
Chapter 5

Approximation of a common point of a

Families of Closed Convex Subsets

on CAT(0) Spaces

In this chapter, we introduce the new iterative sequence for approximating a common

point of closed convex subsets in a CAT(0) space. The previous results and our main

theorem is presented in section 5.1. Its applications are also presented in section 5.2.

The results in this chapter were appeared in the paper : W. Anakkamatee and S. Dhom-

pongsa, On the means of projections on CAT(0) spaces, Journal of Nonlinear Analysis

and Optimization, 4 (2013), 51-59 [3].

5.1 Strong Convergence Theorems

In 2010, Saejung [34] used the Halpern iteration scheme for computing a fixed point of

a single-valued nonexpansive mapping:

Theorem 5.1. [34, Theorem 2.3] Let C be a closed convex subset of a complete CAT(0)

spaceX and let t : C → C be a nonexpansive mapping with a nonempty fixed point set

Fix(t). Suppose that u, x1 ∈ C are arbitrarily chosen and {xn} is iteratively generated

by

xn+1 = αnu⊕ (1− αn)txn, n ∈ N,

where {αn} is a sequence in (0, 1) satisfying
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(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+1| < ∞ or limn→∞(αn/αn+1) = 1.

Then {xn} converges to v ∈ Fix(t) which is the nearest to u.

They also proved the following.

Theorem 5.2. [34, Lemma 2.2] LetC be a nonempty closed convex subset of a complete

CAT(0) space X, let t : C → C be nonexpansive, fix u ∈ C, and for each s ∈ (0, 1) let

zs be the point of [u, tzs] satisfying

d(u, zs) = sd(u, tzs).

Then Fix(t) ̸= ∅ if and only if {zs} remains bounded as s → 1. In this case, the

following statements hold:

(i) {zs} converges to the unique fixed point z of t which is nearest to u;

(ii) d2(u, z) ≤ µnd
2(u, un) for all Banach limits µ and all bounded sequences {un}

with d(un, tun) → 0.

Recently, Dhompongsa et al. [16] proved the following strong convergence theorem

for countably many number of single-valued nonexpansive mappings and a multivalued

nonexpansive mapping.

Theorem 5.3. [16, Theorem 3.7] Let C be a nonempty closed convex subset of a com-

plete CAT(0) space X . Let {tn : C → C} be a countable family of nonexpansive

mappings and T : C → K(C) be a nonexpansive mapping with F ̸= ∅. Suppose that

Tp = {p} for all p ∈ F . Let t and {λn} be as in Lemma 2.50. Suppose that u, x1 ∈ C

are arbitrarily chosen and {xn} is defined by

xn+1 = αnu⊕ (1− αn)

(
1

2
wnxn ⊕

1

2
yn

)
, (5.1)

such that d(yn, yn+1) ≤ d(xn, xn+1) for all n ∈ N, where yn ∈ Txn and {αn} is a

sequence in (0, 1) satisfying (C1), (C2) and (C3). Then {xn} converges to the unique

point of F which is nearest to u.
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In the course of the proof of Theorem 5.3, the following results play important role.

Lemma 5.4. [36, Proposition 2] Let a be a real number and let (a1, a2, ...) ∈ ℓ∞ be

such that µn(an) ≤ a for all Banach limits µ and lim supn(an+1 − an) ≤ 0. Then

lim supn an ≤ a.

Lemma 5.5. [4, Lemma 2.3] Let {sn} be a sequence of nonnegative real numbers,

{αn} a sequence of real numbers in [0, 1] with
∑∞

n=1 αn = ∞, {ηn} a sequence of

nonnegative real numbers with
∑∞

n=1 ηn < ∞, and {γn} a sequence of real numbers

with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + ηn for all n ∈ N.

Then limn→∞ sn = 0.

We first consider the following convergence result.

Theorem 5.6. Let C be a closed convex subset of a complete CAT(0) spaceX , t : C →

C be a nonexpansive mapping such that Fix(t) ̸= ∅ and M a positive real number.

Suppose {εn} and {αn} are sequences in (0, 1) satisfying
∑∞

n=1 εn < ∞, (C1), (C2)

and (C3) respectively. Let u, x1 ∈ C be arbitrarily chosen and {xn} be defined by

xn+1 = αnu⊕ (1− αn)un, un ∈ C

such that

d(un, tnn) ≤ εnM (5.2)

for all n ∈ N. If the sequence {xn} is bounded, then it converges to the unique point of

Fix(t) which is nearest to u.

Proof. We follow the proof of Theorem 5.3. By (5.2),

d(un, un+1) ≤ d(un, txn) + d(txn, txn+1) + d(txn+1, un+1)

≤ d(xn, xn+1) +M(εn + εn+1).
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From the definition of xn, we have

d(xn+1, xn) = d(αnu⊕ (1− αn)un, αn−1u⊕ (1− αn−1)un−1)

≤ d(αnu⊕ (1− αn)un, αnu⊕ (1− αn)un−1)

+d(αnu⊕ (1− αn)un−1, αn−1u⊕ (1− αn−1)un−1)

≤ (1− αn)d(un, un−1) + |αn − αn−1|d(u, un−1)

≤ (1− αn)d(xn, xn−1) + |αn − αn−1|d(u, un−1)

+(1− αn)M(εn + εn−1).

Putting in Lemma 5.5 [sn = d(xn, xn−1), γn = 0 and ηn = |αn − αn−1|d(u, un−1) +

(1 − αn)M(εn + εn−1)] or [sn = d(xn, xn−1), γn =
∣∣1 − αn−1

αn

∣∣d(u, un−1) and ηn =

(1−αn)M(εn+εn−1)] according to
∑∞

n=1 |αn−αn+1| < ∞ or limn→∞(αn/αn+1) = 1,

respectively. Since
∑∞

n=1 εn < ∞, we obtain

lim
n→∞

d(xn+1, xn) = 0.

It follows from (C1) that

d(xn, un) ≤ d(xn, xn+1) + d(xn+1, un)

= d(xn, xn+1) + d(αnu⊕ (1− αn)un, un)

≤ d(xn, xn+1) + αnd(u, un) → 0.

This implies

d(un, tun) ≤ d(un, txn) + d(txn, tun)

≤ εnM + d(xn, un) → 0.

Let zs ∈ [u, tzs] satisfy d(u, zs) = sd(u, tzs) for all s ∈ (0, 1). By Theorem 5.2, we

have v =: lims→1 zs which is the unique point of Fix(t) nearest to u and µn(d
2(u, v)−

d2(u, un)) ≤ 0 for all Banach limits µ. Moreover, since d(un, un+1) ≤ d(xn, xn+1) +

M(εn + εn+1) → 0,

lim sup
n→∞

(
d2(u, v)− d2(u, un)

)
−
(
d2(u, v)− d2(u, un+1)

)
= 0.



53

Therefore Lemma 5.4 implies

lim sup
n→∞

(
d2(u, v)− (1− αn)d

2(u, un)
)
= lim sup

n→∞

(
d2(u, v)− d2(u, un)

)
≤ 0.

Consider the following estimates:

d2(xn+1, v) = d2(αnu⊕ (1− αn)un, v)

≤ αnd
2(u, v) + (1− αn)d

2(un, v)− αn(1− αn)d
2(u, un)

= (1− αn)d
2(un, v) + αn

(
d2(u, v)− (1− αn)d

2(u, un)
)

≤ (1− αn)(d(un, txn) + d(txn, v))
2 + αn

(
d2(u, v)− (1− αn)d

2(u, un)
)

≤ (1− αn)(d
2(xn, v) + 2εnMd(xn, v) + ε2nM

2)

+αn

(
d2(u, v)− (1− αn)d

2(u, un)
)

= (1− αn)d
2(xn, v) + αn

(
d2(u, v)− (1− αn)d

2(u, un)
)

+(1− αn)(2εnMd(xn, v) + ε2nM
2)

≤ (1− αn)d
2(xn, v) + αn

(
d2(u, v)− (1− αn)d

2(u, un)
)

+(1− αn)(2εnMN + ε2nM
2),

where N = sup{d(xn, v) : n ∈ N}. We use Lemma 5.5 to conclude the proof.

Now, we are ready to present our first main result.

Theorem 5.7. Let X be a complete CAT(0) space and {Ai : i ∈ N} be a family of

closed convex subsets of X such that
∩∞

i=1Ai ̸= ∅. Let {λn} be a sequence in (0, 1)

such that
∑∞

n=1 λn = 1,
∑∞

i=n λ
′
i → 0 as n → ∞ where λ′

i =
∑∞

j=i+1 λj . Suppose

{εn} and {αn} are sequences in (0, 1) satisfying
∑∞

n=1 εn < ∞, (C1), (C2) and (C3)

respectively. Let u, x1 ∈ X be arbitrarily chosen and set

rn = sup
i∈N

{dist(xn, Ai)},

βn ∈
(
0,

1

2

√
4r2n + 4ε2n − rn

)
,

xn+1 = αnu⊕ (1− αn)un,

where

un =
∞⊕
i=1

λiu
Ai
n , uAi

n ∈ Ai ∩B(xn : dist(xn, Ai) + β2
n)

for all n ∈ N. Then the sequence {xn} converges to the unique point of
∩∞

i=1Ai which

is nearest to u.
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Figure 5.1: The first step of our iteration scheme for sets A and B

Proof. For each i ∈ N, let πi : X → Ai be the projection mapping. Using the law of

cosine and the definition of βn, we have

d2(uAi
n , pixn) ≤ d2(xn, u

Ai
n )− d2(xn, πixn)

≤ (d(xn, πixn) + β2
n)

2 − d2(xn, πixn)

= 2βnd(xn, πixn) + β2
n

≤ βn(2rn + βn)

<

(
1

2

√
4r2n + 4ε2n − rn

)(
1

2

√
4r2n + 4ε2n + rn

)
= ε2n.

Hence d(uAi
n , πizn) < εn for all n ∈ N. Let π : X → X be defined by

πx =
∞⊕
i=1

λiπix

for each x ∈ X . From Lemma 2.50, π is nonexpansive and Fix(π) =
∩∞

i=1 Fix(πi) =∩∞
i=1Ai. For each n, we can choose mn ∈ N such that

d

(
∞⊕
i=1

λiu
Ai
n ,

mn⊕
i=1

λi∑mn

j=1 λj

uAi
n

)
+ d

(
∞⊕
i=1

λiπixn,
mn⊕
i=1

λi∑mn

j=1 λj

πixn

)
< εn.
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Thus

d(un, πxn) ≤ d

( ∞⊕
i=1

λiu
Ai
n ,

mn⊕
i=1

λi∑mn
j=1 λj

uAi
n

)
+ d

(
mn⊕
i=1

λi∑mn
j=1 λj

uAi
n ,

mn⊕
i=1

λi∑mn
j=1 λj

πixn

)

+d

(
mn⊕
i=1

λi∑mn
j=1 λj

πixn,
∞⊕
i=1

λiπixn

)

<

mn∑
i=1

λi∑mn
j=1 λj

d(uAi
n xn, πixn) + εn < 2εn.

Let q ∈
∩∞

i=1Ai. Then

d(xn+1, q) = d(αnu⊕ (1− αn)un, q)

≤ αnd(u, q) + (1− αn)d

( ∞⊕
i=1

λiu
Ai
n , q

)

≤ αnd(u, q) + (1− αn)d

( ∞⊕
i=1

λiu
Ai
n ,

mn⊕
i=1

λi∑mn
j=1 λj

uAi
n

)

+(1− αn)d

(
mn⊕
i=1

λi∑mn
j=1 λj

uAi
n , q

)

≤ αnd(u, q) + (1− αn)

(
εn +

mn∑
i=1

λi∑mn
j=1 λj

(d(uAi
n , πixn) + d(πixn, q))

)
≤ αnd(u, q) + (1− αn)d(xn, q) + 2(1− αn)εn

≤ max{d(u, q), d(xn, q)}+ 2(1− αn)εn.

By induction we have

d(xn+1, q) ≤ max{d(u, q), d(x1, q)}+ 2
∞∑
n=1

(1− αn)εn < ∞ for all n ∈ N.

This implies the sequence {xn} is bounded. The result now follows from Theorem

5.6.

When the domain is bounded, we have the following result where the sequence {xn}

is computable.

Theorem 5.8. Let X be a complete CAT(0) space and {Ai : i ∈ N} be a family of

closed convex subsets of X such that
∩∞

i=1Ai ̸= ∅ and
∪∞

i=1Ai is bounded. Let {λn}

be a sequence in (0, 1) such that
∑∞

n=1 λn = 1,
∑∞

i=n λ
′
i → 0 as n → ∞ where

λ′
i =

∑∞
j=i+1 λj . Let {εn} be a sequence in (0, 1

2
) and {αn} be a sequence in (0, 1)
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satisfying
∑∞

n=1 εn < ∞, (C1), (C2) and (C3) respectively. Let u, x1 ∈ C be arbitrarily

chosen. For each n ∈ N, choose kn ∈ N such that λ′
i < εn for all i ≥ kn and set

rn = sup
i∈N

{dist(xn, Ai)},

βn ∈
(
0,

1

2

√
4r2n + 4ε2nrn

)
,

xn+1 = αnu⊕ (1− αn)u
′
n,

where

u′
n =

kn⊕
i=1

λi∑kn
j=1 λj

uAi
n , uAi

n ∈ Ai ∩B(zn : dist(xn, Ai) + β2
n).

Then the sequence {xn} converges to the unique point of
∩∞

i=1Ai which is nearest to u.

Proof. Let πi and π be as in the proof of Theorem 5.7. Thus we have

d(uAi
n , πixn) < εn

for all n ∈ N. For each n, we can choose mn > kn such that

d

(
∞⊕
i=1

λiπixn,

mn⊕
i=1

λi∑mn

j=1 λj

πixn

)
< εn.

Since λ′
i < εn < 1

2
, we have

d

(
kn⊕
i=1

λi∑kn
j=1 λj

πixn,
mn⊕
i=1

λi∑mn

j=1 λj

πixn

)

≤ d

(
kn⊕
i=1

λi∑kn
j=1 λj

πixn,
kn+1⊕
i=1

λi∑kn+1
j=1 λj

πixn

)
+ · · ·

+d

(
mn−1⊕
i=1

λi∑mn−1
j=1 λj

πixn,

mn⊕
i=1

λi∑mn

j=1 λj

πixn

)

≤ λkn+1∑kn+1
j=1 λj

d

(
kn⊕
i=1

λi∑kn
j=1 λj

πixn, πkn+1xn

)
+ · · ·

+
λmn∑mn

j=1 λj

d

(
mn−1⊕
i=1

λi∑mn−1
j=1 λj

πixn, πmnxn

)

≤ K

mn∑
i=kn+1

λi

1− λ′
i

< 2K
mn∑

i=kn+1

λi < 2Kλ′
kn+1 < 2Kεn,
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where K = supn∈N
{
supl∈N

{
d
(⊕l

i=1
λi∑i

j=1 λj
πixn, πl+1xn

)}}
< ∞. Thus

d(u′
n, πxn) ≤ εn(2K + 2).

The result now follows from Theorem 5.6.

5.2 Applications

LetX be a complete CAT(0) space. For a function h : X → (−∞,∞], the α−sublevel

set is defined by

Aα
h = {x ∈ X : h(x) ≤ α}.

The function h is said to be

• lower semi-continuous if Aα
h is closed for all α ∈ R;

• uniformly continuous if for any ε > 0 there exists δ > 0 such that d(h(x), h(y)) ≤

ε for all x, y ∈ X with d(x, y) ≤ δ;

• convex if for any x, y ∈ X , u ∈ [x, y] and t ∈ (0, 1) we have

h(u) ≤ (1− t)h(x) + th(y);

• uniformly convex if there exists λ > 0 such that for any x, y ∈ X and u ∈ [x, y]

we have

h(u) ≤ (1− t)h(x) + th(y)− λt(1− t)d2(x, y)

where t = d(x,u)
d(x,y)

.

Let {hi : i ∈ N} be a family of lower semi-continuous and convex functions fromX into

(−∞,∞]. In [5], Bačák, Searston and Sims presented the application of the alternating

projection method for approximating an minimizer of the functionH : X → (−∞,∞]

where H = supi∈N hi as follow:
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Proposition 5.9. [5, Proposition 5.2] LetX be a complete CAT(0) space and a mapping

F : X → (−∞,∞] be of the form F = max{f, g}, where f, g : X → (−∞,∞] are

lower semi-continuous and convex functions. Let α > infx∈X F (x) > −∞, and Aα
F

be nonempty. Assume that f is both uniformly convex and uniformly continuous on

bounded sets of X . Let x0 ∈ X be a starting point and {xn} ⊂ X be the sequence

generated by

x2n−1 = πf (x2n−1), x2n = πg(x2n−1), n ∈ N,

where πf and πg are projection mappings fromX toAα
f andAα

g respectively. Then {xn}

converges to z ∈ Aα
F .

Two Propositions below also provide the strong convergence of the sequence {xn}

to an (approximative) minimizer of H by using our iteration scheme.

Proposition 5.10. Let X be a complete CAT(0) space and a mapping H : X →

(−∞,∞] be of the form H = supi∈N hi, where hi : X → (−∞,∞] are lower semi-

continuous and convex functions for all i ∈ N. Let α > infx∈X H(x) > −∞. Let

{λn} be a sequence in (0, 1) such that
∑∞

n=1 λn = 1,
∑∞

i=n λ
′
i → 0 as n → ∞

where λ′
i =

∑∞
j=i+1 λj . Suppose {εn} and {αn} are sequences in (0, 1) satisfying∑∞

n=1 εn < ∞, (C1), (C2) and (C3) respectively. Let u, x1 ∈ X are arbitrarily chosen

and set

rn = sup
i∈N

{dist(xn, A
α
hi
)},

βn ∈
(
0,

1

2

√
4r2n + 4ε2n − rn

)
,

xn+1 = αnu⊕ (1− αn)un,

where

un =
∞⊕
i=1

λiu
i
n, ui

n ∈ Aα
hi
∩B(xn : dist(xn, A

α
fi
) + β2

n)

for all n ∈ N. Then the sequence {xn} converges to the unique point of Aα
H which is

nearest to u.

Proof. Since hi : X → (−∞,∞] are lower semi-continuous and convex functions,Aα
hi

is closed and convex for all i ∈ N. The result then follows from Theorem 5.7.
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Proposition 5.11. Let X be a complete CAT(0) space and a mapping H : X →

(−∞,∞] be of the form H = supi∈N hi, where hi : X → (−∞,∞] are lower semi-

continuous and convex functions for all i ∈ N. Let α > infx∈X H(x) > −∞. Let

{λn} be a sequence in (0, 1) such that
∑∞

n=1 λn = 1,
∑∞

i=n λ
′
i → 0 as n → ∞ where

λ′
i =

∑∞
j=i+1 λj . Suppose {εn} is a sequence in (0, 1

2
) and {αn} is a sequence in (0, 1)

satisfying
∑∞

n=1 εn < ∞, (C1), (C2) and (C3) respectively. Let u, x1 ∈ C be arbitrarily

chosen. For each n ∈ N, choose kn ∈ N such that λ′
i < εn for all i ≥ kn and set

rn = sup
i∈N

{dist(xn, A
α
hi
)},

βn ∈
(
0,

1

2

√
4r2n + 4ε2n − rn

)
,

xn+1 = αnu⊕ (1− αn)u
′
n,

where

u′
n =

kn⊕
i=1

λi∑kn
j=1 λj

ui
n, ui

n ∈ Aα
hi
∩B(xn : dist(xn, A

α
hi
) + β2

n).

If {xn} is bounded, then the sequence {xn} converges to the unique point of Aα
H which

is nearest to u.

Proof. Here we apply Theorem 5.8.


