Chapter 5
Approximation of a common point of a

Families of Closed Convex Subsets

on CAT(0) Spaces

In this chapter, we introduce the new iterative sequence for approximating a common
point of closed convex subsets in a CAT(0) space. The previous results and our main
theorem is presented in section 5.1. Its applications are also presented in section 5.2.
The results in this chapter were appeared in the paper : W. Anakkamatee and S. Dhom-
pongsa, On the means of projections on CAT(0) spaces, Journal of Nonlinear Analysis

and Optimization, 4 (2013), 51-59 [3].

5.1 Strong Convergence Theorems

In 2010, Saejung [34] used the Halpern iteration scheme for computing a fixed point of

a single-valued nonexpansive mapping:

Theorem 5.1. [34, Theorem 2.3] Let C be a closed convex subset of a complete CAT(0)
space X and lett : C' — C be a nonexpansive mapping with a nonempty fixed point set
Fix(t). Suppose that u,x1 € C are arbitrarily chosen and {x,,} is iteratively generated
by

Tpt1 = QU D (1 - an>t$n7 n e N7

where {a,} is a sequence in (0, 1) satisfying
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(CI) lim,, sy = 0
(C2) Y% ay = 00;

(C3) > o — anya| < 00 or limy, o0 (an/ani1) = 1.
Then {x,} converges to v € Fix(t) which is the nearest to u.

They also proved the following.

Theorem 5.2. [34, Lemma 2.2] Let C be a nonempty closed convex subset of a complete
CAT(0) space X, lett : C' — C' be nonexpansive, fix u € C, and for each s € (0, 1) let

zs be the point of [u, tzs) satisfying
d(u, z5) = sd(u, tzs).

Then Fix(t) # (0 if and only if {zs} remains bounded as s — 1. In this case, the

following statements hold:

(i) {zs} converges to the unique fixed point z of t which is nearest to u;

(ii) d*(u,z) < pnd*(u,u,) for all Banach limits u and all bounded sequences {u,,}

with d(ty, tu,) — 0.

Recently, Dhompongsa et al. [16] proved the following strong convergence theorem
for countably many number of single-valued nonexpansive mappings and a multivalued

nonexpansive mapping.

Theorem 5.3. [16, Theorem 3.7] Let C' be a nonempty closed convex subset of a com-
plete CAT(0) space X. Let {t, : C — C} be a countable family of nonexpansive
mappings and T : C — K(C') be a nonexpansive mapping with F # (). Suppose that
Tp={p}forallp € F. Let t and {\,,} be as in Lemma 2.50. Suppose that u,z, € C

are arbitrarily chosen and {x,,} is defined by

1 1
Tl = u @ (1 — ) (ﬁwnxn ) éyn) , (5.1)

such that d(y,, Yn+1) < d(xp, xni1) for all n € N, where y,, € Tx,, and {a,} is a
sequence in (0, 1) satisfying (C1), (C2) and (C3). Then {x,} converges to the unique

point of F' which is nearest to u.
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In the course of the proof of Theorem 5.3, the following results play important role.

Lemma 5.4. [36, Proposition 2] Let a be a real number and let (a1, as,...) € (> be
such that j,(a,) < a for all Banach limits y and limsup,, (a,+1 — a,) < 0. Then

limsup,, a,, < a.

Lemma 5.5. [4, Lemma 2.3] Let {s,} be a sequence of nonnegative real numbers,
{a} a sequence of real numbers in [0, 1] with > " | a, = 00, {n,} a sequence of
nonnegative real numbers with % " | 1, < 00, and {~,} a sequence of real numbers

with limsup,, ., v, < 0. Suppose that
Sni1 < (1 — ay)Sn + nYn + 0y forall n € N.
Then lim,,_,~ S, = 0.
We first consider the following convergence result.

Theorem 5.6. Let C be a closed convex subset of a complete CAT(0) space X, t: C —
C' be a nonexpansive mapping such that Fix(t) # () and M a positive real number.
Suppose {e,} and {a,} are sequences in (0,1) satisfying Y - £, < oo, (CI), (C2)
and (C3) respectively. Let u,x, € C be arbitrarily chosen and {x,,} be defined by

Tpt1 = 0t ® (1 — o)y, u, €C

such that
d(Un, tny) < e, M (5.2)

for all n € N. If the sequence {x,,} is bounded, then it converges to the unique point of

Fix(t) which is nearest to .

Proof. We follow the proof of Theorem 5.3. By (5.2),

A(Un, Ups1) < d(up,tx,) + d(tx,, tToe) + d{ETp1, Unsr)

< d(fL’n, fL’n_J,_l) + M(gn + ‘Sn—&-l)‘
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From the definition of z,,, we have

Ad(xpi1, ) = dlapu® (1 — ap)Up, @p1u® (1 — ap_1)Up_1)

IN

d(cau @ (1 — o), pu @ (1 — o) up_1)

+d(au® (1 — ap) g1, A 1u ® (1 — ap_q)Up_1)

IA

(1 - an)d(uTw un—l) =l |an - an—1|d(u7 un—l)

IA

(1 T an)d(];nv xnfl) + ’an - anflyd(ua un71>

+(1 — an)M (e, + €n—1).

Putting in Lemma 5.5 [s,, = d(zp, 2p—1), 7, = 0 and n,, = |y, — a1 |d(u, up—1) +
(1 — an)M(e, + €p1)] or sy, = d(Tp, Tn-1),Yn = ‘1 = a;‘—:|d(u,un,1) and n, =

(1= )M (g5, 4€n-1)] according to Y7, |y, — appr| < 00 or lim,, oo (@ /at1) = 1,

respectively. Since Y~ | €, < 0o, we obtain

lim d(z,.1,2,) = 0.
n—o0

It follows from (C1) that

d<xna un) S d(xn7 xn+1) an d(anrla un)
= d(zn, Tni1) + d(au ® (1 — ap)uy, uy)

< d(Tn, Tnt1) + and(u, u,) — 0.
This implies

d(Un, tuy) < d(ug, tz,) + d(tz,, tuy,)

< e, M +d(xy,u,) — 0.

Let z, € [u,tz] satisfy d(u, zs) = sd(u,tz,) for all s € (0,1). By Theorem 5.2, we
have v =: lim,_,; z, which is the unique point of F'iz(t) nearest to u and i, (d*(u,v) —
d*(u,u,)) < 0 for all Banach limits . Moreover, since d(tp, Un11) < d(Tp, Tni1) +
M(e, +epy1) — 0,

limsup (d*(u,v) — d*(u, u,)) — (d*(u,v) — d*(u, un41)) = 0.

n—oo
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Therefore Lemma 5.4 implies

limsup (d*(u,v) — (1 — a,)d*(u, u,)) = limsup (d*(u,v) — d*(u, uy,)) < 0.

n—o0 n—o0

Consider the following estimates:

A (xpi1,v) = d(anu® (1 — an)un,v)

IN

and®(u,v) + (1 — a)d? (un, v) — an(1 — o )d? (u, uy)

= (1 — an)d*(un,v) + an (d2(u,v) - (1- an)dQ(u,un))

IN

(1 — o) (d(tn, tzp) + d(ton, v)* + oy (dP(u,v) — (1 — an)d? (u, un))

IN

(1 — an)(d?(zn, v) + 26, Md(xn,v) + 2 M?)

o (d(u,v) = (1 = an)d(u, un))

(1 = an)d* (T, ) + an (@ (u,v) — (1 — an)d?(u,up))

+(1 — o) (26, Md(z,v) + €2 M?)

IN

(1 — ) d?*(zn,v) + an (d2(u,v) — (1 — ap)d?(u, Up))

+(1 = an) (26, MN + 2 M?),
where N = sup{d(z,,v) : n € N}. We use Lemma 5.5 to conclude the proof. O

Now, we are ready to present our first main result.

Theorem 5.7. Let X be a complete CAT(0) space and {A; : i € N} be a family of
closed convex subsets of X such that (\;=, A; # 0. Let {\,} be a sequence in (0, 1)
such that 3707 N, = 1, 37 N — 0asn — oo where \j = > 72, | \;. Suppose

{en} and {a,,} are sequences in (0,1) satisfying > - €, < 0o, (Cl), (C2) and (C3)

respectively. Let u,x1 € X be arbitrarily chosen and set

rn = sup{dist(z,,A;)},

iEN
1
Bn € (0,5\/ 7“,%4—45%—7"”),
Tor1 = opu® (1 — ay)un,

where

un = @A, € AN Bz, : dist(z,, As) + 52)
=1

for alln € N. Then the sequence {x,} converges to the unique point of (\;—, A; which

1S nearest to u.
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Figure 5.1: The first step of our iteration scheme for sets A and B

Proof. Foreach: € N, let m; : X — A, be the projection mapping. Using the law of

cosine and the definition of 3,,, we have

dQ(xn, u,‘jl) — dQ(xn, TiTn,)

dz(uﬁb 3 pzmn)

IN

< (d(xp, miwn) + B2)? — d* (2, Ty,

< Bu(2rn + Ba)
1 1
< (5\/4T%+45%—Tn> (5\/47‘%—{—45%—}—7"”) 28721

Hence d(u’i, mz,) < e, foralln € N. Let 7 : X — X be defined by

(e.)
TR @ AT X
i=1

for each « € X. From Lemma 2.50, 7 is nonexpansive and Fliz(n) = (-, Fiz(m;) =

iz, A;. For each n, we can choose m,, € N such that

(@)\ up ,@ Zmn )\ ) +d (@ )\,mxn,@ Zmﬂ " mxn) < &p.
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Thus
d(tp, 7xy) < d<@mn’@zmu >+d< ijA EDZ’””“")
+d (é Z"?" 5 T, @ A\ m%)

m
n A/L A
< Z Mn oy d(unlmnaﬂ—imn) +éen < 22’5”.
i=1 =17

— i

Letg € (;2; A;. Then

d(xnt1,9) = d(anu® (1 — ay)up,q)
< and(u,q) + (1 — ay) <€B Aity,! 7(]>
< apd(u,q) + (1 — ay) <@ i ,é Zm" )\ >
< and(u> Q) + ( - O5n <5n i Z Zmn )\ szn) * d(ﬂ-z$na Q)))
< apd(u,q) + (1 — ay)d(zy, ) + 2(1 — ap)en

< max{d(u, q), d(zn, q)} + 2(1 — an)en.
By induction we have

d(zns1,q) < max{d(u,q),d(z1,q)} +2> (1 — ay)e, < oo foralln € N.

n=1
This implies the sequence {x,} is bounded. The result now follows from Theorem

5.6. ]

When the domain is bounded, we have the following result where the sequence {x,, }

is computable.

Theorem 5.8. Let X be a complete CAT(0) space and {A; : i € N} be a family of
closed convex subsets of X such that (-, A; # 0 and \J;=, A; is bounded. Let {\,}

be a sequence in (0,1) such that 3~ A\, = 1, > N, — 0asn — oo where

=n K3

A= D2 A Let {en} be a sequence in (0, 1) and {c,,} be a sequence in (0,1)

7
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satisfying >~ e, < 00, (CI), (C2) and (C3) respectively. Let u,x, € C be arbitrarily

chosen. For eachn € N, choose k,, € N such that X, < ¢,, for all i > k,, and set

rn = sup{dist(z,, A;)},

ieN
1
O Ve (O, 5\/47“7% "‘45%7%) ;
Tnt1 = au® (1 —an)uy,

where
kn

Yy . , .
u,, = @ Tufl‘l, ui € Ay N B(zy : dist(x,, A;) + B2).
i=1 Zj:l )‘j
Then the sequence {x,,} converges to the unique point of (-, A; which is nearest to u.
Proof. Let m; and 7 be as in the proof of Theorem 5.7. Thus we have

d(ufi ,TiTy) < Ep

for all n € N. For each n, we can choose m,, > k,, such that

(@ /\mwn,@ o /\ wn) < én.

Since \; < g, < %, we have

kn )\@ My )\z

kn Y kn+1 P4
=J d @k—zﬁix”’@ﬁﬂixn> o
<i:1 Zjil >‘j i=1 ZgnJ{ A
mp—1
+d o ,1 < Ti%a, Sy Tiln
(& s @ nn)
k
v 8 ( e DY
< —5—d @—Wﬂn Thp+1Tn | + -
- kn+1 kn ’ n
Zj:l >\j i=1 Zj:l )‘j
mp—1
A n A
++ﬂnd m—ilmxmwmnxn
Z-, )" <26? Zjnl )‘j )
<

K Z 1—X<2K >N <2KN, |, < 2Ke,

i=kn+1 i=kn+1
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where K = sup,,cy {supleN {d (@2:1 ﬁmxn, 7rl+1xn> }} < oo. Thus
j J

The result now follows from Theorem 5.6. OJ

5.2 Applications

Let X be a complete CAT(0) space. For a function h : X — (—o00, o], the a—sublevel
set is defined by
A ={z € X : h(z) <a}.

The function A is said to be

* lower semi-continuous if Aj is closed for all o € R;

* uniformly continuous if for any € > 0 there exists § > 0 such that d(h(x), h(y)) <
eforall z,y € X with d(z,y) < ;

* convex if forany z,y € X, u € [z,y] and t € (0, 1) we have
h(u) < (1 =1)h(x) + th(y);

* uniformly convex if there exists A > 0 such that for any z,y € X and u € [z, ]
we have
h(u) < (1= t)h(x) + th(y) — M1 — t)d*(z, y)

d(z,u)

where t = dry)"

Let {h; : i € N} be a family of lower semi-continuous and convex functions from X into
(—o0, 00|. In [5], Badak, Searston and Sims presented the application of the alternating
projection method for approximating an minimizer of the function H : X — (—o0, o0

where H = sup,  h; as follow:
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Proposition 5.9. [5, Proposition 5.2] Let X be a complete CAT(0) space and a mapping
F: X — (—o0,0] be of the form F = max{f, g}, where f,g : X — (—o0, 0] are
lower semi-continuous and convex functions. Let o > inf,cx F(x) > —oo, and A%
be nonempty. Assume that f is both uniformly convex and uniformly continuous on
bounded sets of X. Let xo € X be a starting point and {x,} C X be the sequence

generated by

Top—1 = 7Tf($2n—1)7 Top = ﬂ-g(xQn—l)a n c N7

where T and m, are projection mappings from X to A and Ay respectively. Then {z,}

converges to z € A%.

Two Propositions below also provide the strong convergence of the sequence {x,, }

to an (approximative) minimizer of H by using our iteration scheme.

Proposition 5.10. Let X be a complete CAT(0) space and a mapping H : X —
(—00, 00] be of the form H = sup,y h;, where h; : X — (—o00,00] are lower semi-
continuous and convex functions for all i € N. Let o > inf,ex H(z) > —oo. Let
{A\n} be a sequence in (0,1) such that Y >~ N\, = 1, Y2 N — 0asn — oo

where N, = > 2. A Suppose {e,} and {c,} are sequences in (0,1) satisfying

j=i+1

Yoo en < 00, (C1), (C2) and (C3) respectively. Let u,z1 € X are arbitrarily chosen
and set

Tn = sup{dist(z,, A},)},

ieN
1
6y € (0, 5\/47",% +4e2 — rn) ,
Tor1 = apu® (1 — ay)uy,

where

tn = @ Nk, 1l € AZ NV By, - dist(za, AF) + 52)

i=1
for all n € N. Then the sequence {x,} converges to the unique point of AS; which is

nearest to u.

Proof. Since h; : X — (—00, oc] are lower semi-continuous and convex functions, Af;,

1s closed and convex for all © € N. The result then follows from Theorem 5.7. ]
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Proposition 5.11. Let X be a complete CAT(0) space and a mapping H : X —
(—00, 00| be of the form H = sup,cy h;, where h; : X — (—o00, 00| are lower semi-
continuous and convex functions for all i € N. Let o > inf,ex H(x) > —oo. Let
{\n} be a sequence in (0,1) such that 3> N\, =1, > ° X, — 0 as n — oo where

Ni =202 A Suppose {e,} is a sequence in (0, 3) and {v,} is a sequence in (0,1)
satisfying >~ €, < 00, (CI), (C2) and (C3) respectively. Let u, x1 € C be arbitrarily

chosen. For eachn € N, choose k,, € N such that \; < e, for all i > k,, and set

Tn — Sup{dist(xna Ag,)h

iEN
1
Bn € (0, 5\/47’% + 4e2 — Tn) :
Tptr1 = OCGpU ©® (1 i Oén)U;”
where
kTL A . :
U A= @ Uy Uy, € A N By, : dist(w,, Afy) + B2).

i=1 Zj:l )‘j

If{z,,} is bounded, then the sequence {x,} converges to the unique point of A}, which

1S nearest to u.

Proof. Here we apply Theorem 5.8. O



