CHAPTER 4

CONCLUSIONS

In this research unloaded WO₃ and Pt-loaded WO₃ were successfully synthesized by FSP and the hydrothermal method. Characterization of these nanomaterials and the sensing films were elucidated and investigated by XRD, BET, SEM with EDS–dot mapping mode, HRTEM. Gas sensing films of all samples were tested towards various flammable gases (H₂, C₂H₅OH, C₂H₄ and CO); and environmentally hazardous gas (NO₂).

4.1 Nanoparticles synthesized by FSP

Unloaded WO₃ and Pt-loaded WO₃ (0.25–1.0 wt.% Pt loading) nanoparticles were successfully produced by FSP and structurally characterized by XRD, SEM and HRTEM. The BET surface area (SSA_{BET}) of the nanoparticles was measured by nitrogen adsorption micromeristic technique. XRD patterns revealed that Pt-loaded WO₃ nanoparticles and their corresponding sensing films were crystalline with a monoclinic phase of WO₃. From BET measurement, it was found that the calculated particle sizes of all samples were in the same range of 9–11 nm. From SEM data, the nanoparticles were spherical like, and well dispersed without evident aggregation. The average particles size ranges from 10 to 20 nm. From this observation, it was found that the rough morphology and the rough particle sizes were not changed with the increasing Pt loading levels. HRTEM characterization, showed the nanoparticles having clear spherical morphology. The crystallite sizes of spherical unloaded WO_3 and Pt-loaded WO_3 were found to be ranging of 5–20 nm. For Pt-loaded WO_3 powder, very small spherical Pt nanoparticles with diameter of ~1 nm were found to disperse over the surface of WO_3 matrix and the presence of Pt element was confirmed by EDS analysis.

4.2 Nanoparticles synthesized by the hydrothermal method

Unloaded WO₃ nanoparticles were synthesized by the hydrothermal method and then impregnated with different Pt contents (0.25–1.0 wt.% Pt loading). The nanoparticles were characterized by XRD, BET, SEM, EDS and HRTEM. The XRD characterizations showed that all samples were highly crystalline and all peaks can match to the monoclinic structure of WO₃ (JCPDS No. 04–006–7123). Pt peaks were not found in these patterns. It can be assumed that the size of Pt particles were very small. From BET measurement, it was found that the calculated particle sizes of all samples were in the same range of 50–80 nm. From SEM characterization, it can be seen that the powders were seen as loose agglomerations with a plate size ranging from roughly 40 to 500 nm in width and 20–40 nm in thickness. Moreover, the presence of Pt element was confirmed by EDS analysis. From HRTEM data, it was observed that platelet particle having the average size of 80 ± 10 nm in length and 50 ± 5 nm in thickness. HRTEM show that very small Pt nanoparticles were uniformly dispersed on the surface of larger WO₃ particles. The size of Pt nanoparticles was smaller than 1 nm for 1.0 wt.% Pt-loaded WO₃.

4.3 Comparison of characteristics of unloaded WO₃ and Pt-loaded WO₃ nanoparticles synthesized by FSP and the hydrothermal method

Table 4.1 shows the summary of characteristics of unloaded WO_3 and Pt-loaded WO_3 nanoparticles.

 Table 4.1 Summary of characteristics of unloaded WO3 and Pt-loaded WO3

 nanoparticles.

Material characterization	Unloaded WO ₃ and Pt-loaded WO ₃ nanoparticles		
method	FSP	Hydrothermal	
XRD	Monoclinic structure	Monoclinic structure	
	(JCPDS No.83-0950)	(JCPDS No.04-006-7123)	
BET	Size : 9–10 nm	Size : 50–80 nm	
SEM	Size : 10–20 nm	Size : 40–500 nm in width	
	(nanoparticles)	and 20–40 nm in thickness	
		(nanoplates)	
TEM	Size : 5–20 nm	Size : 80±10 nm in length	
AI	INTE	and 50±5 nm in thickness	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

4.4 Gas sensing properties

4.4.1 Comparison of the performance of the unloaded WO₃ sensor

Unloaded WO₃ film on alumina substrates interdigitated with gold electrodes were prepared by spin-coating technique and tested for gas sensing towards oxidizing gas such as NO₂ and different reducing gases including H₂, C₂H₄, C₂H₅OH and CO. For the reducing gases, the unloaded WO₃ synthesized by the hydrothermal method was the most selective to H₂ with relatively high response ($S = \sim 102.44$ at 1 vol.% H₂) when compared with unloaded WO₃ synthesized by FSP. On the other hand, oxidizing gas like NO₂, unloaded WO₃ synthesized by FSP exhibited excellent NO₂ sensing performances with a very high response ($S = \sim 326$ at 20 ppm NO₂), low operating temperature and shorter response time than unloaded WO₃ synthesized by the hydrothermal method. Therefore, it was important to note that the sensor response of WO₃ depended significantly on the preparation method.

4.4.2 Influence of Pt nanoparticles

Unloaded WO₃ sensor showed highly response to oxidizing gas, NO₂, but very weak response to reducing gas. It is well known that the sensor properties can be boosted by activation with some metals such as Au, Pd and Pt. Among various metal tested, Pt is the most effective catalyst that can greatly promote sensing of reducing gas including hydrogen, carbon monoxide and hydrocarbon by chemical sensitization via 'spillover' effect. It can be effectively used to increase response and selectivity as well as to reduce response and recovery times.

For the gas response behavior of Pt-loaded WO₃ sensing films several gases have been tested namely NO₂, H₂, C₂H₄, C₂H₅OH, and CO. The results showed that the gas sensing properties of the Pt-loaded WO₃ sensors were superior to those of the unloaded WO₃. Especially, both of 1.0 wt.% Pt-loaded WO₃ synthesized by FSP and the hydrothermal method showed higher response, better selectivity, faster response/recovery and better longer term stability usage to especially H₂ than the other gases. In addition, 1.0 wt.% Pt-loaded WO₃ synthesized by FSP exhibits the extremely high response of ~1.34 x10⁵ at 1 vol.% H₂, which much higher than 1.0 wt.% Pt-loaded WO₃ synthesized by the hydrothermal method ($S = ~2.16 \times 10^4$ at 1 vol.% H₂ (Temp.= 250°C)) and with low working temperature (150°C). In relation to this study the gas sensing properties of materials were related to the surface states and morphology of the material. The gas response could be increased by decreasing the grain size due to high surface/volume ratio.

138

4.5 Comparison of gas sensing response of unloaded WO₃ and Pt-loaded WO₃ nanoparticles synthesized by FSP and the hydrothermal method

Table 4.2 shows the summary of gas sensing performances of unloaded WO_3 sensor.

Methods	Materials	Gas concentration	Response (S=R _a /R _g or R _g /R _a)
FSP	Unloaded WO ₃	H ₂ (0.01–1 vol.%)	No response
Hydrothermal	Unloaded WO ₃		~102.44 to 1 vol.% at 250°C
FSP	Unloaded WO ₃	C ₂ H ₅ OH (0.005–0.1 vol.%)	~4.48 to 0.1 vol.% at 200°C
Hydrothermal	Unloaded WO ₃		~4.53 to 0.1 vol.% at 250°C
FSP	Unloaded WO ₃	CO (0.005–0.2 vol.%)	No response
Hydrothermal	Unloaded WO ₃	R	No response
FSP	Unloaded WO ₃	C ₂ H ₄ (0.005–0.1 vol.%)	~1.12 to 0.1 vol.% at 150°C
Hydrothermal	Unloaded WO ₃	ເງລັດ	~7.28 to 0.1 vol.% at 350°C
FSP	Unloaded WO ₃	NO ₂ (1–50 ppm)	~326 to 20 ppm at 150°C
Hydrothermal	Unloaded WO ₃	r e s	~15.38 to 50 ppm at 250°C

Table 4.2 Summary of gas sensing performances of unloaded WO₃ sensor.

Table 4.3 show the summary of gas sensing performances of 0.25–1.0 wt.% Pt-loaded WO₃ sensors.

Table 4.3 Summary of gas sensing performances of 0.25–1.0 wt.% Pt-loadedWO3 sensors.

Methods	Materials	Gas concentration	Response (S=R _a /R _g or R _g /R _a)
FSP	1.0 wt.% Pt-loaded WO ₃	H ₂ (0.01–1 vol.%)	$\sim 1.34 \times 10^5$ to 1 vol.% at 150°C
Hydrothermal	1.0 wt.% Pt-loaded WO ₃		~2.16x10 ⁴ to 1 vol.% at 250°C
FSP	1.0 wt.% Pt-loaded WO ₃	C ₂ H ₅ OH (0.005–0.1vol.%)	~2.4x10 ³ to 0.1 vol.% at 200°C
Hydrothermal	1.0 wt.% Pt-loaded WO ₃		~1.4x10 ³ to 0.1 vol.% at 350°C
FSP	1.0 wt.% Pt-loaded WO ₃	CO (0.005–0.2vol.%)	~1.2x10 ² to 0.05 vol.% at 200°C
Hydrothermal	1.0 wt.% Pt-loaded WO ₃	VER	~469 to 0.2 vol.% at 250°C
FSP	1.0 wt.% Pt-loaded WO ₃	C ₂ H ₄ (0.005–0.1vol.%)	~9.9 to 0.1 vol.% at 150°C
Hydrothermal	1.0 wt.% Pt-loaded WO ₃	าลัย	~388 to 0.1 vol.% at 350°C
FSP C	0.25wt.% Pt-loaded WO ₃	NO ₂ (1–50 ppm)	~954 to 20 ppm at 150°C
Hydrothermal	0.25wt.%Pt-loaded WO ₃	res	~8.21 to 50 ppm at 250°C

- 4.6.1 The gas sensing properties of the unloaded WO₃ and Pt-loaded WO₃ sensors for other gases (such as H₂S, NH₃, O₂, C₂H₂ and CH₄) will be further investigated.
- 4.6.2 Unloaded WO_3 and Pt-loaded WO_3 nanoparticles will be investigated for catalysts, electrochromic devices, and possibility for use as photocatalytic catalysts.
- 4.6.3 The sensor may be prepared by several methods such as screenprinting, sputtering and chemical vapor deposition.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved