Chapter 5

Approximation of a common point of a Families of Closed Convex Subsets on CAT(0) Spaces

In this chapter, we introduce the new iterative sequence for approximating a common point of closed convex subsets in a CAT(0) space. The previous results and our main theorem is presented in section 5.1. Its applications are also presented in section 5.2. The results in this chapter were appeared in the paper: W. Anakkamatee and S. Dhompongsa, *On the means of projections on CAT(0) spaces*, Journal of Nonlinear Analysis and Optimization, 4 (2013), 51-59 [3].

5.1 Strong Convergence Theorems

In 2010, Saejung [34] used the Halpern iteration scheme for computing a fixed point of a single-valued nonexpansive mapping:

Theorem 5.1. [34, Theorem 2.3] Let C be a closed convex subset of a complete CAT(0) space X and let $t: C \to C$ be a nonexpansive mapping with a nonempty fixed point set Fix(t). Suppose that $u, x_1 \in C$ are arbitrarily chosen and $\{x_n\}$ is iteratively generated by

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) t x_n, \quad n \in \mathbb{N},$$

where $\{\alpha_n\}$ is a sequence in (0,1) satisfying

- (C1) $\lim_{n\to\infty} \alpha_n = 0$;
- (C2) $\sum_{n=1}^{\infty} \alpha_n = \infty;$

(C3)
$$\sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty \text{ or } \lim_{n \to \infty} (\alpha_n / \alpha_{n+1}) = 1.$$

Then $\{x_n\}$ converges to $v \in Fix(t)$ which is the nearest to u.

They also proved the following.

Theorem 5.2. [34, Lemma 2.2] Let C be a nonempty closed convex subset of a complete CAT(0) space X, let $t: C \to C$ be nonexpansive, fix $u \in C$, and for each $s \in (0,1)$ let z_s be the point of $[u, tz_s]$ satisfying

$$d(u, z_s) = sd(u, tz_s).$$

Then $Fix(t) \neq \emptyset$ if and only if $\{z_s\}$ remains bounded as $s \to 1$. In this case, the following statements hold:

- (i) $\{z_s\}$ converges to the unique fixed point z of t which is nearest to u;
- (ii) $d^2(u,z) \leq \mu_n d^2(u,u_n)$ for all Banach limits μ and all bounded sequences $\{u_n\}$ with $d(u_n,tu_n) \to 0$.

Recently, Dhompongsa et al. [16] proved the following strong convergence theorem for countably many number of single-valued nonexpansive mappings and a multivalued nonexpansive mapping.

Theorem 5.3. [16, Theorem 3.7] Let C be a nonempty closed convex subset of a complete CAT(0) space X. Let $\{t_n: C \to C\}$ be a countable family of nonexpansive mappings and $T: C \to K(C)$ be a nonexpansive mapping with $F \neq \emptyset$. Suppose that $Tp = \{p\}$ for all $p \in F$. Let t and $\{\lambda_n\}$ be as in Lemma 2.50. Suppose that $u, x_1 \in C$ are arbitrarily chosen and $\{x_n\}$ is defined by

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) \left(\frac{1}{2} w_n x_n \oplus \frac{1}{2} y_n \right), \tag{5.1}$$

such that $d(y_n, y_{n+1}) \leq d(x_n, x_{n+1})$ for all $n \in \mathbb{N}$, where $y_n \in Tx_n$ and $\{\alpha_n\}$ is a sequence in (0,1) satisfying (C1), (C2) and (C3). Then $\{x_n\}$ converges to the unique point of F which is nearest to u.

In the course of the proof of Theorem 5.3, the following results play important role.

Lemma 5.4. [36, Proposition 2] Let a be a real number and let $(a_1, a_2, ...) \in \ell^{\infty}$ be such that $\mu_n(a_n) \leq a$ for all Banach limits μ and $\limsup_n (a_{n+1} - a_n) \leq 0$. Then $\limsup_n a_n \leq a$.

Lemma 5.5. [4, Lemma 2.3] Let $\{s_n\}$ be a sequence of nonnegative real numbers, $\{\alpha_n\}$ a sequence of real numbers in [0,1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$, $\{\eta_n\}$ a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \eta_n < \infty$, and $\{\gamma_n\}$ a sequence of real numbers with $\lim \sup_{n\to\infty} \gamma_n \leq 0$. Suppose that

$$s_{n+1} \leq (1 - \alpha_n)s_n + \alpha_n\gamma_n + \eta_n$$
 for all $n \in \mathbb{N}$.

Then $\lim_{n\to\infty} s_n = 0$.

We first consider the following convergence result.

Theorem 5.6. Let C be a closed convex subset of a complete CAT(0) space X, $t: C \to C$ be a nonexpansive mapping such that $Fix(t) \neq \emptyset$ and M a positive real number. Suppose $\{\varepsilon_n\}$ and $\{\alpha_n\}$ are sequences in (0,1) satisfying $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, (C1), (C2) and (C3) respectively. Let $u, x_1 \in C$ be arbitrarily chosen and $\{x_n\}$ be defined by

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) u_n, \quad u_n \in C$$

such that

$$d(u_n, tn_n) \le \varepsilon_n M \tag{5.2}$$

for all $n \in \mathbb{N}$. If the sequence $\{x_n\}$ is bounded, then it converges to the unique point of Fix(t) which is nearest to u.

Proof. We follow the proof of Theorem 5.3. By (5.2),

$$d(u_n, u_{n+1}) \leq d(u_n, tx_n) + d(tx_n, tx_{n+1}) + d(tx_{n+1}, u_{n+1})$$

$$\leq d(x_n, x_{n+1}) + M(\varepsilon_n + \varepsilon_{n+1}).$$

From the definition of x_n , we have

$$d(x_{n+1}, x_n) = d(\alpha_n u \oplus (1 - \alpha_n) u_n, \alpha_{n-1} u \oplus (1 - \alpha_{n-1}) u_{n-1})$$

$$\leq d(\alpha_n u \oplus (1 - \alpha_n) u_n, \alpha_n u \oplus (1 - \alpha_n) u_{n-1})$$

$$+ d(\alpha_n u \oplus (1 - \alpha_n) u_{n-1}, \alpha_{n-1} u \oplus (1 - \alpha_{n-1}) u_{n-1})$$

$$\leq (1 - \alpha_n) d(u_n, u_{n-1}) + |\alpha_n - \alpha_{n-1}| d(u, u_{n-1})$$

$$\leq (1 - \alpha_n) d(x_n, x_{n-1}) + |\alpha_n - \alpha_{n-1}| d(u, u_{n-1})$$

$$+ (1 - \alpha_n) M(\varepsilon_n + \varepsilon_{n-1}).$$

Putting in Lemma 5.5 $[s_n=d(x_n,x_{n-1}),\gamma_n=0 \text{ and } \eta_n=|\alpha_n-\alpha_{n-1}|d(u,u_{n-1})+(1-\alpha_n)M(\varepsilon_n+\varepsilon_{n-1})]$ or $[s_n=d(x_n,x_{n-1}),\gamma_n=\left|1-\frac{\alpha_{n-1}}{\alpha_n}\right|d(u,u_{n-1})$ and $\eta_n=(1-\alpha_n)M(\varepsilon_n+\varepsilon_{n-1})]$ according to $\sum_{n=1}^{\infty}|\alpha_n-\alpha_{n+1}|<\infty$ or $\lim_{n\to\infty}(\alpha_n/\alpha_{n+1})=1$, respectively. Since $\sum_{n=1}^{\infty}\varepsilon_n<\infty$, we obtain

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0.$$

It follows from (C1) that

$$d(x_n, u_n) \leq d(x_n, x_{n+1}) + d(x_{n+1}, u_n)$$

$$= d(x_n, x_{n+1}) + d(\alpha_n u \oplus (1 - \alpha_n) u_n, u_n)$$

$$\leq d(x_n, x_{n+1}) + \alpha_n d(u, u_n) \to 0.$$

This implies

$$d(u_n, tu_n) \leq d(u_n, tx_n) + d(tx_n, tu_n)$$

$$\leq \varepsilon_n M + d(x_n, u_n) \to 0.$$

Let $z_s \in [u, tz_s]$ satisfy $d(u, z_s) = sd(u, tz_s)$ for all $s \in (0, 1)$. By Theorem 5.2, we have $v =: \lim_{s \to 1} z_s$ which is the unique point of Fix(t) nearest to u and $\mu_n(d^2(u, v) - d^2(u, u_n)) \le 0$ for all Banach limits μ . Moreover, since $d(u_n, u_{n+1}) \le d(x_n, x_{n+1}) + M(\varepsilon_n + \varepsilon_{n+1}) \to 0$,

$$\limsup_{n \to \infty} \left(d^2(u, v) - d^2(u, u_n) \right) - \left(d^2(u, v) - d^2(u, u_{n+1}) \right) = 0.$$

Therefore Lemma 5.4 implies

$$\limsup_{n\to\infty} \left(d^2(u,v) - (1-\alpha_n) d^2(u,u_n) \right) = \limsup_{n\to\infty} \left(d^2(u,v) - d^2(u,u_n) \right) \le 0.$$

Consider the following estimates:

$$d^{2}(x_{n+1}, v) = d^{2}(\alpha_{n}u \oplus (1 - \alpha_{n})u_{n}, v)$$

$$\leq \alpha_{n}d^{2}(u, v) + (1 - \alpha_{n})d^{2}(u_{n}, v) - \alpha_{n}(1 - \alpha_{n})d^{2}(u, u_{n})$$

$$= (1 - \alpha_{n})d^{2}(u_{n}, v) + \alpha_{n} \left(d^{2}(u, v) - (1 - \alpha_{n})d^{2}(u, u_{n})\right)$$

$$\leq (1 - \alpha_{n})(d(u_{n}, tx_{n}) + d(tx_{n}, v))^{2} + \alpha_{n} \left(d^{2}(u, v) - (1 - \alpha_{n})d^{2}(u, u_{n})\right)$$

$$\leq (1 - \alpha_{n})(d^{2}(x_{n}, v) + 2\varepsilon_{n}Md(x_{n}, v) + \varepsilon_{n}^{2}M^{2})$$

$$+\alpha_{n} \left(d^{2}(u, v) - (1 - \alpha_{n})d^{2}(u, u_{n})\right)$$

$$= (1 - \alpha_{n})d^{2}(x_{n}, v) + \alpha_{n} \left(d^{2}(u, v) - (1 - \alpha_{n})d^{2}(u, u_{n})\right)$$

$$+(1 - \alpha_{n})(2\varepsilon_{n}Md(x_{n}, v) + \varepsilon_{n}^{2}M^{2})$$

$$\leq (1 - \alpha_{n})d^{2}(x_{n}, v) + \alpha_{n} \left(d^{2}(u, v) - (1 - \alpha_{n})d^{2}(u, u_{n})\right)$$

$$+(1 - \alpha_{n})(2\varepsilon_{n}MN + \varepsilon_{n}^{2}M^{2}),$$

where $N = \sup\{d(x_n, v) : n \in \mathbb{N}\}$. We use Lemma 5.5 to conclude the proof.

Now, we are ready to present our first main result.

Theorem 5.7. Let X be a complete CAT(0) space and $\{A_i : i \in \mathbb{N}\}$ be a family of closed convex subsets of X such that $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$. Let $\{\lambda_n\}$ be a sequence in (0,1) such that $\sum_{n=1}^{\infty} \lambda_n = 1$, $\sum_{i=n}^{\infty} \lambda_i' \to 0$ as $n \to \infty$ where $\lambda_i' = \sum_{j=i+1}^{\infty} \lambda_j$. Suppose $\{\varepsilon_n\}$ and $\{\alpha_n\}$ are sequences in (0,1) satisfying $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, (C1), (C2) and (C3) respectively. Let $u, x_1 \in X$ be arbitrarily chosen and set

$$r_n = \sup_{i \in \mathbb{N}} \{ dist(x_n, A_i) \},$$

$$\beta_n \in \left(0, \frac{1}{2} \sqrt{4r_n^2 + 4\varepsilon_n^2} - r_n \right),$$

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) u_n,$$

where

$$u_n = \bigoplus_{i=1}^{\infty} \lambda_i u_n^{A_i}, \ u_n^{A_i} \in A_i \cap B(x_n : dist(x_n, A_i) + \beta_n^2)$$

for all $n \in \mathbb{N}$. Then the sequence $\{x_n\}$ converges to the unique point of $\bigcap_{i=1}^{\infty} A_i$ which is nearest to u.

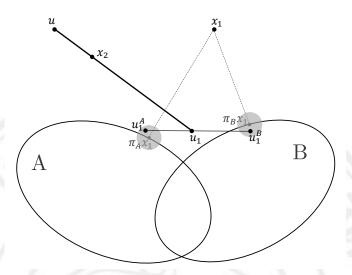


Figure 5.1: The first step of our iteration scheme for sets A and B

Proof. For each $i \in \mathbb{N}$, let $\pi_i : X \to A_i$ be the projection mapping. Using the law of cosine and the definition of β_n , we have

$$d^{2}(u_{n}^{A_{i}}, p_{i}x_{n}) \leq d^{2}(x_{n}, u_{n}^{A_{i}}) - d^{2}(x_{n}, \pi_{i}x_{n})$$

$$\leq (d(x_{n}, \pi_{i}x_{n}) + \beta_{n}^{2})^{2} - d^{2}(x_{n}, \pi_{i}x_{n})$$

$$= 2\beta_{n}d(x_{n}, \pi_{i}x_{n}) + \beta_{n}^{2}$$

$$\leq \beta_{n}(2r_{n} + \beta_{n})$$

$$\leq \left(\frac{1}{2}\sqrt{4r_{n}^{2} + 4\varepsilon_{n}^{2}} - r_{n}\right)\left(\frac{1}{2}\sqrt{4r_{n}^{2} + 4\varepsilon_{n}^{2}} + r_{n}\right) = \varepsilon_{n}^{2}.$$

Hence $d(u_n^{A_i}, \pi_i z_n) < \varepsilon_n$ for all $n \in \mathbb{N}$. Let $\pi: X \to X$ be defined by

$$\pi x = \bigoplus_{i=1}^{\infty} \lambda_i \pi_i x$$

for each $x \in X$. From Lemma 2.50, π is nonexpansive and $Fix(\pi) = \bigcap_{i=1}^{\infty} Fix(\pi_i) = \bigcap_{i=1}^{\infty} A_i$. For each n, we can choose $m_n \in \mathbb{N}$ such that

$$d\left(\bigoplus_{i=1}^{\infty}\lambda_{i}u_{n}^{A_{i}},\bigoplus_{i=1}^{m_{n}}\frac{\lambda_{i}}{\sum_{j=1}^{m_{n}}\lambda_{j}}u_{n}^{A_{i}}\right)+d\left(\bigoplus_{i=1}^{\infty}\lambda_{i}\pi_{i}x_{n},\bigoplus_{i=1}^{m_{n}}\frac{\lambda_{i}}{\sum_{j=1}^{m_{n}}\lambda_{j}}\pi_{i}x_{n}\right)<\varepsilon_{n}.$$

Thus

$$d(u_{n}, \pi x_{n}) \leq d\left(\bigoplus_{i=1}^{\infty} \lambda_{i} u_{n}^{A_{i}}, \bigoplus_{i=1}^{m_{n}} \frac{\lambda_{i}}{\sum_{j=1}^{m_{n}} \lambda_{j}} u_{n}^{A_{i}}\right) + d\left(\bigoplus_{i=1}^{m_{n}} \frac{\lambda_{i}}{\sum_{j=1}^{m_{n}} \lambda_{j}} u_{n}^{A_{i}}, \bigoplus_{i=1}^{m_{n}} \frac{\lambda_{i}}{\sum_{j=1}^{m_{n}} \lambda_{j}} \pi_{i} x_{n}\right) + d\left(\bigoplus_{i=1}^{m_{n}} \frac{\lambda_{i}}{\sum_{j=1}^{m_{n}} \lambda_{j}} \pi_{i} x_{n}, \bigoplus_{i=1}^{\infty} \lambda_{i} \pi_{i} x_{n}\right)$$

$$< \sum_{i=1}^{m_{n}} \frac{\lambda_{i}}{\sum_{j=1}^{m_{n}} \lambda_{j}} d(u_{n}^{A_{i}} x_{n}, \pi_{i} x_{n}) + \varepsilon_{n} < 2\varepsilon_{n}.$$

Let $q \in \bigcap_{i=1}^{\infty} A_i$. Then

$$d(x_{n+1},q) = d(\alpha_n u \oplus (1-\alpha_n)u_n,q)$$

$$\leq \alpha_n d(u,q) + (1-\alpha_n)d\left(\bigoplus_{i=1}^{\infty} \lambda_i u_n^{A_i}, q\right)$$

$$\leq \alpha_n d(u,q) + (1-\alpha_n)d\left(\bigoplus_{i=1}^{\infty} \lambda_i u_n^{A_i}, \bigoplus_{i=1}^{m_n} \frac{\lambda_i}{\sum_{j=1}^{m_n} \lambda_j} u_n^{A_i}\right)$$

$$+ (1-\alpha_n)d\left(\bigoplus_{i=1}^{m_n} \frac{\lambda_i}{\sum_{j=1}^{m_n} \lambda_j} u_n^{A_i}, q\right)$$

$$\leq \alpha_n d(u,q) + (1-\alpha_n)\left(\varepsilon_n + \sum_{i=1}^{m_n} \frac{\lambda_i}{\sum_{j=1}^{m_n} \lambda_j} (d(u_n^{A_i}, \pi_i x_n) + d(\pi_i x_n, q))\right)$$

$$\leq \alpha_n d(u,q) + (1-\alpha_n)d(x_n,q) + 2(1-\alpha_n)\varepsilon_n$$

$$\leq \max\{d(u,q), d(x_n,q)\} + 2(1-\alpha_n)\varepsilon_n.$$

By induction we have

$$d(x_{n+1},q) \le \max\{d(u,q),d(x_1,q)\} + 2\sum_{n=1}^{\infty} (1-\alpha_n)\varepsilon_n < \infty \text{ for all } n \in \mathbb{N}.$$

This implies the sequence $\{x_n\}$ is bounded. The result now follows from Theorem 5.6.

When the domain is bounded, we have the following result where the sequence $\{x_n\}$ is computable.

Theorem 5.8. Let X be a complete CAT(0) space and $\{A_i : i \in \mathbb{N}\}$ be a family of closed convex subsets of X such that $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$ and $\bigcup_{i=1}^{\infty} A_i$ is bounded. Let $\{\lambda_n\}$ be a sequence in (0,1) such that $\sum_{n=1}^{\infty} \lambda_n = 1$, $\sum_{i=n}^{\infty} \lambda'_i \to 0$ as $n \to \infty$ where $\lambda'_i = \sum_{j=i+1}^{\infty} \lambda_j$. Let $\{\varepsilon_n\}$ be a sequence in $(0,\frac{1}{2})$ and $\{\alpha_n\}$ be a sequence in (0,1)

satisfying $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, (C1), (C2) and (C3) respectively. Let $u, x_1 \in C$ be arbitrarily chosen. For each $n \in \mathbb{N}$, choose $k_n \in \mathbb{N}$ such that $\lambda_i' < \varepsilon_n$ for all $i \geq k_n$ and set

$$r_n = \sup_{i \in \mathbb{N}} \{ dist(x_n, A_i) \},$$

$$\beta_n \in \left(0, \frac{1}{2} \sqrt{4r_n^2 + 4\varepsilon_n^2} r_n \right),$$

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) u'_n,$$

where

$$u_n' = \bigoplus_{i=1}^{k_n} \frac{\lambda_i}{\sum_{i=1}^{k_n} \lambda_j} u_n^{A_i}, \quad u_n^{A_i} \in A_i \cap B(z_n : dist(x_n, A_i) + \beta_n^2).$$

Then the sequence $\{x_n\}$ converges to the unique point of $\bigcap_{i=1}^{\infty} A_i$ which is nearest to u.

Proof. Let π_i and π be as in the proof of Theorem 5.7. Thus we have

$$d(u_n^{A_i}, \pi_i x_n) < \varepsilon_n$$

for all $n \in \mathbb{N}$. For each n, we can choose $m_n > k_n$ such that

$$d\left(\bigoplus_{i=1}^{\infty} \lambda_i \pi_i x_n, \bigoplus_{i=1}^{m_n} \frac{\lambda_i}{\sum_{j=1}^{m_n} \lambda_j} \pi_i x_n\right) < \varepsilon_n.$$

Since $\lambda_i' < \varepsilon_n < \frac{1}{2}$, we have

$$d\left(\bigoplus_{i=1}^{k_n} \frac{\lambda_i}{\sum_{j=1}^{k_n} \lambda_j} \pi_i x_n, \bigoplus_{i=1}^{m_n} \frac{\lambda_i}{\sum_{j=1}^{m_n} \lambda_j} \pi_i x_n\right)$$

$$\leq d\left(\bigoplus_{i=1}^{k_n} \frac{\lambda_i}{\sum_{j=1}^{k_n} \lambda_j} \pi_i x_n, \bigoplus_{i=1}^{k_n+1} \frac{\lambda_i}{\sum_{j=1}^{k_n+1} \lambda_j} \pi_i x_n\right) + \cdots$$

$$+ d\left(\bigoplus_{i=1}^{m_n-1} \frac{\lambda_i}{\sum_{j=1}^{m_n-1} \lambda_j} \pi_i x_n, \bigoplus_{i=1}^{m_n} \frac{\lambda_i}{\sum_{j=1}^{m_n} \lambda_j} \pi_i x_n\right)$$

$$\leq \frac{\lambda_{k_n+1}}{\sum_{j=1}^{k_n+1} \lambda_j} d\left(\bigoplus_{i=1}^{k_n} \frac{\lambda_i}{\sum_{j=1}^{k_n} \lambda_j} \pi_i x_n, \pi_{k_n+1} x_n\right) + \cdots$$

$$+ \frac{\lambda_{m_n}}{\sum_{j=1}^{m_n} \lambda_j} d\left(\bigoplus_{i=1}^{m_n-1} \frac{\lambda_i}{\sum_{j=1}^{m_n-1} \lambda_j} \pi_i x_n, \pi_{m_n} x_n\right)$$

$$\leq K \sum_{i=k_n+1}^{m_n} \frac{\lambda_i}{1-\lambda_i'} < 2K \sum_{i=k_n+1}^{m_n} \lambda_i < 2K \lambda_{k_n+1}' < 2K \varepsilon_n,$$

where
$$K=\sup_{n\in\mathbb{N}}\left\{\sup_{l\in\mathbb{N}}\left\{d\left(\bigoplus_{i=1}^{l}\frac{\lambda_{i}}{\sum_{j=1}^{i}\lambda_{j}}\pi_{i}x_{n},\pi_{l+1}x_{n}\right)\right\}\right\}<\infty.$$
 Thus
$$d(u'_{n},\pi x_{n})\leq\varepsilon_{n}(2K+2).$$

The result now follows from Theorem 5.6.

5.2 Applications

Let X be a complete CAT(0) space. For a function $h: X \to (-\infty, \infty]$, the α -sublevel set is defined by

$$A_h^{\alpha} = \{ x \in X : h(x) \le \alpha \}.$$

The function h is said to be

- lower semi-continuous if A_h^{α} is closed for all $\alpha \in \mathbb{R}$;
- uniformly continuous if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $d(h(x), h(y)) \le \varepsilon$ for all $x, y \in X$ with $d(x, y) \le \delta$;
- convex if for any $x, y \in X$, $u \in [x, y]$ and $t \in (0, 1)$ we have

$$h(u) < (1-t)h(x) + th(y);$$

• uniformly convex if there exists $\lambda > 0$ such that for any $x,y \in X$ and $u \in [x,y]$ we have

$$h(u) \le (1-t)h(x) + th(y) - \lambda t(1-t)d^2(x,y)$$

$$e t = \frac{d(x,u)}{d(x,y)}.$$

Let $\{h_i: i \in \mathbb{N}\}$ be a family of lower semi-continuous and convex functions from X into $(-\infty,\infty]$. In [5], Bačák, Searston and Sims presented the application of the alternating projection method for approximating an minimizer of the function $H: X \to (-\infty,\infty]$ where $H = \sup_{i \in \mathbb{N}} h_i$ as follow:

Proposition 5.9. [5, Proposition 5.2] Let X be a complete CAT(0) space and a mapping $F: X \to (-\infty, \infty]$ be of the form $F = \max\{f, g\}$, where $f, g: X \to (-\infty, \infty]$ are lower semi-continuous and convex functions. Let $\alpha > \inf_{x \in X} F(x) > -\infty$, and A_F^{α} be nonempty. Assume that f is both uniformly convex and uniformly continuous on bounded sets of X. Let $x_0 \in X$ be a starting point and $\{x_n\} \subset X$ be the sequence generated by

$$x_{2n-1} = \pi_f(x_{2n-1}), \quad x_{2n} = \pi_g(x_{2n-1}), \quad n \in \mathbb{N},$$

where π_f and π_g are projection mappings from X to A_f^{α} and A_g^{α} respectively. Then $\{x_n\}$ converges to $z \in A_F^{\alpha}$.

Two Propositions below also provide the strong convergence of the sequence $\{x_n\}$ to an (approximative) minimizer of H by using our iteration scheme.

Proposition 5.10. Let X be a complete CAT(0) space and a mapping $H: X \to (-\infty, \infty]$ be of the form $H = \sup_{i \in \mathbb{N}} h_i$, where $h_i: X \to (-\infty, \infty]$ are lower semi-continuous and convex functions for all $i \in \mathbb{N}$. Let $\alpha > \inf_{x \in X} H(x) > -\infty$. Let $\{\lambda_n\}$ be a sequence in (0,1) such that $\sum_{n=1}^{\infty} \lambda_n = 1$, $\sum_{i=n}^{\infty} \lambda_i' \to 0$ as $n \to \infty$ where $\lambda_i' = \sum_{j=i+1}^{\infty} \lambda_j$. Suppose $\{\varepsilon_n\}$ and $\{\alpha_n\}$ are sequences in (0,1) satisfying $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, (C1), (C2) and (C3) respectively. Let $u, x_1 \in X$ are arbitrarily chosen and set

$$r_n = \sup_{i \in \mathbb{N}} \{ dist(x_n, A_{h_i}^{\alpha}) \},$$

$$\beta_n \in \left(0, \frac{1}{2} \sqrt{4r_n^2 + 4\varepsilon_n^2} - r_n \right),$$

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) u_n,$$

where

$$u_n = \bigoplus_{i=1}^{\infty} \lambda_i u_n^i, \ u_n^i \in A_{h_i}^{\alpha} \cap B(x_n : dist(x_n, A_{f_i}^{\alpha}) + \beta_n^2)$$

for all $n \in \mathbb{N}$. Then the sequence $\{x_n\}$ converges to the unique point of A_H^{α} which is nearest to u.

Proof. Since $h_i: X \to (-\infty, \infty]$ are lower semi-continuous and convex functions, $A_{h_i}^{\alpha}$ is closed and convex for all $i \in \mathbb{N}$. The result then follows from Theorem 5.7.

Proposition 5.11. Let X be a complete CAT(0) space and a mapping $H: X \to (-\infty, \infty]$ be of the form $H = \sup_{i \in \mathbb{N}} h_i$, where $h_i: X \to (-\infty, \infty]$ are lower semi-continuous and convex functions for all $i \in \mathbb{N}$. Let $\alpha > \inf_{x \in X} H(x) > -\infty$. Let $\{\lambda_n\}$ be a sequence in (0,1) such that $\sum_{n=1}^{\infty} \lambda_n = 1$, $\sum_{i=n}^{\infty} \lambda_i' \to 0$ as $n \to \infty$ where $\lambda_i' = \sum_{j=i+1}^{\infty} \lambda_j$. Suppose $\{\varepsilon_n\}$ is a sequence in $(0,\frac{1}{2})$ and $\{\alpha_n\}$ is a sequence in (0,1) satisfying $\sum_{n=1}^{\infty} \varepsilon_n < \infty$, (C1), (C2) and (C3) respectively. Let $u, x_1 \in C$ be arbitrarily chosen. For each $n \in \mathbb{N}$, choose $k_n \in \mathbb{N}$ such that $\lambda_i' < \varepsilon_n$ for all $i \ge k_n$ and set

$$r_n = \sup_{i \in \mathbb{N}} \{ dist(x_n, A_{h_i}^{\alpha}) \},$$

$$\beta_n \in \left(0, \frac{1}{2} \sqrt{4r_n^2 + 4\varepsilon_n^2} - r_n \right),$$

$$x_{n+1} = \alpha_n u \oplus (1 - \alpha_n) u_n',$$

where

$$u_n' = \bigoplus_{i=1}^{k_n} \frac{\lambda_i}{\sum_{j=1}^{k_n} \lambda_j} u_n^i, \quad u_n^i \in A_{h_i}^{\alpha} \cap B(x_n : dist(x_n, A_{h_i}^{\alpha}) + \beta_n^2).$$

If $\{x_n\}$ is bounded, then the sequence $\{x_n\}$ converges to the unique point of A_H^{α} which is nearest to u.

Proof. Here we apply Theorem 5.8.

ลิขสิทธิมหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved