CHAPTER 3

RESULTS AND DISCUSSION

In this Chapter, the particles properties of unloaded WO₃ and Pt-loaded WO₃ synthesized by FSP and the hydrothermal method are discussed by XRD, BET, SEM with EDS –dot mapping mode, HRTEM. Gas sensing films of all samples were tested towards flammable gases (H₂, C₂H₅OH , C₂H₄ and CO), environmentally hazardous gas (NO₂).

3.1 Particles properties

3.1.1 X–ray diffraction analysis (XRD)

Figure 3.1(a) shows the XRD patterns of unloaded WO₃, 0.25–1.0 wt.% Ptloaded WO₃ nanoparticles (P0-P1), Au/Al₂O₃ substrate (Au/Al₂O₃ substrate) and corresponding WO₃ sensing films after annealing (S0-S1). It can be clearly seen that P0-P1 samples were crystalline and all peaks can be well matched to JCPDS file No.83–0950, which corresponds to WO₃ monoclinic structure. However, diffraction peaks of Pt were not found in these patterns. This absence should be due to the fact that concentrations of Pt were very low and XRD does not have sufficient sensitivity to detect it. XRD peaks of sensing films (S0-S1) confirm the presence of monoclinic WO₃ structure of the films. In addition, it is seen that S0-S1 have different XRD peak intensities compared to their corresponding nanoparticles (P0-P1), indicating changes in texturization of the crystal plane orientation after sensing films preparation. Figure 3.1 (b) shows the XRD patterns of unloaded WO₃ and 0.25–1.0 wt.% Pt-loaded WO₃ nanoparticles (H0-H1). It can be seen that all samples were highly crystalline, and all peaks can match to the monoclinic structure of WO₃ (JCPDS No. 04–006–7123). However, Pt peaks were not found in these patterns. It can be assumed that the size of Pt particles were very small, which were later proved by the HRTEM results.

Figure 3.1(a) XRD patterns of flame-spray-made (5/5) unloaded WO₃ as-prepared (P0), 0.25–1.0 wt.% Pt-loaded WO₃ (P0.25-P1), Au/Al₂O₃ substrate (Au/Al₂O₃), and samples P0, P0.25, P0.5, and P1 were spin-coated on Au/Al₂O₃ substrate after annealing and sensing test (S0, S0.25, S0.5, and S1) ((\blacklozenge) WO₃; (\blacktriangle) Al₂O₃; (\blacksquare) Au).

Figure 3.1(b) XRD patterns of WO_3 loaded with different contents of Pt. From H0-H1, the doping ration of Pt/W was 0, 0.25, 0.5, 0.75 and 1.0 wt.%, respectively.

3.1.2 BET analysis

The average BET equivalent particle diameters (d_{BET}) as shown in Table 3.1 were calculated using the density of WO₃ and Pt to take into account for their weight contents in different loading. It can be seen that SSA_{BET} increases while d_{BET} decreases with Pt concentration. The results can be explained that d_{BET} of Pt-loaded WO₃ nanoparticles would be the ordinary average size of the combined Pt and WO₃ nanoparticles. With increasing Pt loading, the number of Pt particles increased and hence the average particles would decrease because the size of Pt nanoparticles was expected to be much smaller than those of WO₃ nanoparticles.

Table 3.1 shows SSA_{BET} and d_{BET} comparison of unloaded WO₃ and 0.25–1.0 wt.% Pt-loaded WO₃ nanoparticles synthesized by FSP and the hydrothermal method.

Table 3.1 SSA_{BET} and d_{BET} of unloaded WO₃ and 0.25–1.0 wt.% Pt-loaded WO₃ nanoparticles synthesized by FSP and the hydrothermal method.

SPECIFIC SURFACE AREA	PARICLE DIAMETER
$SSA_{\rm BET}$ (m ² /g)	$d_{\rm BET}({\rm nm})$
84.12	9.96
96.57	8.70
94.92	8.87
97.11	8.69
96.19	8.80
9.94	84.30
12.39	67.80
12.66	66.52
15.07	56.03
15.04	56.28
	SPECIFIC SURFACE AREA SSA _{BET} (m²/g) 84.12 96.57 94.92 97.11 96.19 9.94 12.39 12.66 15.07 15.04

3.1.3 Scanning electron microscopy (SEM)

Figure 3.2 shows the morphology of highly crystalline flame–made (5/5) (a) unloaded WO₃ (PO) and (b-e) 0.25–1.0 wt.% Pt-loaded WO₃ nanoparticles (P0.25-P1) for SEM analysis. It can be seen that nanoparticles were spherical in shape, and well dispersed without evidence of aggregation. The average particle size ranges from 10 to 20 nm. From this observation, it was found that the rough morphology and the rough particle sizes were not changed with increasing Pt loading levels. Nevertheless, the accurate sizes and morphology of the nanoparticles can be estimated from the HRTEM analysis. While the SEM images provide 3–D morphology and can estimate particle sizes, TEM images reveal more internal structure and a more accurate measurement of particle size and morphology than SEM.

SEM images of (a) unloaded WO₃ (H0) and (b-e) 0.25-1.0 wt.% Pt-loaded WO₃ nanoparticles (H0.25-H1) shown in Figure 3.3 revealed platelet structure regardless of the different Pt concentration employed. The powders were seen as loose agglomerations with a plate size ranging from roughly 40 to 500 nm wide and 20–40 nm thick. Note that finer, individual platelets were not clearly observed by SEM study due to its limited resolution.

Figure 3.2 The morphology of highly crystalline flame-made (5/5) (a) unloaded WO₃ (P0) (b) 0.25 wt.% Pt-loaded WO₃ (P0.25) (c) 0.5 wt.% Pt-loaded WO₃ (P0.5) (d) 0.75 wt.% Pt-loaded WO₃ (P0.75) and (e) 1.0 wt.% Pt-loaded WO₃ (P1) nanoparticles for SEM analysis.

Figure 3.3 The morphology of (a) unloaded WO₃ (H0) (b) 0.25 wt.% Pt-loaded WO₃ (H0.25) (c) 0.5 wt.% Pt-loaded WO₃ (H0.5) (d) 0.75 wt.% Pt-loaded WO₃ (H0.75) and (e) 1.0 wt.% Pt-loaded WO₃ (H1) nanoparticles for SEM analysis.

Figures 3.4 and 3.5 show EDS spectrum and EDS-dot mapping images of all elements in (a) unloaded WO₃ (P0) (b) 1.0 wt.% Pt-loaded WO₃ (P1) (c) unloaded WO₃ (H0) and (d) 1.0 wt.% Pt-loaded WO₃ (H1) nanoparticles. It can be seen that W, O and Pt elements were quite evenly distributed over the area. In addition, the density of Pt sites was approximately a few percents of those of W and O sites. This was consistent with expected elemental composition. The average Pt concentrations of P1 and H1 nanoparticles were estimated by EDS quantitative analysis software (Oxford Instrument) to be 1.33% and 1.21%, which is in good agreement with the intended concentration. However, the concentrated amount of element compositions was slightly changed depending on the different selected area in EDS analysis. Nevertheless, the EDS spectrum and mapping confirm the existence of Pt and indicates that Pt is uniformly dispersed in the mixture of nanoparticles.

Figure 3.4 The EDS spectra images of all elements in the (a) unloaded WO_3 (P0) (b) 1.0 wt.% Pt-loaded WO_3 (P1) (c) unloaded WO_3 (H0) and (d) 1.0 wt.% Pt-loaded WO_3 (H1) nanoparticles.

Figure 3.5 (a) EDS-dot mapping images of all elements in the unloaded WO₃

(P0) nanoparticles.

Figure 3.5 (b) EDS-dot mapping images of all elements in the 1.0 wt.% Pt-

loaded WO₃ (P1) nanoparticles.

Figure 3.5 (c) EDS-dot mapping images of all elements in the unloaded WO₃

(H0) nanoparticles.

Figure 3.5 (d) EDS-dot mapping images of all elements in the 1.0 wt.% Pt-

loaded WO₃ (H1) nanoparticles.

3.1.4 High resolution transmission electron microscopy (HRTEM)

Figure 3.6 shows HRTEM images of (a) unloaded WO₃ (P0) (b) 1.0 wt.% Ptloaded WO₃ (P1) (c) unloaded WO₃ (H0) and (d) 1.0 wt.% Pt-loaded WO₃ (H1) nanoparticles. The unloaded WO₃ nanoparticles (Figure 3.6(a)) and 1.0 wt.% Ptloaded WO₃ (Figure 3.6(b)) were seen as particles having a clear spherical morphology. The particles sizes were found to be almost in the same range of ~10 nm for both cases, which was in good agreement with the BET data. The crystallite sizes of spherical unloaded WO₃ (P0) and 1.0 wt.% Pt-loaded WO₃ (P1) were found to be ranging from 5–20 nm. For unloaded WO₃ (H0) and 1.0 wt.% Pt-loaded WO₃ (H1) nanoparticles (Figures 3.6(c) and (d)), it was observed that platelet particle having the average size of 80 ± 10 nm long and 50 ± 5 nm thick. HRTEM images show that very small Pt nanoparticles is small than 1 nm for 1.0 wt.% Pt-loaded WO₃. The uniform Pt dispersion throughout WO₃ support is very important for enhancing the gas sensing properties of metal oxide [88, 146].

Figure 3.6 HRTEM images of (a) unloaded WO_3 (P0) (b) 1.0 wt.% Pt-loaded WO_3 (P1) (c) unloaded WO_3 (H0) and (d) 1.0 wt.% Pt-loaded WO_3 (H1) nanoparticles.

3.1.5 SEM sensing layer

The cross-section, film thickness and surface morphology of the sensing film layer (S0) after annealing and gas sensing are further characterized using SEM analysis as shown in Figures 3.7 (a) and (b). It can be seen that the films were nanoporous with very fine grain nanoparticle structures. The film thickness of sensing film was estimated to be approximately (a) 30 μ m and (b) 1 μ m, which could provide

tremendously benefit gas sensing because the films were nanoporous and hence its specific surface area for gas sensing is increased with the film thickness.

Figure 3.7 (a) SEM micrographs of sensor (S0) based on unloaded WO₃ (P0) and (b) sensor (S0) based on unloaded WO₃ (H0) nanoparticles.

Figures 3.8 (a-d) show EDS line scan images of all elements in the unloaded WO_3 and 1.0 wt.% Pt-loaded WO_3 sensors. It can be seen that W, O and Pt elements were quite evenly distributed over the entire area. In addition, the density of Pt sites was approximately a few percents of those of W and O sites. This was consistent with expected elemental composition. The EDS line confirms the existence of Pt and indicates that Pt was uniformly dispersed on the surface of nanoparticles.

Figure 3.8 (a) The EDS line scan mode–SEM analysis of sensor (S0) based on unloaded WO_3 nanoparticles (P0). The histograms showed the elemental compositions of samples. The lines scans correspond to W, Al, Au, and O elements.

Figure 3.8 (b) The EDS line scan mode–SEM analysis of sensor (S1) based on 1.0 wt.% Pt-loaded WO₃ nanoparticles (P1). The histograms showed the elemental compositions of samples. The lines scans correspond to W, Al, Au, Pt and W elements.

Figure 3.8 (c) The EDS line scan mode–SEM analysis of sensor (S0) based on unloaded WO_3 nanoparticles (H0). The histograms showed the elemental compositions of samples. The lines scans correspond to W, Al, Au, and O elements.

Figure 3.8 (d) The EDS line scan mode–SEM analysis of sensor (S1) based on 1.0 wt.% Pt-loaded WO₃ nanoparticles (H1). The histograms showed the elemental compositions of samples. The lines scans correspond to W, Al, Au, Pt and W elements.

- **3.2** Gas sensor based on Pt-loaded WO₃ nanoparticles (P0-P1)
 - 3.2.1 Flammable and Explosive gases

3.2.1.1 Gas sensing of Pt-loaded WO₃ nanoparticles (P0-P1) synthesized by FSP towards hydrogen (H₂) gas

Hydrogen (H₂) is a clean, portable and potentially inexhaustible energy source with the potential to become a panacea for clean energy generation. However, H₂ has wide explosive concentration range (4–75 vol.%), low ignition energy (0.02 mJ) and large flame propagation velocity [147]. Due to its ultra small molecular size, confinement and containment of this gas are very difficult. Moreover, H₂ cannot be detected by human senses because it is colorless and odorless [148]. Thus, accurate detection and monitoring of hydrogen is an important issue.

The interaction of the resistive sensors with a target gas produces a change in the electrical conductance of the sensors recorded by a variation in the electrical resistance. Figure 3.9 (a)-(d) shows the change in resistance of sensors, S0-S1, under exposure to H₂ pulses with varying concentrations from 0.01 to 1 vol.% at 150–300°C operating temperatures. The resistance reduction was clearly seen at all gas concentrations indicating that the WO₃ sensor had typical n-type semiconductor behaviors. It can be noticed that sensor, S1 (1.0% Pt), shows the best response with more drastic resistance change than sensors, S0.5 (0.5% Pt) and S0.25 (0.25% Pt), respectively while the sensor, S0 (0% Pt), gives no respond. Thus, small Pt loading can greatly improve H₂ response of WO₃ sensors. In addition, Pt-loaded WO₃ sensors have fast response with stable and full recovery even at low operating temperature of 150°C. With increasing temperature, the response tends to be faster but the resistance change seems to be decreasing in all Pt-loaded sensors.

Figure 3.9 The change in resistance of sensors, S0-S1, under exposure to H_2 pulses with varying concentrations from 0.01 to 1 vol.% at 150–300°C (a-d), respectively.

The sensing behaviors were then analyzed in terms of gas-sensing response (S) and response time (T_{res}) . S is defined as the ratio of R_a/R_g where R_a and R_g denoted the values of resistance of the films in dry air and tested gas, respectively while T_{res} is defined as the time required until 90% of the response signal is reached. Figure 3.10 demonstrates the gas-sensing response (left axis) and response time (right axis) versus H₂ concentration ranging from 0.01–1 vol.% for 1.0 wt.% Pt-loaded WO₃ sensor (S1) at operating temperature ranging from 150°C to 300°C. It can be seen that sensor, S1, shows the highest response and also with fast response time (within a few seconds) at low operating temperature of 150°C. As the temperature increases from 150 to 300°C, the response decreases by more than two orders of magnitude while the

response time remains roughly the same. Thus, the sensor exhibits very desirable behaviors of low operating temperature as well as fast response. In addition, the response of sensor, S1, increases drastically while response time decreases exponentially with increasing H_2 concentrations. In particular, a remarkably high response value of 1.34×10^5 was obtained at H_2 concentration of 1 vol.%.

Figure 3.10 The response (left axis) and response time (T_{res}) (right axis) versus H₂ concentration ranging from 0.01–1 vol.% of the sensor, S1, at operating temperature ranging from 150–300°C.

The effect of operating temperature on H_2 response at 1 vol.% for WO_3 sensors with different Pt loading concentrations as shown in Figure 3.11. It can be seen that the H_2 response of unloaded WO_3 sensors was negligible at operating temperature up to 300°C. With a small of Pt content of 0.25 %, the hydrogen response increases by more than two orders of magnitude and optimum operating temperature was lower to ~250°C. As the Pt content increases to 0.5 and 1%, the response

increases by more than four and five orders of magnitude, respectively and the optimum operating temperature was further reduced to ~150°C. In addition, the H_2 response decreases monotonically as the operating temperature increases from 150°C to 300°C.

Figure 3.11 The response of sensors, S0-S1, versus operating temperature ranging from $150-300^{\circ}$ C at 1 vol.% concentration of H₂.

From experimental results, unloaded WO₃ sensor shows almost no response to H_2 at operating temperature up to 300°C. This is in good agreement with other reports that reduction of unloaded WO₃ by hydrogen begins above 400°C [138, 149]. With Pt loading in the range between 0.25 to 1 %, H_2 response dramatically increases. The role of Pt in enhancing sensitivity and response rate of the sensor is known to be attributed to the chemical interaction between gas and sensitizer (Pt). Pt can dissociate H_2 into H atoms, which react with WO₃ support via the spillover process to from blue tungsten bronze by the following reactions [138, 146]:

$$0.5xH_2 \rightarrow xH_{ad} \tag{1}$$
$$xH_{ad} + WO_3 \rightarrow H_xWO_3 \tag{2}$$

WO₃ was a greenish yellow crystalline solid. The reaction accompanies remarkable change in color. This reaction may occur even at room temperature because of very low activation energy between the Pt modified surface and the target gas [149–151]. It has been known that the reaction was partially reversible. However, the reaction may be almost irreversible for some preparation methods and experimental conditions of Pt-loaded WO₃. Therefore, oxidizing agent, such as oxygen, was needed for the reformation of WO₃ matrix [152, 153]. The reformation reaction is described as follow:

$$H_x WO_3 + 0.25 xO_2 \rightarrow WO_3 + 0.5 xH_2 O \tag{3}$$

According to the spillover effect, adsorbed reactants will migrate to the oxide surface to react there with surface oxygen species, affecting the surface conductivity. The electrical resistance of Pt/WO₃ nanoparticles was effectively controlled by the reaction via the depletion layer modulation at the metal-semiconductor (Pt/WO₃) contacts. The depletion layer width was controlled by a potential barrier at Pt/WO₃ interface that was fully characterized by the electron affinity of WO₃, the work function of Pt and the surface state density of WO₃ within the energy gap. For a metal with high work function like Pt, large barrier height results in a wide depletion region. When reacted to H atom, the barrier height at junction decrease due to electron transfer, resulting in larger resistance reduction than the case of unloaded WO₃ nanoparticles. For the above processes to be effective, catalyst should be very small in size but large in number and uniformly dispersed so that reactant species were available near all interparticle contacts and effectively control interparticle contact resistance. The effect can be further enhanced greatly by larger specific surface area of sensing surface.

According to the results, FSP prepared Pt/WO₃ sensors provide much higher H_2 response compared to those of other reports. The attribute of this extraordinary response by two contributions. Firstly, Pt-loaded WO₃ material produced by FSP contains a large number of sub-nanometer Pt particles that was well dispersed in and on WO₃ nanoparticles. Thus, spill-over mechanism was highly effective in this structure, resulting in a great enhancement of H_2 response. Secondly, Pt-loaded WO₃ film prepared by FSP and spin coating had a huge specific surface area owing to its nano-porosity and moderately large thickness of 30 µm. From these contributions, the H_2 response of Pt-loaded WO₃ film in the present work was a few orders of magnitude larger than those of other reports based on Pt-WO₃ thin film gas sensors, which the highest response of 200 was obtained at 1 vol.% H_2 concentration [13, 93, 127].

Regarding the influence of Pt loading concentration, H_2 response of FSP prepared Pt/WO₃ film monotonically increases with Pt loading concentration up to 1.0 wt.% and the ultimate optimal Pt content for H_2 sensing was expected at a higher Pt loading content. Further study will be conducted to determine the actual optimal Pt content in FSP prepared Pt/WO₃ nanoparticles for H_2 sensing. However, it should be noted that 1.0 wt.% Pt loading was chosen as the limit of this study because other reports found the optimal Pt loading concentration of 0.4–0.5% for H_2 , CO and C₂H₅OH gases [138, 139]. The different optimal Pt loading concentrations could be due to different sizes and dispersions of Pt particles formed by distinct preparation methods. For screen printed and sputtered Pt/WO₃ films, relatively large Pt nanoparticles began to agglomerate and poorly disperse at low Pt concentrations of more than 0.4–0.5% [138, 139]. As a result, H_2 response degraded at concentrations higher than these optimal values. In contrast, our results demonstrate that FSP method produces sub-nanometer Pt particles that were very well dispersed in WO₃ nanoparticles at Pt loading concentration up to 1 %. Therefore, optimal Pt concentration of Pt-loaded WO₃ nanoparticles synthesized by FSP was higher than those prepared by other methods because much smaller and more uniformly dispersed Pt nanoparticles were produced even at the higher Pt concentrations.

For the effect of operating temperature, it was seen that the FSP prepared Ptloaded WO₃ films exhibits optimum H₂ response at low temperature of 150°C and the response considerably decreased as operating temperature increased. This result was similar to some Pt/WO₃ films prepared by other methods [127, 139] but this behavior was in contrast to other Pt-loaded metal oxides such as Pt/ZnO, in which H₂ response increased with operating temperature ranging from 200–350°C [154]. The mechanism for such negative temperature dependence of hydrogen response for Pt/WO₃ films, which has not been clearly explained in the literature, was proposed based on the model in Figure 3.12. In this model, Pt particles were assumed to be very small in subnanometer scale in accordance with our experimental observation. At a low temperature (i.e.150°C) (Figure 3.12 (a)), adsorbed oxygen species (mostly O⁻) have low density and spillover effect was effective as usual. At a high temperature (i.e., 250-300°C) (Figure 3.12 (b)), the number of adsorbed oxygen species increases significantly and some of them locate around the subnanometer Pt particles. These adsorbed oxygen species shield Pt particles from H₂ and reduce probability of H₂ dissociation by Pt. Thus, H₂ response decreases considerably because the spillover effect by Pt is substantially hindered while the rate of direct hydrogen reduction by

95

WO₃ is still very low. The shielding effect will not be significant if Pt particle is considerably larger than adsorbed oxygen species and this was seen to be the case for Pt/ZnO synthesized by FSP, in which Pt nanoparticles were found to be larger than 1 nm [154].

Figure 3.12 Model of Pt-loaded WO₃ for explanation of the effect of operating temperature on hydrogen sensing: (a) low operating temperature (i.e., 150° C) and (b) high operating temperatures (i.e., $250-300^{\circ}$ C).

From the data, it can be seen that sensor S1 showed the highest response value of 1.34×10^5 at 150° C towards 1 vol.% H₂. When compared H₂ response of sensor with the same material, Penza *et al.* [13] reported Pt-loaded WO₃ sensor was prepared by reactive rf sputtering. At the operating temperature 150° C, Pt-loaded WO₃ showed maximum response of 3.45 towards 0.05 vol.% H₂. In addition, Pt-loaded WO₃ sensor prepared by R.F. magnetron sputtering was reported by Ippolito *et* al. [127]. It was found that sensor shows highest response of ~200 towards 1 vol.% H₂ at 150°C. Moreover, when compared with another material which prepared by FSP (nanoparticles) and spin coating (sensors). It was clearly seen that 0.2 at.% Pt-loaded ZnO thick film exhibited response of ~164 for 1 vol.% H₂ at 300°C [155]. Thus, the results indicate that Pt-loaded WO_3 prepared by FSP gave much higher H_2 response when compared to those of other reported.

3.2.1.2 Gas sensing of Pt-loaded WO₃ nanoparticles (P0-P1) synthesized by FSP towards ethanol (C₂H₅OH) gas

Ethanol (C₂H₅OH) is a colorless liquid with a characteristic, agreeable odor. In dilute aqueous solution, it has a somewhat sweet flavor, but in more concentrated solution, it has a burning taste. Detection of ethanol vapor is an important feature of the breath alcohol content or even to detect leaks in industrial lines. Ethanol detection is primarily in the range of 10–5000 ppm for monitoring human blood alcohol level and its TLV is 1000 ppm [156]. In addition, ethanol concentration is sometimes measured near its explosive range of 3–19 vol.%.

The C₂H₅OH gas-sensing properties of unloaded WO₃ (S0) and 0.25–1.0 wt.% Pt-loaded WO₃ sensors (S0.25-S1) were tested. It is well known that rate of gas response (The gas-sensing response, *S* is defined as the ratio R_d/R_g) to C₂H₅OH was much dependent on the operating temperature and the amounts of additives. Such tendencies were shown in Figure 3.13. It can be seen that response of these sensors to 1000 ppm C₂H₅OH varies with only the operating temperature but also the concentration of Pt. In the range of the operating temperatures studied, from 150 to 300°C, the response values increased sharply at first and gradually decreased for all the sensors. Each curve presents a maximum at an optimal operating temperature. The unloaded WO₃, 0.5 and 1.0 wt.% Pt-loaded WO₃ sensors have the maximum gas response which were estimated to be 4.48, 1.3 x 10³ and 2.4 x 10³ at 200°C, while 0.25 wt.% Pt-loaded WO₃ sensor has the maximum gas response which was observed

to be 259 at 250°C. The sensor response and operating temperature of Pt-loaded WO₃ sensor were the highest response and lower temperature. Furthermore, the Pt-loaded sensors exhibit much higher response than the unloaded WO₃. Especially, the 1.0 wt.% Pt-loaded WO₃ sensor presents the largest response towards C_2H_5OH at 200°C.

Figure 3.13 Response of unloaded WO₃ and Pt-loaded WO₃ sensors operated at 150–300°C towards 0.1 vol.% C₂H₅OH.

Figure 3.14 demonstrates the response of unloaded and Pt-loaded WO₃ sensors to different concentrations of C₂H₅OH (0.005–0.1vol.%) measured at the same operating temperature of 200°C. It can be seen that the gas response of the loaded sensors is higher than that of the unloaded WO₃. And the response values of the sensors increased drastically while response time decreases exponentially with an increase of the C₂H₅OH gas concentration. Thus, it was obvious from Figure 3.14 that not only temperature but also C₂H₅OH concentration plays a role in determining the response of the sensing films.

Figure 3.14 Response (left axis) and response time (T_{res}) (right axis) of unloaded WO₃ and Pt-loaded WO₃ sensors to different concentration of C₂H₅OH at 200°C.

From experimental results, it was obvious that sensor S1 showed the highest response value of ~ 2.4×10^3 at 200°C towards 0.1 vol.% C₂H₅OH. When compared C₂H₅OH response of sensor with the same material, Zhang *et al.* [88] reported Pt-loaded WO₃ (powders) and sensor were prepared by the coprecipitation and spin coating, respectively. At the operating temperature of 140°C, 2.36 wt.% Pt/WO₃ sensors showed maximum response of ~87.1 toward 0.01vol.% C₂H₅OH. In addition, unloaded WO₃ sensor prepared by screen-printing was reported by Khadayate *et al.* [129]. It can be seen that sensor shows highest response of ~1424.6 towards 50 ppm C₂H₅OH at 400°C. However, 0.4 wt.% Pt/WO₃ sensor was prepared by screen-printing showed very low response of ~2 towards 0.016 vol.% C₂H₅OH at 450°C as reported by Srivastava *et al.* [138]. Moreover, when compared with another material which prepared by FSP (nanoparticles) and spin coating (sensors). It was found that 0.5 mol% W-loaded ZnO thick film exhibited response of ~6 for 0.01vol.% C₂H₅OH

at 400°C [157]. Thus, the results indicate that Pt-loaded WO₃ prepared by FSP demonstrated much higher C_2H_5OH response as compared to those of other reported.

3.2.1.3 Gas sensing of Pt-loaded WO₃ nanoparticles (P0-P1) synthesized by FSP towards carbon monoxide (CO) gas

Carbon monoxide (CO) is a colorless and odorless gas, making it undetectable to human [158]. It is mainly produced due to the incomplete combustion of fuels and commonly found in the emission of automobile exhaust. The gas has been shown to bind irreversibly to the iron center of hemoglobin, the oxygen transport molecule in blood. Thus, oxygen can no longer be absorbed and high levels of CO exposure will result in death. CO is mainly of interest as toxic gases and its detection range of interest is typically 1–1,000 ppm because its TLV is 25 ppm. However, CO is also explosive and there is some interest for its measurement in the high concentration range near its minimum explosive limit of 12.5 vol.%.

The temperature has an obvious influence on the response of sensors to CO gas (The gas-sensing response, *S* is defined as the ratio R_a/R_g). In order to determine the optimal operating temperatures, the response of 1.0 wt.% Pt-loaded WO₃ (S1) sensors with concentrations to 0.1 vol.% of CO in air was tested as a function operating temperature, as shown in Figure 3.15. It can be seen that response of sensor S1 increased with temperature, up to 200°C, and then gradually decreased. Therefore, optimal operating temperature of 200°C was chosen for CO.

Figure 3.16 shows the gas-sensing response (left axis) and response time (right axis) versus CO concentration ranging from 0.005–0.1 vol.% for the unloaded (S0) and Pt-loaded WO₃ sensor (S0.25-S1) at operating temperature of 200° C. It can be

seen that the response of sensor S1 increases drastically while response time decreases exponentially with increasing CO concentrations. In particular, a high response value of ~ 1.2×10^2 was obtained at CO concentration of 0.05 vol.%.

Figure 3.15 The response of 1.0 wt.% Pt-loaded WO₃ (S1) sensors versus operating temperature ranging from $150-300^{\circ}$ C at 0.1 vol.% concentration of CO.

Figure 3.16 The response (left axis) and response time (T_{res}) (right axis) versus CO concentration ranging from 0.005–0.1 vol.% of the sensor, S0-S1, at operating temperature ranging from 200°C.

According to the results, it can be seen that sensor S1 showed the highest response value of $\sim 1.2 \times 10^2$ at 200°C towards 0.05 vol.% CO. When compared CO response of sensor with the same material, Penza et al. [13] reported unloaded and Ptloaded WO₃ sensors showed the same response of ~0.05 towards 0.1 vol.% CO at 250 °C and 150°C, respectively. Therefore, Pt catalyze was not able to increase the response but can reduce the operating temperature. Pt-loaded WO₃ sensor prepared by sputtering was reported by Tao et al. [14]. It was found that sensor show the highest response of ~2.3 towards 0.01 vol.% CO at 220°C. In addition, Srivastava et al. [138] reported 0.4 wt.% Pt/WO₃ sensor was prepared by screen-printing showed response of ~1.5 toward 0.08 vol.% CO at 450°C. Furthermore, when compared with another material which prepared by FSP (nanoparticles) and followed by spin coating (sensors). It was seen that 2 at.% Pt-loaded ZnO thick films showed response of ~2.4 for 0.1vol.% CO at 300°C [155]. Finally, 0.5 mol% Nb-loaded ZnO sensor exhibited response of ~2.8 for 0.1vol.% CO at 400°C [159]. Therefore, the results indicate that Pt-loaded WO₃ prepared by FSP demonstrated much higher CO response when compared to those of other had reported.

3.2.1.4 Gas sensing of Pt-loaded WO₃ nanoparticles (P0-P1) synthesized by FSP towards ethylene (C₂H₄) gas

Ethylene (C_2H_4) is a colorless flammable gas with a sweet odor. The chemical properties of C_2H_4 result from the carbon-carbon double bond, with a bond length of 0.134 nm and its planar structure [160]. C_2H_4 is a very reactive intermediate, which can undergo all typical of reactions with a short-chain olefin, making it an important chemical building block and its production involves complicated separation process.

 C_2H_4 can be converted to saturated hydrocarbons, oligomers, polymers, and derivatives thereof. Chemical reactions of ethylene with commercial importance include addition, alkylation, halogenation, hydroformylation, hydration, oligomerization, oxidation, and polymerization. Moreover, ethylene is naturally produced from ripening agricultural products and its detection range of interest is 0.1–100 ppm (TLV = 1 ppm) for monitoring their freshness. In addition, ethylene concentration is often measured in the range near its minimum explosive limit of 3 vol.%.

The response and response times of the sensing films of WO₃ nanoparticles as a function of C₂H₄ concentration between 0.005 and 0.1 vol.% at 150°C were shown in Figure 3.17 (a) (The gas-sensing response, *S* is defined as the ratio R_a/R_g). The response was increased considerably by loading 1.0 wt.% Pt-loaded WO₃. The response value of 9.9 and response time of 114 s were obtained at 0.1 vol.% of C₂H₄ concentration present for 1 wt.% Pt. The response, however, was decreased considerably when loading the 0.5 and 0.25 wt.% Pt-loaded WO₃. It was important to note that the unloaded WO₃ and Pt-loaded WO₃ nanoparticles behave as an n-type semiconductor with the resistance decreased during C₂H₄ gas environment as shown in Figure 3.17 (b). The semiconducting and gas-sensing behaviors were thus strongly depending on the loading level of Pt on WO₃ nanoparticles.

Figure 3.17 (a) Variation of response (left axis) with concentration of C_2H_4 (0.005–0.1 vol.%) and variation of response times (right) for S1, S2, S3 and S4 at 150°C. (b) Change in resistance of sensors, S0-S1, under exposure to reducing gas C_2H_4 pulses during forward cycle.

From the data, it was obvious that sensor S1 showed the highest response value of ~9.9 at 150°C towards 0.1 vol.% C₂H₄. When compared C₂H₄ response of sensor with the same material, Nimittrakoolchai *et al.* [23] reported unloaded WO₃ sensor was prepared by precipitation method. At the operating temperature of 300°C, sensing film showed maximum response of ~4.5 towards 10 ppm C₂H₄. In addition, when compared with another material which prepared by FSP (nanoparticles) and spin coating (sensors). The 0.2 at.% Pt-loaded ZnO thick film exhibited response of ~0.89 for 1 vol.% C₂H₄ at 350°C [157]. Therefore, the results indicated that Pt-loaded WO₃ prepared by FSP demonstrated much higher C₂H₄ response when compared to previously known reporteds.

3.2.2 Atmospheric pollution gas

3.2.2.1 Gas sensing of Pt-loaded WO₃ nanoparticles (P0-P1) synthesized by FSP towards nitrogen dioxide (NO₂) gas

Nitrogen oxides (NO_x) are crucial points to reduce the noxious effects on environment and human beings. Two of the most toxicologically significant nitrogen oxides are nitric oxide (NO) and nitrogen dioxide (NO₂); both are non-flammable and colorless to brown color at room temperature. NO is a sharp sweet-smelling gas at room temperature, whereas NO₂ has a strong, harsh odor and is a liquid at room temperature. Among them, NO₂ is the most hazardous gas with TLV of 3 ppm [161]. NO₂ is created by the high temperature combustion of coal, chemical production, natural gas or oil in power plants and also by the combustion of gasoline in internal combustion engines. One of the consequences of NO₂ released into the atmosphere is the formation of photochemical smog. In addition, NO_2 is a cause of acid rain and is involved in the depletion of ozone in the stratosphere [162].

Figure 3.18 illustrates the change in resistance of sensors, S0-S1, under exposure to NO₂ gas with different concentrations ranging from 1 to 50 ppm at 150° C. The increase of resistance was clearly specified at all gas concentrations indicating that the WO₃ sensor had typical n-type semiconductor behaviors. However, the increase in resistance was small and the recovery speed was slow for pure WO₃ material. Adsorption of NO₂ on WO₃ nanoparticles results in a decrease of the conductivity, which may be explained by the following reactions [111]

$$NO_2(g) + e^- \leftrightarrow NO_2^-(ads)$$
 (4)

$$NO_2(g) + e^- \leftrightarrow NO(g) + O^-(ads)$$
 (5)

Both of these reactions require electrons from the conduction band of WO_3 , which then lead to a decrease of the conductivity.

Figure 3.18 The change in resistance of sensors, S0-S1, under exposure to NO₂ pulses with different concentrations ranging from 1 to 50 ppm at 150° C.

The response of unloaded WO₃ (S0) thick film was of 327 and observed towards 20 ppm at 150° C as shown in Figure 3.19. On loading with Pt catalysts the gas response was enhanced. It can be seen that sensor S0.25 (0.25%Pt) showed the best response than sensor S0.5 (0.5%Pt) and S1 (1.0%Pt). In addition, the response of sensor S0.25 (0.25%Pt) was about 954 towards 20 ppm NO₂ at 150°C. The response time of NO₂ became less than 2 min. Thus, small Pt loading could greatly improve response towards NO₂.

Figure 3.19 The relative of response with concentration of NO₂ (ppm) between unloaded WO₃ (S0) and 0.25–1.0 wt.% Pt-loaded WO₃ sensors (S0.25-S1) at 150° C.

Figure 3.20 Response versus operating temperature curve for unloaded WO₃ (S0) and 0.25-1.0 wt.% Pt-loaded WO₃ sensors (S0.25-S1).

The effect of operating temperature on NO₂ response at 10 ppm for WO₃ sensors with different level of Pt loading concentrations is shown in Figure 3.20. It can be seen that the all sensors showed the high response at low operating temperature of 150°C and the response considerably decreases as operating temperature increases. Therefore, optimal operating temperature of 150°C was chosen for NO₂. This is in agreement with other reports that the temperature for the maximum response to NO_x corresponds to about 150°C for Pt/WO₃ [13]. From the experimental results, it was found that sensor S0.25 showed the highest response value of 637 at 150°C towards 10 ppm NO₂. Comparing with the same material, Penza *et al.* [13] reported that the highest sensing behaviors of Pt-loaded WO₃ to 10 ppm NO₂ was about 3.45 at 150°C. Srivastava *et al.* [138] reported the Pt-loaded WO₃ film prepared by screen-printing, and the sensing test at 450°C with NO₂ at concentration ranging from 40–400 ppm. A sensor showed the highest sensor signal

108

at 400 ppm (S = ~4). Stankova *et al.* [143] also reported Pt-loaded WO₃ sensor prepared by reactive r.f. sputtering with response of 11.73 to 10 ppm NO₂ at 260°C. However, when compared with another material which prepared by FSP (nanoparticles) and spin coating (sensors). It was found that 0.5 mol% Nb/ZnO thick film exhibited response of ~1640 and a short response time (27s) for 4 ppm NO₂ at 300°C [159].

3.2.3 Selective gas sensors based on flame-spray-made Pt-loaded WO₃ nanoparticles

To quantitatively determine the selectivity of sensors, the responses towards H_2 , C_2H_4 , C_2H_5OH , and CO of all sensors were calculated and plotted at the fixed concentration of 0.1 vol.% and operating temperature of 150°C as shown in Figure 3.21. The figure shows that sensor, S1, exhibits very high H_2 response but much weaker responses to CO, C_2H_5OH and C_2H_4 , respectively. The results indicate that Pt loading improves selectivity towards H_2 for WO₃ sensors. From the data, sensor S1, has the response values towards H_2 , CO, C_2H_5OH and C_2H_4 , of 2.58 x 10³, 124, 29 and 9.9, respectively at 0.1 vol.% concentration of testing gas at 150°C operating temperature. Thus, the sensor has the H_2 selectivity relative to CO, C_2H_5OH and C_2H_4 of 20.8, 88.9 and 260, respectively. The selectivity relative to CO was relatively low compared to other gases because Pt was a catalyst for CO reduction. Nevertheless, this selectivity value was still good for some applications.

Finally, reproducibility and stability of sensors were assessed. Five sensors from the same batch were found to have response variation of less than 15 %. The sensors also exhibit good stability with less than 20 % drift in response over 1 month operation.

Figure 3.21 The selectivity histograms of unloaded WO₃ (S0) and 0.25–1.0 wt.% Pt-loaded WO₃ sensors (S0.25-S1) for flammable and explosive gases at concentration of 0.1 vol.% and operating temperature of 150° C.

3.3 Gas sensor based on Pt-loaded WO₃ nanoparticles (H0-H1)

3.3.1 Flammable and Explosive gases

3.3.1.1 Gas sensing of Pt-loaded WO₃ nanoparticles (H0-H1)

synthesized by hydrothermal towards hydrogen (H₂) gas

The gas-sensing response (S) of the sensing films of WO₃ nanoparticles was defined as the ratio R_a/R_g . Figure 3.22 shows the response of the unloaded WO₃ (S0) and 1.0 wt.% Pt-loaded WO₃ (S1) films to 1 vol.% H₂ at varying operating temperatures. The response of the films increases as the operating temperature increases up to 250°C, and then declines. At any operating temperature, the sensor

response of the 1.0 wt.% Pt-loaded WO₃ (S1) film is higher than that of the unloaded WO₃ film. Specifically, at the optimum operating temperature (250° C), the response of the 1.0 wt.% Pt-loaded WO₃ (S1) film showed approximately 211 time more response than that the unloaded WO₃ film (S0).

Figure 3.22 Sensing response to H₂ (1 vol.%) at different operating temperatures.

One major advantage of Pt-loaded WO₃ films were that the sensors can be operated at lower operating temperature (250°C), especially, if these sensors were used to measure the H₂ gas at higher concentrations (1 vol.%). The response was increased considerably by loading 1.0 wt.% Pt-loaded WO₃. The response value of 2.16 x 10⁴ and response time of 0.0252 s were obtained at 1 vol.% of H₂ concentration. The response, however, was decreased considerably when the 0.5 and 0.25 wt.% Pt-loaded WO₃ as shown in Figure 3.23. From the data, there were sufficient numbers of H₂ molecules available to react with the surface oxygen adsorption sites. It was also well-known that Pt nanoparticles contribute to the reduction of sensors resistance of metal oxides and the activation energy between the WO₃ surface and H₂ gas.

Figure 3.23 Sensing response of the unloaded WO₃ (S0) and 0.25–1.0 wt.% Ptloaded WO₃ sensors (S0.25-S1) to H₂ concentrations (0.01–1 vol.%) at the operating temperature of 250° C.

According to the results, it can be seen that sensor S1 showed the highest response value of ~2.16 x 10^4 at 250°C towards 1 vol.% H₂. When compared H₂ response of sensor with the same material, Shen *et al.* [93] reported that unloaded WO₃ sensor was prepared by reactive magnetron sputtering. At the operating temperature of 300°C, the sensor showed maximum response of ~13.6 towards 0.1 vol.% H₂. In addition, 0.5 at.% Pt-loaded WO₃ sensor prepared by radio frequency sputtering was reported by Zhang *et al.* as well [139]. It was obvious that sensing film showed highest response of ~26 towards 0.02 vol.% H₂ at 95°C. When compared with another sensing material, Liewhiran *et al.* [163] reported 0.2 wt.% Ru-loaded SnO₂ nanoparticles synthesized by FSP and sensor was prepared by spin coating. It was found that sensing film showed response of ~27 for 1 vol.% H₂ at 350°C. Therefore,

the results indicate that Pt-loaded WO_3 prepared by hydrothermal gave a much higher H_2 response as compared to those of other reported.

3.3.1.2 Gas sensing of Pt-loaded WO₃ nanoparticles (H0-H1) synthesized by hydrothermal towards ethanol (C₂H₅OH) gas

The dependence of the C₂H₅OH gas-sensing response ($S=R_a/R_g$) on the operating temperature as shown in Figure 3.24. The 0.1 vol.% C₂H₅OH gas response presents a maximum value at 350°C. The 1.0 wt.% Pt-loaded WO₃ sensor (S1) gas response increases from 250 to 1406 when the temperature changes from 200 to 350°C. The optimum operating temperature has been selected at 350°C and this temperature will be fixed for further studies through out the sensor gas response as a function of the gas concentration.

Figure 3.24 Gas sensing response of 1.0 wt.% Pt-loaded WO₃ (S1) sensor to 0.1 vol.% C_2H_5OH as a function of operating temperatures.

The gas response of sensing films to different concentration of C_2H_5OH has been evaluated at 350°C as shown in Figure 3.25. The response was increased considerably by loading the sensing films with Pt. It can be noticed that sensor, S1 (1.0% Pt), shows the best response with more than other sensors, S0.5 (0.5% Pt) and S0.25 (0.25% Pt), respectively. Two behavior regions can be distinguished: in the first one (between 0.005 and 0.05 vol.%) the gas response increases slowly 5.6 to 319, while between 0.05 and 0.1 vol.% C₂H₅OH the gas response increases much faster, i.e., from 319 to 1406. Figure 3.26 shows a typical characteristic for the unloaded WO₃ and Pt-loaded WO₃ films as an n-type semiconductor with the resistance decreased upon expose to C₂H₅OH gas.

Figure 3.25 Gas sensing response of 1.0 wt.% Pt-loaded WO₃ (S1) sensor as a function of C_2H_5OH concentration at 350°C operating temperature.

Figure 3.26 Change in resistance of sensing films upon exposure to C_2H_5OH in forward cycle at 350°C.

From the data, it was found that sensor S1 showed the highest response value of ~1406 at 350°C towards 0.1 vol.% C₂H₅OH. When compared C₂H₅OH response of sensor with the same material, Su *et al.* [164] reported unloaded WO₃ (powders) and sensor which prepared by hydrothermal and followed with spin coating, at the operating temperature of 340°C, their sensor showed maximum response only ~5 toward 0.05vol.% C₂H₅OH. In addition, unloaded WO₃ powders prepared by microwave hydrothermal method were reported by Li *et al.* [165], showed the highest response of ~4.7 towards 0.01 vol.% C₂H₅OH at 400°C. Moreover, when compared with another material which prepared by FSP (nanoparticles) and spin coating (sensors). It was found that 3 at.% Nb-loaded TiO₂ film exhibited response of ~31.7 for 0.01vol.% C₂H₅OH at 350°C [166]. Thus, the results indicate that Pt-loaded WO₃ prepared by hydrothermal gave much higher C_2H_5OH response when compared to those of other reported.

3.3.1.3 Gas sensing of Pt-loaded WO₃ nanoparticles (H0-H1) synthesized by hydrothermal towards carbon monoxide (CO) gas

Figure 3.27 demonstrates the response ($S=R_{\alpha}/R_{g}$) of unloaded WO₃ (S0) and 0.25–1.0 wt.% Pt-loaded WO₃ (S0.25-S1) sensors as a function of temperature when exposed to a 0.2 vol.% CO testing gas. It was found that the response of these sensors towards CO gas (with both the operating temperature and also the concentration of Pt), the sensor S1 (1.0% Pt) shows the response gradually enhanced when the working temperature was elevated up to 250°C, and then decreased with further increase in temperature. The sensor S0 (0 % Pt), S0.25 (0.25% Pt) and S0.5 (0.5% Pt) had no detectable response. Therefore, optimal operating temperature of 250°C was chosen for CO detection.

Figure 3.27 Response of the Pt-loaded WO₃ sensors towards 0.2 vol.% CO at different working temperatures.

Figure 3.28 Response of the Pt-loaded WO₃ sensors towards different CO concentrations at 250° C.

The CO response dependence on gas concentration of the 1.0 wt.% Pt-loaded WO_3 sensor (S1) under the working temperature of 250°C was shown in Figure 3.28. The response increases as the CO concentration increases. The sensor has maximum gas response of 469 towards 0.2 vol.% of CO. The response time of CO was less than 3s.

According to the experimental results, it can be seen that sensor S1 showed the highest response value of ~469 at 250°C towards 0.2 vol.% CO. When compared CO response of sensor with the same material, Sberveglieri *et al.* [126] reported the unloaded WO₃ sensor was prepared by reactive sputtering. It was found that their sensor show the highest response of <0.5 towards 0.01 vol.% CO at 300–500°C. In addition, when compared with another material, Sedghi *et al.* [167] reported unloaded SnO₂ sensor which was prepared by sonochemical method. It was obvious that the sensor exhibited response of ~147 for 0.1vol.% CO at 225°C. However, 0.2 wt.% Pt/SnO₂ film showed a very low response of ~8 for 0.005 vol.% CO at

117

350°C as reported by Mädler *et al.* [114]. Therefore, the results indicate that Pt-loaded WO₃ prepared by hydrothermal gave much higher CO response when compared to those of other reported.

3.3.1.4 Gas sensing of Pt-loaded WO₃ nanoparticles (H0-H1) synthesized by hydrothermal towards ethylene (C₂H₄) gas

The comparison between gas-sensing response ($S=R_d/R_g$) of unloaded WO₃(S0) and Pt-loaded WO₃(S0.25-S1) sensors as a function of C₂H₄ concentration between 50 and 0.1 vol.% at 350°C was shown in Figure 3.29. The sensor S1 (1.0% Pt), S0.5 (0.5% Pt) and S0.25 (0.25 % Pt) have much higher responses than sensor S0 (0% Pt). The enhanced responses should be directly related to the concentration of Pt, which could effectively catalyze the sensing reactions on the sensing layer. The unloaded WO₃, 0.25 and 0.5 wt.% Pt-loaded WO₃ sensors had the maximum gas response which were estimated to be 7.28, 35 and 349 at 0.1 vol.% of testing gas. While 1.0 wt.% Pt-loaded WO₃ sensor had the maximum gas response of the unloaded WO₃ and the WO₃ nanoparticles loaded with 0.25 wt.% Pt sensing films couldn't be measured at the operating temperature beyond 200°C, due to weak response signals.

Figure 3.29 Response as function of C_2H_4 concentration for Pt-loaded WO₃ sensors at 350°C.

From the experimental results, it was found that sensor S1 showed the highest response value of ~388 at 350°C towards 0.1 vol.% C_2H_4 . When compared C_2H_4 response of sensor with the same material, Pimtong-Ngam *et al.* [168] reported the unloaded WO₃ sensor which was prepared by precipitation. At the operating temperature of 300°C, the sensor showed maximum response of ~1.1 towards 6 ppm C_2H_4 . In addition, when compared with another material, Jadsadapattarakul *et al.* [169] reported the unloaded SnO₂ sensor which was prepared by ultrasonic spray pyrolysis. It can be seen that sensing film showed a very low response of ~1.04 for 8 ppm C_2H_4 at 350°C. Moreover, the unloaded SnO₂ sensor which prepared by RF magnetron sputtering was reported by Ahn *et al.* [170]. The sensor exhibited response of 10.43±0.61 for 0.01 vol.% C_2H_4 at 300°C. Thus, the results indicate that Pt-loaded WO₃ prepared by hydrothermal demonstrated much higher C_2H_4 response in comparison to those of other reported.

3.3.2 Atmospheric pollution gas

3.3.2.1 Gas sensing of Pt-loaded WO₃ nanoparticles (H0-H1) synthesized by hydrothermal towards nitrogen dioxide (NO₂) gas

The response $(S=R_{\alpha}/R_g)$ of the unloaded WO₃ (S0) and Pt-loaded WO₃ (S0.25-S1) sensors upon exposure to 50 ppm NO₂ as a function of operating temperature is shown in Figure 3.30. It is clear that unloaded WO₃, 0.25, 0.5 and 1.0 wt.% Pt-loaded WO₃ sensors have the maximum gas response and were estimated to be 15.38, 8.21, 3.71 and 2.24 at 250°C. Therefore, the operating temperature of NO₂ gas response was obtained 250°C. The response at lower temperature (<200°C) was not satisfied, because the response decreases as the temperature increases above 250°C. At high temperature oxygen ions should preferentially occupies adsorption sites and the adsorption of NO₂ gas was suppressed.

Figure 3.30 Gas sensing response of Pt-loaded WO₃ (S0-S1) sensors to 50 ppm NO₂ as a function of operating temperatures.

Figure 3.31 shows the change in resistance of the sensing films under exposure to NO_2 at various concentrations. The measurement was carried out at $250^{\circ}C$. The sensing films showed increasing in resistance upon exposure to NO_2 , which is a unique characteristic to an n-type semiconductor. The sensing films were found to be response in the concentration range of 1–50 ppm and sensing responses were found to change upward rapidly with increase in NO_2 concentration as shown in Figure 3.32. It can be seen that the unloaded WO_3 sensor (S0) shows higher response which more than Pt-loaded WO_3 sensors. From these results, Pt catalyze is not able to increase the response but reduce responses time instead on the sensing films.

Figure 3.31 Change in resistance of Pt-loaded WO₃ (S0-S1) sensors upon

exposure to NO_2 in forward cycle at $250^{\circ}C$.

Figure 3.32 Response and corresponding response time of Pt-loaded WO₃ sensors as a function of NO₂ at 250° C.

According to the results, it was found that sensor S0 showed the highest response value of ~15.38 at 250°C towards 50 ppm NO₂. Comparing with the same material, Liu *et al.* [142] reported that the highest sensing behaviors of unloaded WO₃ to 10 ppm NO₂ was about 58 at 150°C. In addition, Liu *et al.* [144] reported unloaded WO₃ film prepared by hydrothermal, and the sensing test at 350°C with NO₂ at 20 ppm. And the sensor showed the highest response of 525. Moreover, when compared with another material, Liewhiran *et al.* [171] reported the unloaded SnO₂ nanopowders and sensor which was prepared by FSP and then spin coating to the substrate. It was obvious that thick film exhibited response of ~1640 for 20 ppm NO₂ at 200°C. Thus, the results indicate that unloaded WO₃ prepared by hydrothermal exhibited much lower NO₂ response when compared to those of other findings.

3.3.3 Selective gas sensors based on Pt-loaded WO₃ nanoparticles synthesize by the hydrothermal method

In order to determine the optimum operating temperatures, the response of the unloaded WO₃ film was measured towards 0.005 vol.% concentration of CO, C₂H₄, C₂H₅OH and NO₂ as a function of operating temperature in the ranges from 200°C to 350° C as shown in Figure 3.33. For CO and C₂H₄, the responses are very low for all temperatures. The sensor had suitable response to C₂H₅OH at high temperature (350°C) which was 3.37. However, the response of the sensor towards NO₂ was higher than to other gases, indicating that the unloaded WO₃ sensor had a high selectivity to NO₂ among the examined gases. From this figure it was obvious that the response to NO₂ increased with temperature, up to 250°C, and then gradually declined. The maximum response towards NO₂ was 15.38 at 250°C.

Figure 3.33 Response *versus* variation of operating of CO, C_2H_4 , C_2H_5OH and NO₂ (at 0.005 vol.% concentration) for the unloaded WO₃ sensor.

To demonstrate the selectivity of Pt-loaded WO₃ sensors, the sensing responses (at operating temperature of 250° C) to various gases, namely H₂, C₂H₄, C₂H₅OH, and CO of were measured and then plotted as shown in Figure 3.34. It can be seen that sensor S1 shows much weaker responses to C₂H₅OH, CO and C₂H₄ than H₂. The response values of sensor S1 towards H₂, C₂H₅OH, CO and C₂H₄ are 2.13 x 10³, 580, 240 and 4.86, respectively at 0.1 vol.% concentration and 250°C operating temperature. Thus, the sensor has the H₂ selectivity relative to C₂H₅OH, CO and C₂H₄ of 3.7, 8.9 and 438.3, respectively. Therefore, Pt can improve the H₂ sensing selectivity against C₂H₅OH, CO and C₂H₄.

Figure 3.34 The selectivity histograms of unloaded WO₃ (S0) and 0.25–1.0 wt.% Pt-loaded WO₃ sensors (S0.25-S1) for flammable and explosive gases at concentration of 0.1 vol.% and operating temperature of 250° C.

3.4 Summary of characteristics of unloaded WO₃ and Pt-loaded WO₃ nanoparticles synthesized by FSP and the hydrothermal method.

Tables 3.2 and 3.3 show the summary of characteristics of unloaded WO₃ and Pt-loaded WO₃ nanoparticles synthesized by FSP and the hydrothermal method.

 Table 3.2 Summary of characteristics of unloaded WO3 and Pt-loaded WO3

 nanoparticles synthesized by FSP.

Material characterization	Unloaded WO ₃ and Pt-loaded WO ₃ nanopart	ticles
methods		
XRD	Monoclinic structure (JCPDS No.83–0950)	
BET	Size : 9–10 nm	308
SEM	Size : 10–20 nm (nanoparticles)	A
TEM	Size : 5–20 nm	0

Table 3.3 Summary of characteristics of unloaded WO_3 and Pt-loaded WO_3

nanoparticles synthesized by the hydrothermal method.

Material characterization methods	Unloaded WO ₃ and Pt-loaded WO ₃ nanoparticles
XRD	Monoclinic structure (JCPDS No.04–006–7123)
BET	Size : 50–80 nm
SEM	Size : 40–500 nm in width and 20–40 nm in thickness (nanoplates)
TEM	Size : 80±10 nm in length and 50±5 nm in thickness

Tables 3.4 and 3.5 show the summary of gas sensing performances of unloaded WO₃ sensor synthesized by FSP and the hydrothermal method.

 Table 3.4 Summary of gas sensing performances of unloaded WO3 sensor

 synthesized by FSP.

Methods	Materials	Gas concentration	Temp.	Response (S=R _a /R _g or R _g /R _a)
FSP	Unloaded WO ₃	H ₂ (0.01-1 vol.%)		No response
FSP	Unloaded WO ₃	C ₂ H ₅ OH (0.005–0.1 vol.%)	200°C	~1.74 to 0.01 vol.% ~2.25 to 0.02 vol.% ~2.62 to 0.03 vol.% ~3.28 to 0.05 vol.% ~4.48 to 0.1 vol.%
FSP	Unloaded WO ₃	CO (0.005–0.2 vol.%)		No response
FSP	Unloaded WO ₃	C ₂ H ₄ (0.005–0.1 vol.%)	150°C	~1.08 to 0.05 vol.% ~1.12 to 0.1 vol.%
FSP	Unloaded WO ₃	NO ₂ (1–50 ppm)	150°C	~3.68 to 1 ppm ~107 to 5 ppm ~247 to 10 ppm ~326 to 20 ppm ~325 to 30 ppm ~184 to 50 ppm

Methods	Materials	Gas concentration	Temp.	Response (S=R _a /R _g or R _g /R _a)
Hydrothermal	Unloaded WO ₃	H ₂ (0.01–1 vol.%)	250°C	~1.6 to 0.05 vol.% ~2.86 to 0.1 vol.% ~20.2 to 0.3 vol.% ~85 to 0.5 vol.% ~102.44 to 1 vol.%
Hydrothermal	Unloaded WO ₃	C ₂ H ₅ OH (0.005–0.1 vol.%)	350°C	~3.38 to 0.005 vol.% ~3.86 to 0.01 vol.% ~3.9 to 0.02 vol.% ~4.27 to 0.03 vol.% ~4.32 to 0.05 vol.% ~4.53 to 0.1 vol.%
Hydrothermal	Unloaded WO ₃	CO (0.005–0.2 vol.%))	No response
Hydrothermal	Unloaded WO ₃	C ₂ H ₄ (0.005–0.1 vol.%)	350°C	~1.5 to 0.02 vol.% ~2.05 to 0.03 vol.% ~3.6 to 0.05 vol.% ~7.28 to 0.1 vol.%
Hydrothermal	Unloaded WO ₃	NO ₂ (1–50 ppm)	250°C	~1.9 to 1 ppm ~5.14 to 5 ppm ~7.64 to 10 ppm ~11.28 to 20 ppm ~13.28 to 30 ppm ~15.38 to 50 ppm

Table 3.5 Summary of gas sensing performances of unloaded WO_3 sensorsynthesized by the hydrothermal method.

Tables 3.6 and 3.7 show the summary of gas sensing performances of 0.25-1.0 wt.% Pt-loaded WO₃ sensors synthesized by FSP and the hydrothermal method.

Table 3.6 Summary of gas sensing performances of 0.25–1.0 wt.% Pt-loadedWO3 sensors synthesized by FSP.

Methods	Materials	Gas concentration	Response
7		& Temp.	$(S=R_a/R_g \text{ or } R_g/R_a)$
FSP	0.25wt.% Pt-loaded WO ₃	H ₂	~4.73 to 0.01 vol.%
		(0.01-1 vol.%)	~13.54 to 0.05 vol.9
		Temp.=150°C	~14.8 to 0.1 vol.%
	20		~14.44 to 0.3 vol.%
			~11.6 to 0.5 vol.%
			~24.3 to 1 vol.%
FSP	0.25wt.% Pt-loaded WO ₃	C ₂ H ₅ OH	~2.7 to 0.01 vol.%
		(0.005–0.1 vol.%)	~4.26 to 0.02 vol.%
		Temp.=200°C	$\sim 8.88 \text{ to } 0.03 \text{ vol.}\%$ $\sim 26.5 \text{ to } 0.05 \text{ vol.}\%$
			~75.1 to 0.1 vol.%
FSP	0.25wt.% Pt-loaded WO ₃	CO	No response
		(0.005–0.2 vol.%)	
		Temp.=200°C	
FSP	0.25wt.% Pt-loaded WO ₃	C_2H_4	~1.09 to 0.005 vol.9
		(0.005–0.1 vol.%)	~1.1 to 0.01 vol.%
		Temp.=150°C	~ 1.15 to 0.02 vol.%
			~ 1.23 to 0.05 vol.%
			~1.74 to 0.1 vol.%
FSP	0.25wt.% Pt-loaded WO ₃	NO_2	~4.58 to 1 ppm
	INGON	(1–50 ppm)	~262 to 5 ppm
		Temp.=150°C	~637 to 10 ppm
			~954 to 20 ppm
	e by Ch	iang ma	~831 to 30 ppm
			~ 442 to 50 ppm

Methods	Materials	Gas concentration & Temp.	Response (S=R _a /R _o or R _o /R _o)
FSP	0.5 wt.% Pt-loaded WO ₃	H ₂	~29.7 to 0.01 vol.%
		(0.01-1 vol.%)	~202 to 0.05 vol.%
		Temp.=150°C	~723.6 to 0.1 vol.%
			~4438 to 0.3 vol.%
			~7181 to 0.5 vol.%
	ىيىيىلىل		~12688 to 1 vol.%
FSP	0.5 wt.% Pt-loaded WO ₃	C_2H_5OH	~3.76 to 0.005 vol.% ~5.4 to 0.01 vol.%
		$T_{emp} = -200^{\circ}C$	~26 to 0.02 vol.%
		Temp.=200 C	\sim /3.4 to 0.03 vol.%
	Key		$\sim 230.3 \text{ to } 0.03 \text{ vol }\%$
FSP	0.5 wt % Pt-loaded WOa	CO	~3.05 to 0.005 vol.9
1.51	0.5 W1.70 I t louded W 03	(0.005-0.2 vol %)	~15.84 to 0.01 vol.9
		$(0.003 \ 0.2 \ 00.70)$	~50 to 0.02 vol.%
		Temp.–200 C	$\sim 60 \text{ to } 0.03 \text{ vol.\%}$
			~68 to 0.05 vol.%
FGF			~/3.84 to 0.1 vol.%
FSP	$0.5 \text{ wt.}\% \text{ Pt-loaded WO}_3$	C_2H_4	~1.22 to 0.005 vol.%
		(0.005–0.1 vol.%)	~ 1.39 to 0.01 vol.%
		Temp.=150°C	$\sim 1.48 \text{ to } 0.02 \text{ vol.}\%$
			~1.72 to 0.05 vol.%
			~3 to 0.1 vol.%
FSP	0.5wt.% Pt-loaded WO ₃	NO ₂	~2.66 to 1 ppm
		(1-50 ppm)	~32.57 to 5 ppm
		Temp.=150°C	~80.78 to 10 ppm
	••••	V	~124 to 20 ppm
	IROAN		~186 to 30 ppm
			~198.55 to 50 ppm

Table 3.6 (Cont.) Summary of gas sensing performances of 0.25-1.0 wt.%

Pt-loaded WO₃ sensors synthesized by FSP.

Methods	Materials	Gas concentration & Temp.	Response (S=R _a /R _g or R _g /R _a)
FSP FSP	1.0 wt.% Pt-loaded WO ₃ 1.0 wt.% Pt-loaded WO ₃	H_{2} (0.01-1 vol.%) Temp.=150°C $C_{2}H_{5}OH$ (0.005-0.1 vol.%)	~153.6 to 0.01 vol.% ~1029 to 0.05 vol.% ~2586 to 0.1 vol.% ~16294 to 0.3 vol.% ~41598 to 0.5 vol.% ~133634 to 1 vol.% ~1.22 to 0.005 vol.% ~1.39 to 0.01 vol.%
		(0.005–0.1 vol.%) Temp.=200°C	~1.48 to 0.02 vol.% ~128.5 to 0.03 vol.% ~473.5 to 0.05 vol.% ~2388 to 0.1 vol.%
FSP	1.0 wt.% Pt-loaded WO ₃	CO (0.005–0.2 vol.%) Temp.=200°C	~3.82 to 0.005 vol.% ~15.28 to 0.01 vol.% ~407 to 0.02 vol.% ~800 to 0.03 vol.% ~1158 to 0.05 vol.% ~1065 to 0.1 vol.%
FSP	1.0 wt.% Pt-loaded WO ₃	C ₂ H ₄ (0.005–0.1 vol.%) Temp.=150°C	~1.35 to 0.005 vol.% ~1.84 to 0.01 vol.% ~2.45 to 0.02 vol.% ~3.79 to 0.03 vol.% ~6.7 to 0.05 vol.% ~9.9 to 0.1 vol.%
FSP	1.0 wt.% Pt-loaded WO ₃	NO ₂ (1–50 ppm)	~5.38 to 1 ppm ~23.34 to 5 ppm ~24.55 to 10 ppm ~ 27.46 to 20 ppm ~40.5 to 30 ppm ~58.46 to 50 ppm

Table 3.6 (Cont.) Summary of gas sensing performances of 0.25-1.0 wt.%

Pt-loaded WO₃ sensors synthesized by FSP.

Methods	Materials	Gas concentration &Temp.	Response (S=R _a /R _g or R _g /R _a)
Hydrothermal	0.25 wt.% Pt-loaded WO ₃	H ₂ (0.01–1 vol.%) Temp.=250°C	~7.88 to 0.01 vol.% ~27.84 to 0.05 vol.% ~57.93 to 0.1 vol.% ~219.18 to 0.3 vol.% ~427 to 0.5 vol.% ~1385.36 to 1 vol.%
Hydrothermal	0.25 wt.% Pt-loaded WO ₃	C ₂ H ₅ OH (0.005–0.1 vol.%) Temp.=350°C	~15 to 0.005 vol.% ~32.74 to 0.01 vol.% ~65 to 0.02 vol.% ~82 to 0.03 vol.% ~158.5 to 0.05 vol.% ~381.74 to 0.1 vol.%
Hydrothermal	0.25 wt.% Pt-loaded WO ₃	CO (0.005–0.2 vol.%) Temp.=250°C	No response
Hydrothermal	0.25 wt.%Pt-loaded WO ₃	C ₂ H ₄ (0.005–0.1 vol.%) Temp.=350°C	~1.3 to 0.01 vol.% ~4 to 0.02 vol.% ~8.7 to 0.03 vol.% ~18.7 to 0.05 vol.% ~35.12 to 0.1 vol.%
Hydrothermal	0.25 wt.%Pt-loaded WO ₃	NO ₂ (1-50 ppm) Temp.=250°C	~1.46 to 1 ppm ~2.61 to 5 ppm ~4.24 to 10 ppm ~5.85 to 20 ppm ~6.6 to 30 ppm ~8.2 to 50 ppm

Table 3.7 Summary of gas sensing performances of 0.25-1.0 wt.% Pt-loaded WO₃ sensors synthesized by the hydrothermal method.

Methods	Materials	Gas concentration &Temp.	Response (S=R _a /R _g or R _g /R _a)
Hydrothermal	0.5 wt.% Pt-loaded WO ₃	H ₂ (0.01-1 vol.%) Temp.=250°C	~15 to 0.01 vol.% ~92.43 to 0.05 vol.% ~312.4 to 0.1 vol.% ~2403 to 0.3 vol.% ~6990 to 0.5 vol.% ~13073 to 1 vol.%
Hydrothermal	0.5 wt.% Pt-loaded WO ₃	C ₂ H ₅ OH (0.005–0.1 vol.%) Temp.=350°C	~6.46 to 0.005 vol.% ~18.6 to 0.01 vol.% ~45.6 to 0.02 vol.% ~78.5 to 0.03 vol.% ~168 to 0.05 vol.% ~674 to 0.1 vol.%
Hydrothermal	0.5 wt.% Pt-loaded WO ₃	CO (0.005–0.2 vol.%) Temp.=250°C	No response
Hydrothermal	0.5 wt.%Pt-loaded WO ₃	C ₂ H ₄ (0.005–0.1 vol.%) Temp.=350°C	~2.9 to 0.005 vol.% ~19.24 to 0.01 vol.% ~100 to 0.02 vol.% ~168 to 0.03 vol.% ~277.32 to 0.05 vol.% ~349 to 0.1 vol.%
Hydrothermal	0.5 wt.% Pt-loaded WO ₃	NO ₂ (1–50 ppm) Temp.=250°C	~1.35 to 1 ppm ~1.72 to 5 ppm ~2.28 to 10 ppm ~2.83 to 20 ppm ~3.1 to 30 ppm ~3 7 to 50 ppm

Table 3.7 (Cont.) Summary of gas sensing performances of 0.25–1.0 wt.%

Pt-loaded WO₃ sensors synthesized by the hydrothermal method.

Methods	Materials	Gas concentration &Temp.	Response (S=R _a /R _g or R _g /R _a)
Hydrothermal	1.0 wt.% Pt-loaded WO ₃	H ₂ (0.01–1 vol.%) Temp.=250°C	~28.28 to 0.01 vol.% ~581.47 to 0.05 vol.% ~2130.57 to 0.1 vol.% ~8922.35 to 0.3 vol.% ~11963.9 to 0.5 vol.%
Hydrothermal	1.0 wt.% Pt-loaded WO ₃	C ₂ H ₅ OH (0.005–0.1 vol.%) Temp.=350°C	~21623 to 1 vol.% ~5.57 to 0.005 vol.% ~12.28 to 0.01 vol.% ~31.56 to 0.02 vol.% ~69.87 to 0.03 vol.% ~318.74 to 0.05 vol.%
Hydrothermal	1.0 wt.% Pt-loaded WO ₃	CO (0.005–0.2 vol.%) Temp.=250°C	~1406 to 0.1 vol.% ~1.4 to 0.005 vol.% ~1.86 to 0.01 vol.% ~2.95 to 0.02 vol.% ~4.74 to 0.03 vol.% ~17 to 0.05 vol.%
Hydrothermal	1.0 wt % Pt-loaded	C ₂ H ₄	~240 to 0.1 vol.% ~469 to 0.2 vol.% ~1.1 to 0.005 vol.%
	WO ₃	(0.005–0.1 vol.%) Temp.=350°C	~1.5 to 0.01 vol.% ~6.76 to 0.02 vol.% ~26 to 0.03 vol.% ~115 to 0.05 vol.%
Hydrothermal	1.0 wt % Pt-loaded	NO	$\sim 388 \text{ to } 0.1 \text{ vol.\%}$
	WO ₃	(1–50 ppm) Temp.=250°C	~1.43 to 5 ppm ~1.6 to 10 ppm ~1.82 to 20 ppm ~2.05 to 30 ppm

Table 3.7 (Cont.) Summary of gas sensing performances of 0.25-1.0 wt.%

Pt-loaded WO₃ sensors synthesized by the hydrothermal method.