Chapter 4
Approximation of a Common Fixed Point of
Nonexpansive Mappings on Convex

Metric Spaces

We introduce the iteration method, called the modified Ishikawa iteration method, for
approximating a common fixed point of a family of single-valued nonexpansive map-
pings and a multivalued nonexpansive mapping. We present the results shown for
strictly convex Banach spaces in Section 4.1 and for CAT(0) spaces in section 4.2. We
publish the results of this chapter in the paper: W. Anakkamatee and S. Dhompongsa,
An approximation of a common fixed point of nonexpansive mappings on convex metric
spaces, Fixed Point Theory Appl., 2012, 2012:112 [2].

Along Chapter 4 and Chapter 5, we use the notation ¢ to stand for a single-valued

mapping and 7" for a multivalued mapping.

4.1 Strictly Convex Banach Spaces
The following result is a generalization of a result of [35, Lemma 1.3].

Lemma 4.1. Let C be a compact subset of a strictly convex Banach space X, let {«,,}
be a sequence of real numbers such that o, € [a,b] C (0,1) foralln € N, and let {u,},

{vn} be sequences of C satisfying, for some ¢ > 0,
(l) hm Supn—>oo ||UnH S G

(ii) limsup,, . ||v.|l < ¢ and
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(iii) 1im,, o ||onty + (1 — ap) vy, || = ¢
Then lim,,_, ||u, — v,|| = 0.

Proof. We suppose on the contrary that limsup,, . ||u, — v,| # 0. Since C and [a, b]
are compact, there exist subsequences {u,, } of {u,}, {v,, } of {v,,} and {c,, } of {cv,, }
such that limy_, o U, = u, limg_o0 ¥y, = v, limy_,c @, = @ for some u, v € C' with
u # v and for some o € [0, 1]. From (i) and (ii) we have ||u|| = limg_o0 ||un, || < ¢
and ||v|| = limg_, ||vn, || < ¢ Using the strictly convexity of X and (iii), we have
= Tt g ting + (1= )0, )| = e+ (1= @)o]] < affull + (1= @) Jol] < e,

a contradiction. Hence lim,, ., ||u, — v,|| = 0. O

Let C be a nonempty subset of a Banach space X, {t,, : n € N} a family of single-
valued nonexpansive mappings on C,and 7" : C' — F B(C') amultivalued nonexpansive
mapping. Given a sequence of positive numbers {~, } with >~ =, < 1. The sequence

{z,,} of the modified Ishikawa iteration is defined by z; € C, and
Yn = (]- - Bn)xn + 5712717
Tpy1 = (1 - Z?zl 'Yz)xn it Z?:l ’yitiym

where z, € T'x,. Along this thesis we use the notation F' stand for the set of common

4.1)

fixed points of a family of single-valued nonexpansive mappings {¢, : n € N} and a

multivalued nonexpansive mapping T\, i.e., F := ( N3, Fiz(t,)) N Fiz(T).

Remark 4.2. Let K (C') be the set of all nonempty compact subsets of C'. It is well-known
that every closed subset of a compact set is compact. Therefore F'B(C') = K(C) when

C' is compact.

Theorem 4.3. Let C' be a nonempty compact convex subset of a strictly convex Banach
space X, {t, : n € N} a family of single-valued nonexpansive mappings on C, and
T : C — K(C) a multivalued nonexpansive mapping. Suppose F # () and Tp = {p}
Jorall p € F. Given a sequence of positive numbers {,} with > >~ v, < 1 and
{Bn} C la,b] C (0,1). Then the sequence {z,} defined by (4.1) converges strongly to

somev € F.

Proof. We follow the proof of [37, Theorem 3.6] and split the proof into five steps.
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Step 1. lim,,_, ||z, — p|| exists forall p € F":

We first note that ||z, —p|| = dist(z,, Tp) < H(Tz,,Tp) < ||z,—p||. Consider

the following estimates:

20t =Pl <

IN

<

<

Therefore, {||z,

0] exists.

n

(1= 3" %) lzn —pll + 3 lltign — 2l

=1 =1

(1= 3 9) w21+ 3k =
(1- Z%)Hxn ol + (Z%)( (1= B)len = ol + Bullz — )

[n —pH-

—p||} is a bounded decreasing sequence in R and hence lim,,_,, ||z, —

ity Yitiyn

Do i 7%

From Step 1, suppose lim,, ., ||z, — p|| = ¢. We have

i1 Yititn -
| -3
z 17V i=1
< lyn = pll < llzn = pl|.
Thus
lim sup HM pH < limsup ||y, — p|| < limsup ||z, —p|| =c.  (4.2)
n—00 z 174 n—00 n—00

We also have

lim (|z41 — pl|
n—oo

n
Jim (=X ]

1=

tim (1= 3=+ Yo (B )|

i=1 Z 1 Vi

By Lemma 4.1,since 0 < v < > i 7% < Yooy v < 1,

lim
n—0o0

Tp — —~—n

Zz 1/71 Zyn

_1 Vitiyn
Zz lryz
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Step 3. lim,, .. ||z, — 2,| = 0:

From (4.1), we can see that

onss =wll < (1= 3" %) le = wll + > llyn = wll
=1 =1

and hence [z 1 = pll = llen = pll < 325 %i(llyn = pll = [l — pl]). Therefore

|Znt1 — pll = [|lzn — Dl
0 + [|on —pll < llyn —pll
>

i=1 It

and by (4.2) we obtain

o f (2 = pll = [z — 2]
c = hmmf{( = >+ ﬂcn—p}
noe Zi:1 Vi H ”
< liminf||y, — p|| < limsup ||y, — p|| < c.
n—oo

n—oo

Thus ¢ = lim,, o0 |y — pl| = lim,, o0 || (1 — Br) (2 — p) + Bu(zn — p)||. By Lemma
4.1, since B, € [a,b] C (0,1), lim,, o ||2n — 2] = 0.

iy > ieq YitiTn
I Doy vi

It follows from Step 3 that

H Do YitiTn Do Yilin
n

Zi:l Vi Z?:l 4

=102

Step 4. lim,, ... ‘

< |zn = Ynl| = Bulltn — 20| > 0asn — o0 (4.3)

and

[tizn]| < [[tizn —pll + ol < llen = pll + 2l < llz1 = pll + [lpl] :== M
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for all = € N. Therefore

221 VYitiZn Z?:l YiliTn

H Zz 1 fylt’l'rn - 221 Vztlxn

Tn — 00 = Tpn — n 00
D iy Vi D i1 i > i1 Vi D iy Vi

Soiy yititn ZZ 1 %ititn Doy Yititn
< Ty o= =l _
B W e > Dot Vi

1 o0
tes - Z Yilltiwa |
21 i=n+1
< [T Zi:}z%til’n . nZi:nH zi VM
D i1 i (D izt 1) (221 w) P
Ei:l Vi
=\ |, = Z?:}I%tixn X 2 Zi;n+1 'YiM
D i X D1 Vi

Zl 1 71 zyn Zz 1 71 lyn 2?21 f}/ztzxn
Ll [Lfon 1
N Zz 1 Vi z 17 Z?:l Vi

n 2 ZiozonJrl i M.
Zi:1 Yi
. SRy Yitizn ||
2;21 Vi 5 O

Step 5. lim,, ,,,x, =v € F":

Define a mapping ¢t : C' — C by

2t Vnln®

Zzo:1 Tn

forany z € C. By Lemma 1.7, ¢ is well-defined, nonexpansive and Fiz(t) = (., Fiz(t,).

tr =

Since C' is compact, there exists a subsequence {xz,,, } of {x,} which converges to v for

some v € F. Using Step 3 and Step 4, we have

Jto—vl < Jim (llto = to | + Nzn, = 20gll + 20 = o]

< lim <||txnk — Ty || + 2|7, — UH) =0
k—o0
and

dist(v,Tv) < ||v—ap, ||+ dist(zy,, Tx,,) + H(Tx,,, Tv)

A\

v = Zp, || + |Xn, — 20, || + [|Tn, —v]] = 0as k — occ.
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It follows that v € Fix(T) N Fiz(t) = F. Since lim,,_,« ||z, — v|| exists by Step 1,

limyy o0 || — V] = limyso0 ||, — v]| = 0. =

The following example shows that the condition: “T'p = {p} for all p € F” in

Theorem 4.3 is necessary.

Example 4.4. We consider the space X of Example 3.9 in [15]. Let X be the Hilbert
space R? with the usual norm, and let f : [0, 1] — [0, 1] be a continuous strictly concave
function such that f(0) = 3, f(1) = 1 and f'(z) < 1forallz € [0,1]. Lete, =
S G)T T [0,1)2 — K([0,1]%) be defined by T'(a,b) = [0,1] x [f(a),1] and
tn : [0,1]2 — [0, 1]* be defined by

(e b) (a,en), b<en,
n a7 =
(a,b), otherwise.

1 f
T(a,b)

1/2f
e (@b
£, = 1/4 Jh(a.b)
e(a,b)
0 1

Figure 4.1: Example 4.4

It is straightforward showing that 7" and each ¢,, are nonexpansive. Set z; = (1,0) €
[0, 1] and for a subsequence {~,} in (0,1) with >_>7 v, < 1. Let {z,, = (as,bn)} be
a sequence in [0, 1]? defined as
1 1
Yn = 5Tn + 52n,
croe : (4.4)
Tpy1 = (1 - Zizl Vz)xn + Zi:l Vitiym

where
(0, f(an)), nisodd,

(1, f(a,)), niseven.

We will show that {x,,} does not converge to a common fixed point of 7" and {t,, }.
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Proof. Clearly, {z,} is a divergent sequence. We note that ¢, 1 % and for each y =
(a,b) € [0,1]* withb > L, we have t;y = y foralli. If we puty,, = (¢, dy), thend,, > 3
for all n. Suppose {z,,} converges to v for some v € F' = {(a,b) € [0,1]* : b > f(a)}.

Thus {z,} also converges to v, a contradiction. O

Remark 4.5. With the same proof, Theorem 4.3 is valid when {z,,} is of the following

form: For a permutation IT on N, define {z,} in C' by x; € C' and

Yn = (1 = Bn)n + Buzn,
Tnr = (1= 22y )T + D25 et Yn,
zn € Txy, and B, € [a,b] C (0, 1).
Note also that the above result is equivalent to:
Let {I,} be a sequence of subsets of N satistying I,, C I,,; forn € N and
U~ I, = N. Define {x,,} in C' by 2; € C'and

Yn = (1= Bn)an + Bnin,

Tpy1 = (1 - Zie[n ¥i)Zn + Zie]n YitiYn
zn € Tx, and B, € [a,b] C (0,1). Then the sequence {x, } converges strongly to some
veF.

Thus Theorem 4.3 contains Suzuki's result (Theorem 1.8).

4.2 CAT(0) Spaces

Let C' be a nonempty subset of a complete CAT(0) space X, {t, : n € N} a family
of single-valued nonexpansive mappings on C' and 7' : C' — FB(C) a multivalued
nonexpansive mapping. Given {7, } a sequence of positive numbers with >~ 7, < 1

and 3 ° 7 — Oasn — oo where v, = > . 7. The sequence {z,} of the

modified Ishikawa iteration is defined by

Yn = (1 - Bn)xn D ﬁnzm

T = (1= 2050 %) @ (i1 ) Bisa ﬁtiym
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where z, € C, z, € Tx,. We can prove the corresponding result in the framework of

CAT(0) spaces.

Theorem 4.6. Let C' be a compact convex subset of a complete CAT(0) space X. Let
{t, : n € N} be a family of single-valued nonexpansive mappings on C, and let T :
C — K(C) be a multivalued nonexpansive mapping. Suppose F' # () and T'p = {p} for
all p € F. Given {~,} a sequence of positive numbers with > >~ v, < 1,3 2~/ — 0
asn — oo where vy, = Y = vy and {f,} C [a,b] C (0,1). Then the sequence {x,}

defined by (4.5) converges strongly to some v € F.

Proof. The proof follows along the lines with the proof of Theorem 4.3. Recall that
wiz = tyz and w,x = P, Z”i—vtﬁ for all n > 2. Thus, by (4.5),

Tnt1 = (1 = Z%) Tn © (Z %) WnYn-
i=1 i=1

We note, from the proof of Lemma 3.8 in [16], that w,, is nonexpansive.
As before we consider the proof in 5 Steps. Because of the same details in some

cases, we only present proofs for Step 2 - Step 4.

Step 2 and Step 3. lim,, . d(x,,, w,y,) = 0 = lim,, o0 d(Ty, 2,,):

Let p € F. Using the nonexpansiveness of w,, we see that

d(WnYn,p) < d(yn,p) < (1 = Bn)d(zy,p) + Bnd(2n,p) < d(2n,p).  (4.6)

By (4.6) and (CN) inequality, we have

(Wi, p) < (Y, p)
(1= Bo)d* (@, p) + Bad® (20, D) — Bu(l = Bo)d* (T, 20)
d2($n,p) - /Bn(l - /Bn)dQ(l'na zn)

IA

VAN
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Therefore

IN

dQ(anrlap)

r zn:%‘ (1 i 2": %') d*(n, Wnn)
< d*(zn,p) (Z%) (1= Bo) (2, 20)
- Zlv (1 -~ 27) (2, Wnih).

Lety=> ~ . Since0 <y <> v <+vy<1landp, € [a,b]
N =) (@0, wayn) + a1 (L = b)d* (2, 22) < d* (@0, p) — d*(Tn11,p)-
This implies that
i [%(1 — 7)d*(wn, wnyn)} + i [ml(l — b)d*(zn, 2) | < d*(z1,p) < 00,
WL n=1

and hence lim,, . d(x,,, w,y,) = 0 = lim,,_,o, d(x,, 2,).

Step 4. lim,,_, d(z,,tx,) = 0, where t = ;" , ﬁti:

Since C' is compact, there exists a subsequence {y,} of {y,,} such that y,, — y

as n’ — oo for some y € C. Using the nonexpansiveness of w,, and ¢, we have

d(wn’yn’7 ty?b’) < d(wn’yn’v wn’?/) + d(wn’y7 ty) + d(ty7 tyn’)

< 2d(Yw,y) + d(wpy, ty) — 0 as n’ — oo.

Therefore lim,, o, d(w,Yn, ty,) = 0. From Step 2 and Step 3 we have

IN

d(x,, tx,) d(xp,, ty,) + d(ty,, tz,)

IN

d(xm tyn) + d(ym $n)

< d(@n, WnYn) + d(WnYn, tyn) + Bod(xy, 2,) = 0

asn — oo ]



