 8 = {Ts : s € S} a nonexpansive semigroup on C
with Fix(8) # (). Suppose {11,} is an asymptotically invariant net of means on B(S)
satisfying condition (3.3). If {T},,x} A-converges to x, then xy € Fix(8).

Proof. We first show that, for each r € S,
limd(7T,,x,T,7T,,x) = 0. (3.4)

If this is not the case, there must be some & > 0 so that for each «, there exists o/ = «
satisfying d(T), ,x,T,T), ,v) > 0. Pute = % Since the asymptotically invariant net
{10} satisfies (3.3), there exists «y for which for each « 3= ay,
Cua (T T0r) = plo(d*(Tex, T,T,,, 7))
< po, (P (T Tz, T, 7)) + €
< o, (P (Tex, T 1)) + € = @ (T,T) + €.

Let w be the midpoint of 7}, ,  and 7,7}, ,x. By (CN) inequality, the following in-
0 (0]
equalities hold for each s € S:
1 1 1
& (Tyz,w) < EdQ(Tsas,Tu ,T) + EdQ(Tsa:,T,,TN , ) — Zdz(TM 2 & s k)
(10 (10 DtO (¥0

1 1 2
< EdQ(Tsx,Tu%x) + EdQ(Tsa:,TrTM%:B) v

Therefore
1 1 52
90/1&6 (w> < §qua/0 (TM% LIJ) + 53011&/0 (TTTMQ/Ox) - Z
e 0
< qu% (TM%JL’) + 5 - Z = 90/106 (Tu%x)?

which is a contradiction and thus (3.4) holds.
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We show zy € Fiz(8) by supposing on the contrary, i.e., there exists some r €
S such that T,z # o, i.e., d(zo, T29) = v > 0. Since {7, x} is a subset of a
bounded set co{Tsx : s € S}, we can get an M > 0 so that d(7),,z,zo) < M for
all a. Let0 < e < min{lg—jw, 2M}. From (3.4), there exists o with the property that

d(T,T,,x,T,,z) < ¢ forall @ = . Now, for each o = o,
ATz, Trxo) < dT,.x,T,T,.x)+dTT,,z,Txo)

< d(T,,z,xo) + €.

Thus
d*(T,,x, Trxo) < d*(Ty,x, T0) + 26d(T),, T, 7o) + €°.

Using the (CN) inequality, we see that

T. 1 1 1
d? (Tuam, W) < édQ(TMx,xo) + EdQ(Tuax, T,xo) — ZdQ(xO,TT:EO)

IN

1 1 2

82 ,.}/2
= dP(T,,x,30) + M + 5

for all a = . Consequently,

T . 2 2
lim sup d’ <Tuax> W) < limsup dz(Tua$7 IL’O) +eM + % — %

< limsup &*(T,,z, ¢),

[0}

contradicting to the fact that {z} = A(C, {1}, }). Therefore z, € F'(8). O

Theorem 3.9. Let X be a complete CAT(0) space with Property (N), C' a closed convex
subset of X, S a commutative semigroup, and 8 = {Ts; : s € S} a nonexpansive
semigroup on C with Fix(8) # 0. Suppose {1, } is an asymptotically invariant net of
means on B(S) satisfying condition (3.3). Then{T,, x} A-convergesto Px € F(8) for

all x € C, where Px is defined in Proposition 3.6.

Proof. Let x € C and {u. } be any subnet of {y,}. By Remark 2.30, there exists a
subnet {1} of {1o} such that {p,7} w*-converges to p for some invariant mean p

on B(S). We know, by Proposition 3.7, that 7,z = Pz. Since the net {7, ,z} C
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co{Tsx : s € S}, itis bounded. Then, by Proposition 2.45, there exists a subnet { .., }
of {114} such that {7, aﬁx} A-converges to some xy € C. Lemma 3.8 guarantees that
xo € Fiz(8). We claim that o = T,z (= Px). So, for every subnet {1} of {tta},
there exists a subnet {ia, } of {11 } such that {7, x} A-converges to Px. By Remark
2.46 (i), {T,,,x} A-converges to Px.

To show zy = T}z, we define

Tuaﬂx = argmin{y — Mﬁs(dz(Tssoxv Yy))}

and split the proof into three steps.

Step 1. 7),,, xEco{T$ S %= S0}
Suppose T,,, « R ¢ co{Tsx : s = so}, by (2.3),

& (Tyso, T, ) > d*(Tyso®, Ty, )—l—d2( oy T T, a:)
for each s € S where 7 : C' — ¢o{Tsx : s = s¢} is the projection mapping. Thus

T NCRVE S x)) > oy (B (Tosow, 7T, T ,2)) —i—dz(Tua z, 1), x)

This impossiblity shows that T}, ;4 € Co{Tx : 5 7% So}rso-

Step 2. limg d<TMaB:'U7 Ty, < G

If this does not hold, there must be some 77 > () so that for each [, there exists
B > [ satisfying d(7},, T (. ) > n. Pute = L. Since the asymptotically invariant
net {us} satisfies (3.3), there exists [y such that

Hhas, (d2(Tsx,Tﬂaﬁx)) — ftay, (A (Tyso, T, )) <e€

for each (8 = f,.
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We suppose first that jio, (d*(Tsse, T, , ©)) < Hayy (dZ(TSx,TuaB/ r)). Set
0Os

O 0

Ty , Ty, , T
w = " 5 % By (CN) inequality, the following inequalities hold for each s € S:
2 1 1 1 5
d“(Tsx,w) < 2d (Tsx, Tua e 2d (Ts%gd ;i ,x) = —d (Tuaﬁlm,Tuaﬂ, )
0 0 0 0
< (T, T.. )+ d Ty To B) 2
= 2 ( z, 224 / 5 sL, “aﬁé T Z
Therefore
1 1 n>
< Z i _
golufaﬁ/o (w> — 290“0‘5(/) (T#aﬁ() x) + 2(10/»‘0456 (T#aﬁ{) '/”U) 4
1 1 Eud TR
< 590/104[36 (TMaB(/) ':C) + §ﬂa665 (d (TSSO‘T THOA (/)x)) + 5 - Z
< P Tt )+ 2L =g (T 2)
— SDNaﬁ(/) #aﬁéx 2 4 o @Naﬁ(/) #aﬁéx 9

contradicting to the argminimality of 7}, g x. For another case, we can show in the same
way that pio, (d°(Tyso, w)) < fia,, (A*(Tos@, Ty, )) for some w which also leads
Os Os

to a contradiction.

Step 3. xg = T),x.

We suppose on the contrary and let ) := d(x,T,z) > 0, = [Tz, 2] and 7;
be the projection mapping onto /. Since {7z : s € S} is bounded, there exists M > 0
such that d(T,x, m;(Tsz)) < M forall s € S. Set Ny > (MM and p = 1.

Suppose there exists s € S such that d(7;(Tsx), xo) > 2p for all s = s5. We
know, by Step 1, that T, = ,v € o{Tix 2 s 7 sof. Let A= {y € C : d(m;(y), x0) >
2p}. We observe, by using property (N), that A is convex and

co{T.x: 8% s0} CAC{yeC:dm(y),z0) > 2p}.
Thus d(m;(1,,,%), z0) = 2p. By Step 2 and the nonexpansiveness of 77,

lim d (717

Hog

x),wI(T#%x)) = liénd(TM z T“aa ) 0.

Choose Sy so that d(m (T, @), 71(1p,, 7)) < pforallﬁ Bo. Thus d(m;(T},, @), zo) >
p forall 5 = 3. But then =y ¢ co{7), = Bo} which contradicts to the fact that
xg 1s the A— limit of {Tuaﬁx}.
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Thus there must be a subnet {s'} of S such that s’ > s for all s and

2n
d(my(Toz), 70) < 2p = —1 35
(ri(T) 0) < 20 = 65)
for all s’. Hence
2n
d(ﬂ'I(Tsll’), T;,T) =n— d(ﬂ'](Ts/LL’), SL’O) > 5=, W (36)
0

By N, satisfies 5Ngn? > 4nM + 4n?, we have

,_a
5Ny 5Ng

(3.7)
From (3.5), (3.6) and (3.7),

An? on \’
d2(7TI(TS’$)>Tu‘T) >t — g (_n)

> 2d(wo, 7 (Tyx))d(Tyx,m(Tex)) + dQ(ZIZ'Q,WI(Ts/{L')).
Using (2.3),

& (Tox, Tyx) > d*(mp(Tyx), Tyx) + d*(mr(Tez), Tox)
> d*(zo, 11 (Tyx)) + 2d(zo, 71 (Tyx))d(Tyz, 71 (Tyx))
+d?* (7 (Ty ), Tyx)
= (d(zo, m1(Tyz)) + d(Tyz, 71 (Tyx)))?
> d*(Tyx, o)

for all &'. Since the points x and 7,2 belong to the set Fix(8), the nets {d*(Tsz, xo)}
and {d*(Tsz,T,x)} are decreasing. So lim, d?(Tsz, xo) and limg d*(Tsx, T,z) exist.
Hence ¢, (T,x) = lim; d*(Tsx, T,x) = limgy d*(Tyx, Tyx) = py(d®(Tyx, T,x)) >
ps (2 (Tyx, x0)) = limy &*(Tyx,x0) = limg d*(Tsx, z0) = ¢u(x0), a contradiction.

Thus ¢ = T),x. [l

It is an interesting open problem to determine whether Theorem 3.9 remains valid

when the semigroup is amenable but not commutative.
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3.2 Applications

In this section, we consider the applications of Theorem 3.9 on semigroups N and [0, 0o)

under the operation + (the usual addition).

Proposition 3.10. Let C' be a closed convex subset of a complete CAT(0) space X and
T : C — C be a nonexpansive mapping with Fix(T) # 0. Let S =N, 8§ = {T" : n €
S}, A =NorR" and By > 0 be such that Y, s Brxe = 1 for all X € A. Suppose for
allk € S,

lim By, =0 (3.8)
A—00
and for eachm € S,
Algl(}okz |Bae — Bage—m)| = 0. (3.9)

For any f = (ag,a1,...) € B(S) let pu\(f) = > 1o Brwax. Then for each x € C,
{T,,,x} A-converges to x, for some x in Fix(T).
In particular, if X is a Hilbert space we have y - I *z converges weakly to x

Sfor some xq in Fix(T).

Proof. Foreachm € S,

(A (f) = palrm )| = ‘ DT Badak = Zﬁ/\kak-i-m‘
k=1

ol
—

m—1 0
< Ballarl + > 1Bk — Bak—mllax|-
k=1 k=m+1

By (3.8) and (3.9) we have lim, . |tx(f) — pa(rmf)| = 0 and this shows that the
net {4} is asymptotically invariant. Let z € C and consider a;, of the form a; =
d?(T*x,y) where y € C. We see that {y,} satisfies (3.3). By Theorem 3.9 we have

{T,,,z} A—converges to =, for some x( in Fiz(T).
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In Hilbert spaces, by a well-known result in probability theory, we know that

o0 oo 2 oo
Zﬁ,\kHTkJC—ZﬁAkaJCH < Zﬁ,\kHTkJE—?JHQ
k=0 k=0 k=0
forally € C. Sowe have T),,x = > 1, ST x. O

Corollary 3.11 (Bailon Ergodic Theorem). Let C be a closed convex subset of a Hilbert
space H and T : C' — C' be a nonexpansive mapping with Fix(T) # 0. Then, for any

xz e (),
1 n
Spr = — E Trx
n
k=1

converges weakly to x, for some xy in Fix(T).

Proof. Let A = Nand put, for A € Aand k € N,

IN

]

B =

S >

k<A
k> A

>

?

The result now follows from Proposition 3.10. [l

Corollary 3.12. [44, Theorem 3.5.1] Let C' be a closed convex subset of a Hilbert space
HandT : C — C be a nonexpansive mapping with Fiz(T) # 0. Then, for any x € C,

Srx = (1 —=r) Zrkax
k=1

converges weakly to xq for some xy in Fix(T) asr 1 1.

Proof. Let A =R and put, for A\ € Aand k € N,

(A—DF
Bk = TN
Taking r = %, Proposition 3.10 implies the desired result. L4

Now we consider the semigroup S = [0, 00). Let C be a closed convex subset of
a Hilbert space H. A family 8 = {T'(s) : s € S} is called a continuous nonexpansive

semigroup on C' if 8 satisfies the following:
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(i) T'(s) : C — C'is a nonexpansive mapping forall s € S,
(i) T(t+s)x=T{)T(s)x forallz € C'and t,s € S,
(iii) for each x € C, the mapping s — T'(s)z is continuous, and
(iv) T(0)x =z forall x € C.

Proposition 3.13. Let C be a closed convex subset of a Hilbert space H. Let S = [0, c0),
8§ = {T'(s) : s € S} a continuous nonexpansive semigroup on C with Fixz(8) # 0,
A = R" and gy a density function on S, i.e., gx > 0 and [, gr(s)ds = 1 forall X € A.

Suppose g, satisfies the following properties: for each h € S,

lim g)(s) =0 (3.10)
A—00
uniformly on [0, h] and
lim lgr(s) — ga(s — h)|ds = 0. (3.11)
A—00 h
Then, for any x € C,
/ gr(8)T(s)xds
0

converges weakly to some xy € Fiz(8) as A — oo.

Proof. For f € B(S) we define 11x(f) = [~ ga(s)f(s)ds for all A > 0. Thus p, is a

mean on B(S). For any h € S we consider

() =mhl = | [ @ s = ["an6sts+ mas

< [ ln@lrlds + [ o) = (s - milFE)ds

By (3.10) and (3.11), limy |px(f) — pa(rnf)| = 0. So {a} is asymptotically invariant.
Foreachy € C, let f(s) = |ly — T'(s)z||>. We see that {y,} satisfies (3.3). For each
x € C' we know that

/000 gx(s) /000 gr(s)T(s)wds — T(s)tzdS < /OOO o (8)|ly — T(s)z|*ds

forall y € C. Thus

T = /000 ga(s)T'(s)xds.

By using Theorem 3.9, we can conclude the result. []
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Corollary 3.14. [44, Theorem 3.5.2] Let C' be a closed convex subset of a Hilbert space
H. Suppose S = [0,00) and 8§ = {T'(s) : s € S} is a continuous nonexpansive
semigroup on C with F(8) # 0. Then, for any x € C,

1
S,\x:—/ T(s)xds
A Jo

converges weakly to some xo € Fix(8) as A — oc.

Proof. Let A = Rt and put, for A\ € Aand s € S, g\(s) = %X[OV\]- The result now

follows from Proposition 3.13. [

Corollary 3.15. [44, Theorem 3.5.3] Let C' be a closed convex subset of a Hilbert space
H. Suppose S = [0,00) and 8§ = {T'(s) : s € S} is a continuous nonexpansive
semigroup on C with F(8) # 0. Then, for any © € C,

7’/ e T (s)xds
0

converges weakly to some xy € Fixz(8) asr | 0.

Proof. Let A = Rt and put, for A\ € Aand s € S, g\(s) = %e‘is. Again we can then

apply Proposition 3.13 by taking r» = % 0

By using Lemma 3.1 we can obtain a strong convergence theorem on Hilbert spaces

stated as Theorem 3.17 below.

Proposition 3.16. Let C be a closed convex subset of a Hilbert space H andT : C — C
be a nonexpansive mapping with F(T) # 0. Given x € C and set r = r(C,{T™z}).
For eachn € N, define
I, := {p = {Bnk}kzn C [07 1] : Zﬁnk = 1}
k>n

and

Vo= sup > Buil| The — 2, ||

pelln k>n

where T,, = Z,Qn BT x. Then V = lim,_oo V,, = 72.



38

Proof. Let z € A(C,{T"z}). We note, by Remark 2.43 (ii), that z € F(T). Given
e > 0, choose n. € Nsuch that |77z — z|| < r + ¢ forall n > n.. Fix n > n. and let
P = {Bnk}rzn € IL,. Thus

S Bkl Tho = Tul? <37 Bul|TFz — 2|2 < (r +€)?.

k>n k>n
So
Vo= sup > Buil|THz — Znl|* < (r +€)°.

pelln 15
Letting n — oo, V = lim,,_,o, V;, < (r + €)? for any € > 0. Hence V' < r2.
Next, we show r2 < V. Indeed, since z € co{T%z : k > n} for all n € N, there
exists a sequence {7, } with T, € co{T*z : k > n} for eachn and T,, — 2 as n — cc.

Rutaysd | k>n BT x. Since {T™x} is bounded, there exists M > 0 such that
|T*z — Z,|| + | T%2 — 2|| < M.

For each ¢ > 0, choose n. € Nsuch that |7, — z|| < e,V, <V +eforalln > n.,

and | T*z — z|| > r — ¢ for all k > n.. Thus for any n > n.,

> BullThe = Zal? — |1 T2 — 2|

k>n

= Y BulllTz =2l — | T — 2|||(|1T*2 — Zall + | T2 — 2]))

k>n

= 3 Bul®a — 2N (T2 = Zall + T2 — 2]) < M.

k>n

Hence

(r—e)? < Y BulTFz — 2|

k>n

= ZﬁnkHTkx_Z||2+Zﬁnk||Tkx_fn||2_ZﬁnkHTkx_fn”z
k>n k>n k>n

< Vit Y Bull Tz — 7| = | Tz — 2’| < V + 2 +eM.

k>n

So (r—¢e)? <V +e+eM forany € > 0. This implies r*> < V. O
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Theorem 3.17. Let C' be a closed convex subset of a Hilbert space H and T : C — C
be a nonexpansive mapping with F(T) # 0. Suppose 11,,,V and T,, is defined as in

Proposition 3.16. If the sequence {T,,} satisfies
- ko = 12) —
Tim (;@nkHT 2 —Tl?) =V, (3.12)

then {Z,} converges (strongly) to the unique asymptotic center z € F(T).

Proof. Suppose for some ¢ > 0, there exists a subsequence {7, } of {Z,} such that

|Tn, — 2|| > e foralll € N. For each y € C' and n € N define
en(y) ==Y Burl Tz — y|I*.
k>n

Let0 <0 < % and z € A(C,{T*z}). By (3.12), we choose n; such that
2 —0=V—-6<@n@n) <V+i=r*+4

for all n; > ns and
|T*z — 2|2 <r? + 4

Enl +z

forall k& > ns. Fix [ > ns and let w = —L—.

By the Parallelogram law, we have for

each k > ny,

1
1T — wl? =

v, 1 L.
ST = B P+ ST = 212 = 7, — 2P,

4

Hence

1 1 1
P, (W) < 5(7“2 +9)+ 5(7“2 +0) — 162 L& 1k bz R

This contradicts to the minimality of ¢, (Z,,) (using Lemma 3.1). Hence {Z,, } con-

verges to z for all subsequence {7, } of {Z,,}. We now obtain the desired result. [



