
Chapter 3

∆− Convergence Theorems for Nonexpansive

Semigroups on CAT(0) Spaces

The aim of this chapter is to prove the nonlinear ergodic theorems in the framework

of CAT(0) spaces. The first section contains some preliminary results and the main

theorem. We also show its applications in the second section. All of results in this

chapter have been published in the paper: W. Anakkamatee and S. Dhompongsa, Rodé's

theorem on common fixed points of semigroup of nonexpansive mappings in CAT(0)

spaces, Fixed Point Theory Appl., 2011, 2011:34 [1].

3.1 ∆− Convergence Theorems

In 2011, Kakavandi and Amini [23] first introduced the notation Tµ for the CAT(0) space

setting. Here is a mild generalization of their result (see [23, Lemma 2.1]).

Lemma 3.1. Let S be a semigroup and C be a closed convex subset of a CAT(0) space

X and µ be a mean on B(S). For a bounded function h : S → C, define

φµ(y) := µs(d
2(h(s), y))

for all y ∈ X. Then φµ attains its unique minimum at a point of co{h(s) : s ∈ S}.

In this case, we put

Tµ(h) := argmin{y 7→ µs(d
2(h(s), y))}, (3.1)

and for h(s) of the form Tsxwe write Tµ(h) shortly as Tµx. We have already mentioned

in Chapter 1 that for a Hilbert space X , we can find the unique element x0 ∈ C such
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that

µs⟨Tsx, y⟩ = ⟨x0, y⟩ (3.2)

for all y ∈ X . The following is our observation for Hilbert spaces.

Remark 3.2. If X is a Hilbert space, then

(i) Tµx = x0 where x0 verifies (3.2), and

(ii) ∥x0∥2 = supy∈X(2⟨x0, y⟩ − ∥y∥2).

Proof. (i): Let x0 be such that µs⟨Tsx, y⟩ = ⟨x0, y⟩ for all y ∈ X . We have φµ(x0) =

φµ(0)+∥x0∥2−2⟨x0, x0⟩ = φµ(0)−∥x0∥2 ≤ φµ(0)+∥Tµx∥2−2⟨x0, Tµx⟩ = φµ(Tµx).

Therefore x0 = Tµx.

(ii): For any x, y ∈ X , we know that ∥Tsx−y∥2 = ∥Tsx∥2−2⟨Tsx, y⟩+∥y∥2. By the

linearity of µ and (3.2), we have µs(∥Tsx−y∥2) = µs(∥Tsx∥2)−2⟨x0, y⟩+∥y∥2. Thus

infy∈X µs(∥Tsx−y∥2) = µs(∥Tsx∥2)−supy∈X(2⟨x0, y⟩−∥y∥2). On the other hand, by

(i), infy∈X µs(∥Tsx−y∥2) = µs(∥Tsx−x0∥2) = µs(∥Tsx∥2)−2µs⟨Tsx, x0⟩+∥x0∥2 =

µs(∥Tsx∥2)− ∥x0∥2. Hence ∥x0∥2 = supy∈X(2⟨x0, y⟩ − ∥y∥2).

Fixed point theorems for nonexpansive semigroups on CAT(0) spaces, stated below,

was also proved by Kakavandi and Amini [23].

Lemma 3.3. [23, Lemma 3.1] If C is a closed convex subset of a CAT(0) spaceX and

T : C → C is a nonexpansive mapping, then Fix(T ) is closed and convex.

Lemma 3.4. [23, Proposition 3.2] Let C be a closed convex subset of a CAT(0) space

X and S an amenable semigroup. If S = {Ts : s ∈ S} is a nonexpansive semigroup on

C then the following conditions are equivalent:

(i) {Tsx : s ∈ S} is bounded for some x ∈ C;

(ii) {Tsx : s ∈ S} is bounded for all x ∈ C;

(iii) Fix(S) ̸= ∅.

Proposition 3.5. [23, Theorem 3.3] Let C be a closed convex subset of a complete

CAT(0) space X , S an amenable semigroup, S = {Ts : s ∈ S} a nonexpansive semi-

group on C with Fix(S) ̸= ∅. Then Tµx ∈ Fix(S) for any invariant mean µ on B(S).
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We now let S be a commutative semigroup and define a relation < on S by s < t if

s = t or there exists u ∈ S such that s = ut. When s < t but s ̸= t, we simply write

s ≻ t. We can see that S is a directed set with the relation <. Examples of such S are

the usual ordered sets (N,+,≥) and ([0,∞),+,≥).

Proposition 3.6. [23, Proposition 4.1] Let C be a closed convex subset of a complete

CAT(0) space X , S a commutative semigroup, S = {Ts : s ∈ S} a nonexpansive

semigroup on C with Fix(S) ̸= ∅. Then, for each x ∈ C, the net {πTsx}s∈S converges

to a point Px in Fix(S), where π = πFix(S) : C → Fix(S) is the projection mapping.

By using the above results, we can obtain a useful property of Tµ.

Proposition 3.7. Let C be a closed convex subset of a complete CAT(0) space X , S

a commutative semigroup, S = {Ts : s ∈ S} a nonexpansive semigroup on C with

Fix(S) ̸= ∅. Let π be the projection mapping onto Fix(S). Then, for any invariant

mean µ on B(S), Tµx = lims πTsx = Px for all x ∈ C.

Proof. Fix x ∈ C and let ε > 0. By Proposition 3.6, there exists s0 ∈ S such that

d(πTsx, Px) < ε for all s < s0. We know, by Proposition 3.5, that Tµx ∈ Fix(S).

Thus

d(Px, Tsx) ≤ d(Px, πTsx) + d(πTsx, Tsx)

< d(πTsx, Tsx) + ε

≤ d(Tµx, Tsx) + ε

for all s < s0. Since {Tsx : s ∈ S} is bounded by Lemma 3.4, there existsM > 0 such

that d(Tµx, Tsx) < M for all s ∈ S. Therefore d2(Px, Tsx) ≤ d2(Tµx, Tsx)+2Mε+ε2

for each s < s0. Since µ is invariant, we have

µs(d
2(Px, Tsx)) = µs(d

2(Px, Tss0x))

≤ µs(d
2(Tµx, Tss0x)) + 2Mε+ ε2

= µs(d
2(Tµx, Tsx)) + 2Mε+ ε2

for any ε > 0. By the argminimality of Tµx (see Lemma 3.1), Tµx = Px.
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In order to obtain the Rodé's Theorem (Theorem 1.4) in the framework of CAT(0)

spaces, we need to restrict the asymptotically invariant net of means {µα} to those that

satisfy an additional condition: for each t ∈ S,

µαs(d
2(Tsx, y))− µαs(d

2(Tstx, y)) → 0 uniformly for y ∈ C. (3.3)

In theHilbert space setting, condition (3.3) is not required because theweak convergence

can obtain from (3.2) directly.

Lemma 3.8. Let X be a complete CAT(0) space, C a closed convex subset of X , S

a commutative semigroup, and S = {Ts : s ∈ S} a nonexpansive semigroup on C

with Fix(S) ̸= ∅. Suppose {µα} is an asymptotically invariant net of means on B(S)

satisfying condition (3.3). If {Tµαx} ∆-converges to x0, then x0 ∈ Fix(S).

Proof. We first show that, for each r ∈ S,

lim
α

d(Tµαx, TrTµαx) = 0. (3.4)

If this is not the case, there must be some δ > 0 so that for each α, there exists α′ ≻ α

satisfying d(Tµα′x, TrTµα′x) ≥ δ. Put ε = δ2

2
. Since the asymptotically invariant net

{µα} satisfies (3.3), there exists α0 for which for each α < α0,

φµα(TrTµαx) = µαs(d
2(Tsx, TrTµαx))

< µαs(d
2(TrTsx, TrTµαx)) + ε

≤ µαs(d
2(Tsx, Tµαx)) + ε = φµα(Tµαx) + ε.

Let w be the midpoint of Tµα′
0
x and TrTµα′

0
x. By (CN) inequality, the following in-

equalities hold for each s ∈ S:

d2(Tsx,w) ≤ 1

2
d2(Tsx, Tµα′

0
x) +

1

2
d2(Tsx, TrTµα′

0
x)− 1

4
d2(Tµα′

0
x, TrTµα′

0
x)

≤ 1

2
d2(Tsx, Tµα′

0
x) +

1

2
d2(Tsx, TrTµα′

0
x)− δ2

4
.

Therefore

φµα′
0
(w) ≤ 1

2
φµα′

0
(Tµα′

0
x) +

1

2
φµα′

0
(TrTµα′

0
x)− δ2

4

< φµα′
0
(Tµα′

0
x) +

ε

2
− δ2

4
= φµα′

0
(Tµα′

0
x),

which is a contradiction and thus (3.4) holds.
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We show x0 ∈ Fix(S) by supposing on the contrary, i.e., there exists some r ∈

S such that Trx0 ̸= x0, i.e., d(x0, Trx0) := γ > 0. Since {Tµαx} is a subset of a

bounded set co{Tsx : s ∈ S}, we can get an M > 0 so that d(Tµαx, x0) ≤ M for

all α. Let 0 < ε < min{ γ2

16M
, 2M}. From (3.4), there exists α0 with the property that

d(TrTµαx, Tµαx) < ε for all α < α0. Now, for each α < α0,

d(Tµαx, Trx0) ≤ d(Tµαx, TrTµαx) + d(TrTµαx, Trx0)

< d(Tµαx, x0) + ε.

Thus

d2(Tµαx, Trx0) < d2(Tµαx, x0) + 2εd(Tµαx, x0) + ε2.

Using the (CN) inequality, we see that

d2
(
Tµαx,

x0 ⊕ Trx0

2

)
≤ 1

2
d2(Tµαx, x0) +

1

2
d2(Tµαx, Trx0)−

1

4
d2(x0, Trx0)

≤ 1

2
d2(Tµαx, x0) +

1

2
(d2(Tµαx, x0) + 2εM + ε2)− γ2

4

= d2(Tµαx, x0) + εM +
ε2

2
− γ2

4

for all α < α0. Consequently,

lim sup
α

d2
(
Tµαx,

x0 ⊕ Trx0

2

)
≤ lim sup

α
d2(Tµαx, x0) + εM +

ε2

2
− γ2

4

< lim sup
α

d2(Tµαx, x0),

contradicting to the fact that {x0} = A(C, {Tµαx}). Therefore x0 ∈ F (S).

Theorem 3.9. LetX be a complete CAT(0) space with Property (N), C a closed convex

subset of X , S a commutative semigroup, and S = {Ts : s ∈ S} a nonexpansive

semigroup on C with Fix(S) ̸= ∅. Suppose {µα} is an asymptotically invariant net of

means onB(S) satisfying condition (3.3). Then {Tµαx}∆-converges to Px ∈ F (S) for

all x ∈ C, where Px is defined in Proposition 3.6.

Proof. Let x ∈ C and {µα′} be any subnet of {µα}. By Remark 2.30, there exists a

subnet {µα′′} of {µα′} such that {µα′′} w*-converges to µ for some invariant mean µ

on B(S). We know, by Proposition 3.7, that Tµx = Px. Since the net {Tµα′′x} ⊂
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co{Tsx : s ∈ S}, it is bounded. Then, by Proposition 2.45, there exists a subnet {µαβ
}

of {µα′′} such that {Tµαβ
x} ∆-converges to some x0 ∈ C. Lemma 3.8 guarantees that

x0 ∈ Fix(S). We claim that x0 = Tµx (= Px). So, for every subnet {µα′} of {µα},

there exists a subnet {µαβ
} of {µα′} such that {Tµαβ

x}∆-converges to Px. By Remark

2.46 (ii), {Tµαx} ∆-converges to Px.

To show x0 = Tµx, we define

Tµαβ
x := argmin{y 7→ µβs(d

2(Tss0x, y))}

and split the proof into three steps.

Step 1. Tµαβ
x ∈ co{Tsx : s < s0}.

Suppose Tµαβ
x /∈ co{Tsx : s < s0}, by (2.3),

d2(Tss0x, Tµαβ
x) ≥ d2(Tss0x, πTµαβ

x) + d2(Tµαβ
x, πTµαβ

x)

for each s ∈ S where π : C → co{Tsx : s < s0} is the projection mapping. Thus

µαβs
(d2(Tss0x, Tµαβ

x)) ≥ µαβs
(d2(Tss0x, πTµαβ

x)) + d2(Tµαβ
x, πTµαβ

x)

> µαβs
(d2(Tss0x, πTµαβ

x)).

This impossiblity shows that Tµαβ
x ∈ co{Tsx : s < s0}s<s0 .

Step 2. limβ d(Tµαβ
x, Tµαβ

x) = 0.

If this does not hold, there must be some η > 0 so that for each β, there exists

β′ ≻ β satisfying d(Tµαβ′
x, Tµαβ′

x) ≥ η. Put ε = η2

2
. Since the asymptotically invariant

net {µβ} satisfies (3.3), there exists β0 such that∣∣∣µαβs
(d2(Tsx, Tµαβ

x))− µαβs
(d2(Tss0x, Tµαβ

x))
∣∣∣ < ε

for each β < β0.



32

We suppose first that µαβ′0s
(d2(Tss0x, Tµα

β′0
x)) ≤ µαβ′0s

(d2(Tsx, Tµα
β′0
x)). Set

w =
Tµα

β′0
x⊕Tµα

β′0
x

2
. By (CN) inequality, the following inequalities hold for each s ∈ S:

d2(Tsx,w) ≤ 1

2
d2(Tsx, Tµα

β′0
x) +

1

2
d2(Tsx, Tµα

β′0
x)− 1

4
d2(Tµα

β′0
x, Tµα

β′0
x)

≤ 1

2
d2(Tsx, Tµα

β′0
x) +

1

2
d2(Tsx, Tµα

β′0
x)− η2

4
.

Therefore

φµα
β′0
(w) ≤ 1

2
φµα

β′0
(Tµα

β′0
x) +

1

2
φµα

β′0
(Tµα

β′0
x)− η2

4

<
1

2
φµα

β′0
(Tµα

β′0
x) +

1

2
µαβ′0s

(d2(Tss0x, Tµα
β′0
x)) +

ε

2
− η2

4

≤ φµα
β′0
(Tµα

β′0
x) +

ε

2
− η2

4
= φµα

β′0
(Tµα

β′0
x),

contradicting to the argminimality of Tµα
β′0
x. For another case, we can show in the same

way that µαβ′0s
(d2(Tss0x,w)) < µαβ′0s

(d2(Tss0x, Tµα
β′0
x)) for some w which also leads

to a contradiction.

Step 3. x0 = Tµx.

We suppose on the contrary and let η := d(x0, Tµx) > 0, I = [Tµx, x0] and πI

be the projection mapping onto I . Since {Tsx : s ∈ S} is bounded, there exists M > 0

such that d(Tsx, πI(Tsx)) ≤ M for all s ∈ S. Set N0 >
4(M+η)

5η
and ρ = η

5N0
.

Suppose there exists s0 ∈ S such that d(πI(Tsx), x0) ≥ 2ρ for all s < s0. We

know, by Step 1, that Tµαβ
x ∈ co{Tsx : s < s0}. Let A := {y ∈ C : d(πI(y), x0) >

2ρ}. We observe, by using property (N), that A is convex and

co{Tsx : s < s0} ⊂ A ⊂ {y ∈ C : d(πI(y), x0) ≥ 2ρ}.

Thus d(πI(Tµαβ
x), x0) ≥ 2ρ. By Step 2 and the nonexpansiveness of πI ,

lim
β

d(πI(Tµαβ
x), πI(Tµαβ

x)) = lim
β

d(Tµαβ
x, Tµαβ

x) = 0.

Choose β0 so that d(πI(Tµαβ
x), πI(Tµαβ

x)) < ρ for all β < β0. Thus d(πI(Tµαβ
x), x0) >

ρ for all β < β0. But then x0 /∈ co{Tµαβ
x : β < β0} which contradicts to the fact that

x0 is the ∆− limit of {Tµαβ
x}.
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Thus there must be a subnet {s′} of S such that s′ ≻ s for all s and

d(πI(Ts′x), x0) < 2ρ =
2η

5N0

(3.5)

for all s′. Hence

d(πI(Ts′x), Tµx) = η − d(πI(Ts′x), x0) > η − 2η

5N0

. (3.6)

By N0 satisfies 5N0η
2 > 4ηM + 4η2, we have

η2 − 4η2

5N0

>
4ηM

5N0

. (3.7)

From (3.5), (3.6) and (3.7),

d2(πI(Ts′x), Tµx) > η2 − 4η2

5N0

+

(
2η

5N0

)2

>
4ηM

5N0

+

(
2η

5N0

)2

> 2d(x0, πI(Ts′x))d(Ts′x, πI(Ts′x)) + d2(x0, πI(Ts′x)).

Using (2.3),

d2(Ts′x, Tµx) ≥ d2(πI(Ts′x), Tµx) + d2(πI(Ts′x), Ts′x)

> d2(x0, πI(Ts′x)) + 2d(x0, πI(Ts′x))d(Ts′x, πI(Ts′x))

+d2(πI(Ts′x), Ts′x)

= (d(x0, πI(Ts′x)) + d(Ts′x, πI(Ts′x)))
2

≥ d2(Ts′x, x0)

for all s′. Since the points x0 and Tµx belong to the set Fix(S), the nets {d2(Tsx, x0)}

and {d2(Tsx, Tµx)} are decreasing. So lims d
2(Tsx, x0) and lims d

2(Tsx, Tµx) exist.

Hence φµ(Tµx) = lims d
2(Tsx, Tµx) = lims′ d

2(Ts′x, Tµx) = µs′(d
2(Ts′x, Tµx)) ≥

µs′(d
2(Ts′x, x0)) = lims′ d

2(Ts′x, x0) = lims d
2(Tsx, x0) = φµ(x0), a contradiction.

Thus x0 = Tµx.

It is an interesting open problem to determine whether Theorem 3.9 remains valid

when the semigroup is amenable but not commutative.
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3.2 Applications

In this section, we consider the applications of Theorem 3.9 on semigroupsN and [0,∞)

under the operation + (the usual addition).

Proposition 3.10. Let C be a closed convex subset of a complete CAT(0) space X and

T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Let S = N, S = {T n : n ∈

S}, Λ = N or R+ and βλk ≥ 0 be such that
∑

k∈S βλk = 1 for all λ ∈ Λ. Suppose for

all k ∈ S,

lim
λ→∞

βλk = 0 (3.8)

and for each m ∈ S,

lim
λ→∞

∞∑
k=m

|βλk − βλ(k−m)| = 0. (3.9)

For any f = (a0, a1, ...) ∈ B(S) let µλ(f) =
∑∞

k=0 βλkak. Then for each x ∈ C,

{Tµλ
x} ∆-converges to x0 for some x0 in Fix(T ).

In particular, ifX is a Hilbert space we have
∑∞

k=0 βλkT
kx converges weakly to x0

for some x0 in Fix(T ).

Proof. For each m ∈ S,

|µλ(f)− µλ(rmf)| =
∣∣∣ ∞∑
k=1

βλkak −
∞∑
k=1

βλkak+m

∣∣∣
≤

m−1∑
k=1

|βλk||ak|+
∞∑

k=m+1

|βλk − βλ(k−m)||ak|.

By (3.8) and (3.9) we have limλ→∞ |µλ(f) − µλ(rmf)| = 0 and this shows that the

net {µλ} is asymptotically invariant. Let x ∈ C and consider ak of the form ak =

d2(T kx, y) where y ∈ C. We see that {µλ} satisfies (3.3). By Theorem 3.9 we have

{Tµλ
x} ∆−converges to x0 for some x0 in Fix(T ).
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In Hilbert spaces, by a well-known result in probability theory, we know that

∞∑
k=0

βλk

∥∥∥T kx−
∞∑
k=0

βλkT
kx
∥∥∥2 ≤ ∞∑

k=0

βλk∥T kx− y∥2

for all y ∈ C. So we have Tµλ
x =

∑∞
k=1 βλkT

kx.

Corollary 3.11 (Bailon Ergodic Theorem). LetC be a closed convex subset of a Hilbert

space H and T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Then, for any

x ∈ C,

Snx =
1

n

n∑
k=1

T kx

converges weakly to x0 for some x0 in Fix(T ).

Proof. Let Λ = N and put, for λ ∈ Λ and k ∈ N,

βλk =

 1
λ
, k ≤ λ,

0, k > λ.

The result now follows from Proposition 3.10.

Corollary 3.12. [44, Theorem 3.5.1] LetC be a closed convex subset of a Hilbert space

H and T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Then, for any x ∈ C,

Srx = (1− r)
∞∑
k=1

rkT kx

converges weakly to x0 for some x0 in Fix(T ) as r ↑ 1.

Proof. Let Λ = R+ and put, for λ ∈ Λ and k ∈ N,

βλk =
(λ− 1)k

λk+1
.

Taking r = λ−1
λ
, Proposition 3.10 implies the desired result.

Now we consider the semigroup S = [0,∞). Let C be a closed convex subset of

a Hilbert space H . A family S = {T (s) : s ∈ S} is called a continuous nonexpansive

semigroup on C if S satisfies the following:
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(i) T (s) : C → C is a nonexpansive mapping for all s ∈ S,

(ii) T (t+ s)x = T (t)T (s)x for all x ∈ C and t, s ∈ S,

(iii) for each x ∈ C, the mapping s 7→ T (s)x is continuous, and

(iv) T (0)x = x for all x ∈ C.

Proposition 3.13. LetC be a closed convex subset of aHilbert spaceH . LetS = [0,∞),

S = {T (s) : s ∈ S} a continuous nonexpansive semigroup on C with Fix(S) ̸= ∅,

Λ = R+ and gλ a density function on S, i.e., gλ ≥ 0 and
∫∞
0

gλ(s)ds = 1 for all λ ∈ Λ.

Suppose gλ satisfies the following properties: for each h ∈ S,

lim
λ→∞

gλ(s) = 0 (3.10)

uniformly on [0, h] and

lim
λ→∞

∫ ∞

h

|gλ(s)− gλ(s− h)|ds = 0. (3.11)

Then, for any x ∈ C, ∫ ∞

0

gλ(s)T (s)xds

converges weakly to some x0 ∈ Fix(S) as λ → ∞.

Proof. For f ∈ B(S) we define µλ(f) =
∫∞
0

gλ(s)f(s)ds for all λ > 0. Thus µλ is a

mean on B(S). For any h ∈ S we consider

|µλ(f)− µλ(rhf)| =
∣∣∣ ∫ ∞

0

gλ(s)f(s)ds−
∫ ∞

0

gλ(s)f(s+ h)ds
∣∣∣

≤
∫ h

0

|gλ(s)||f(s)|ds+
∫ ∞

h

|gλ(s)− gλ(s− h)||f(s)|ds.

By (3.10) and (3.11), limλ |µλ(f)− µλ(rhf)| = 0. So {µλ} is asymptotically invariant.

For each y ∈ C, let f(s) = ∥y − T (s)x∥2. We see that {µλ} satisfies (3.3). For each

x ∈ C we know that∫ ∞

0

gλ(s)
∥∥∥∫ ∞

0

gλ(s)T (s)xds− T (s)x
∥∥∥2ds ≤ ∫ ∞

0

gλ(s)∥y − T (s)x∥2ds

for all y ∈ C. Thus

Tµλ
x =

∫ ∞

0

gλ(s)T (s)xds.

By using Theorem 3.9, we can conclude the result.
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Corollary 3.14. [44, Theorem 3.5.2] LetC be a closed convex subset of a Hilbert space

H . Suppose S = [0,∞) and S = {T (s) : s ∈ S} is a continuous nonexpansive

semigroup on C with F (S) ̸= ∅. Then, for any x ∈ C,

Sλx =
1

λ

∫ λ

0

T (s)xds

converges weakly to some x0 ∈ Fix(S) as λ → ∞.

Proof. Let Λ = R+ and put, for λ ∈ Λ and s ∈ S, gλ(s) = 1
λ
χ[0,λ]. The result now

follows from Proposition 3.13.

Corollary 3.15. [44, Theorem 3.5.3] LetC be a closed convex subset of a Hilbert space

H . Suppose S = [0,∞) and S = {T (s) : s ∈ S} is a continuous nonexpansive

semigroup on C with F (S) ̸= ∅. Then, for any x ∈ C,

r

∫ ∞

0

e−rsT (s)xds

converges weakly to some x0 ∈ Fix(S) as r ↓ 0.

Proof. Let Λ = R+ and put, for λ ∈ Λ and s ∈ S, gλ(s) = 1
λ
e−

1
λ
s. Again we can then

apply Proposition 3.13 by taking r = 1
λ
.

By using Lemma 3.1 we can obtain a strong convergence theorem on Hilbert spaces

stated as Theorem 3.17 below.

Proposition 3.16. LetC be a closed convex subset of a Hilbert spaceH and T : C → C

be a nonexpansive mapping with F (T ) ̸= ∅. Given x ∈ C and set r = r(C, {T nx}).

For each n ∈ N, define

Πn :=
{
p = {βnk}k≥n ⊂ [0, 1] :

∑
k≥n

βnk = 1
}

and

Vn := sup
p∈Πn

∑
k≥n

βnk∥T kx− xn∥2

where xn =
∑

k≥n βnkT
kx. Then V := limn→∞ Vn = r2.
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Proof. Let z ∈ A(C, {T nx}). We note, by Remark 2.43 (ii), that z ∈ F (T ). Given

ε > 0, choose nε ∈ N such that ∥T nx− z∥ < r + ε for all n ≥ nε. Fix n ≥ nε and let

p = {βnk}k≥n ∈ Πn. Thus∑
k≥n

βnk∥T kx− xn∥2 ≤
∑
k≥n

βnk∥T kx− z∥2 < (r + ε)2.

So

Vn = sup
p∈Πn

∑
k≥n

βnk∥T kx− xn∥2 < (r + ε)2.

Letting n → ∞, V = limn→∞ Vn ≤ (r + ε)2 for any ε > 0. Hence V ≤ r2.

Next, we show r2 ≤ V . Indeed, since z ∈ co{T kx : k ≥ n} for all n ∈ N, there

exists a sequence {xn} with xn ∈ co{T kx : k ≥ n} for each n and xn → z as n → ∞.

Put xn =
∑

k≥n βnkT
kx. Since {T nx} is bounded, there exists M > 0 such that

∥T kx− xn∥+ ∥T kx− z∥ ≤ M.

For each ε > 0, choose nε ∈ N such that ∥xn − z∥ < ε , Vn < V + ε for all n ≥ nε,

and ∥T kx− z∥ > r − ε for all k ≥ nε. Thus for any n ≥ nε,∑
k≥n

βnk|∥T kx− xn∥2 − ∥T kx− z∥2|

=
∑
k≥n

βnk|∥T kx− xn∥ − ∥T kx− z∥|(∥T kx− xn∥+ ∥T kx− z∥)

=
∑
k≥n

βnk∥xn − z∥(∥T kx− xn∥+ ∥T kx− z∥) ≤ εM.

Hence

(r − ε)2 <
∑
k≥n

βnk∥T kx− z∥2

=
∑
k≥n

βnk∥T kx− z∥2 +
∑
k≥n

βnk∥T kx− xn∥2 −
∑
k≥n

βnk∥T kx− xn∥2

≤ Vn +
∑
k≥n

βnk|∥T kx− xn∥2 − ∥T kx− z∥2| < V + ε+ εM.

So (r − ε)2 < V + ε+ εM for any ε > 0. This implies r2 ≤ V .
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Theorem 3.17. Let C be a closed convex subset of a Hilbert space H and T : C → C

be a nonexpansive mapping with F (T ) ̸= ∅. Suppose Πn, V and xn is defined as in

Proposition 3.16. If the sequence {xn} satisfies

lim
n→∞

(∑
k≥n

βnk∥T kx− xn∥2
)
= V, (3.12)

then {xn} converges (strongly) to the unique asymptotic center z ∈ F (T ).

Proof. Suppose for some ε > 0, there exists a subsequence {xnl
} of {xn} such that

∥xnl
− z∥ ≥ ε for all l ∈ N. For each y ∈ C and n ∈ N define

φn(y) :=
∑
k≥n

βnk∥T kx− y∥2.

Let 0 < δ < ε2

8
and z ∈ A(C, {T kx}). By (3.12), we choose nδ such that

r2 − δ = V − δ < φnl
(xnl

) < V + δ = r2 + δ

for all nl ≥ nδ and

∥T kx− z∥2 < r2 + δ

for all k ≥ nδ. Fix l ≥ nδ and let w =
xnl

+z

2
. By the Parallelogram law, we have for

each k ≥ nl,

∥T kx− w∥2 = 1

2
∥T kx− xnl

∥2 + 1

2
∥T kx− z∥2 − 1

4
∥xnl

− z∥2.

Hence

φnl
(w) <

1

2
(r2 + δ) +

1

2
(r2 + δ)− 1

4
ε2 < r2 − δ < φnl

(xnl
).

This contradicts to the minimality of φnl
(xnl

) (using Lemma 3.1). Hence {xn′} con-

verges to z for all subsequence {xn′} of {xn}. We now obtain the desired result.


