TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xviii
LIST OF FIGURES	XX
ABBREVIATIONS AND SYMBOLS	xxiii
CHAPTER 1 INTRODUCTION	
1.1 Statement and significance of the problems	1
1.2 Objective	3
1.3 Scope of the study	4
1.4 Literature reviews	5
1.4.1 Thai flowers	5
1.4.1.1 Introduction	5
1.4.1.2 Gardenia jasminoides	6
1.4.1.3 Millingtonia hortensis	
1.4.1.4 Mimusops elengi	niversity
1.4.2 Extraction processes	r ²² e (

1.4.2.1 Enfleurage	22
1.4.2.2 Solvent extraction	22
1.4.2.3 Supercritical carbon dioxide fluid	23
extraction (scCO ₂)	
1.4.3 Phytochemical determination	25
1.4.3.1 Alkaloids	25
1.4.3.2 Flavonoids	25
1.4.3.3 Saponins	26
1.4.3.4 Tannins	27
1.4.3.5 Reducing sugars	28
1.4.3.6 High performance liquid	30
chromatography(HPLC)	
1.4.4 Nanovesicles	31
1.4.4.1 Classification of nanovesicles	31
A. Liposomes	32
A.1 Liposomes in the basic sciences	34
A.2 Liposomes in medicines	34
A.3 Liposomes in cosmetics	36
A.4 Liposomes in bioengineering	36
A.5 Liposomes in agro-food industries	37
B. Niosomes	38
C. Transfersomes	40

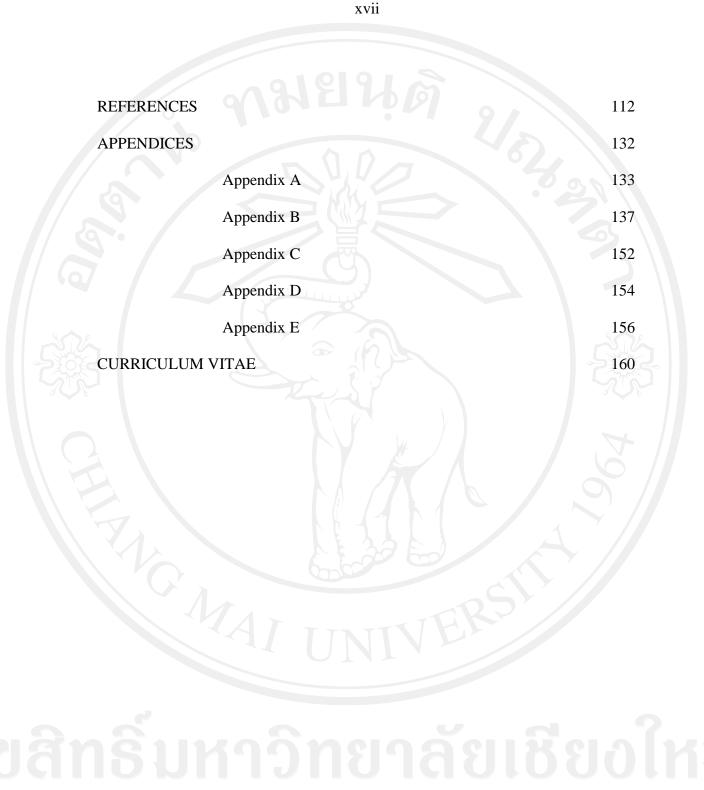
xi

	D. Ethosomes	41
1.4.4.2	Preparation of nanovesicles	42
	A. Ether injection method	42
	B. Hand shaken method	43
	C. Reverse phase evaporation method	44
	D. Transmembrane pH gradient (inside	44
	acidic) drug uptake process (remote	
	loading)	
	E. Formation of proliposomes and	45
	liposomes from proliposomes	
	F. The bubble method	45
	G. High pressure homogenization and	46
	Microfluidization	
	H. Supercritical carbon dioxide fluid	46
	technique (scCO ₂)	
1.4.4.3	Physicochemical characteristics of	51
	nanovesicles	
	A. Vesicular size	52
	B. Morphology	52
	C. Charge	53
	D. Entrapment efficiency	53
1.4.5 Biologie	cal assays A C S C F	54 e

1.4.5.1 In vivo skin irritation assay in rabbits	54
1.4.5.2 In vitro assays for cosmetic uses	56
A. DPPH radical scavenging activity	56
B. Ferrous metal chelating activity assay	56
C. Tyrosinase inhibition	57
D. Lipid peroxidation inhibition assay	58
E. Cell proliferation activity	59
F. Gelatinolytic activity on MMP-2	61
inhibition (zymography)	
CHAPTER 2 MATERIALS AND METHODS	66
2.1 Materials and equipments	66
2.1.1 Chemicals	66
2.1.2 Cell lines	67
2.1.3 Animals	67
2.1.4 Equipments	67
2.2 Methods	68
2.2.1 Biological activities of the Thai flower extracts	68
2.2.1.1 Collection of the raw materials	69
2.2.1.2 Preparation of the flower extracts	69
A. Flower samples	69
B. Maceration process	69
C. Supercritical carbon dioxide fluid	70

xiii

	(scCO ₂) extraction	
	2.2.1.3 Determination of the characteristics and	70
	phytochemicals of the extracts	
	2.2.1.4 Chemical identification of the extracts by	71
	GC/HPLC	
	2.2.1.5 Biological activity determination of the	73
	Extracts	
		73
	A. DPPH radical scavenging activity	
	B. Metal chelating activity	74
	C. Tyrosinase inhibition assay	75
	D. Cell proliferation activity on aged	76
	human skin fibroblasts by SRB assay	
	E. Gelatinolytic activity	77
	2.2.1.6 Selection of the extracts	78
2.2.2	Characteristics and biological activities of Thai	78
	flower extracts loaded in niosomes	
	2.2.2.1 Preparation of niosomal formulations	78
	loaded with the extracts / maximum	
	loading determination	
	2.2.2.2 Morphology, vesicular size and zeta	79
	potential determination	
	2.2.2.3 Biological activities of niosomes loaded	79 e O


xiv

with the extracts

A. Cytotoxicity on human skin	79
fibroblast by SRB assay	
B. Lipid peroxidation activity	80
C. Metal ion chelating activity	81
D. Gelatinolytic activity (zymography)	82
on MMP-2 inhibition	
2.2.2.4 Physical stability of the flower extracts	83
loaded and not loaded in niosomes	
2.2.3 Irritation study on rabbits' skin of the extracts and	83
niosomes loaded with the extracts	
2.2.3.1 Preparation of the animals	83
2.2.3.2 Method	84
2.2.4 Cost estimation	85
2.2.4.1 The selected extracts	85
2.2.4.2 The selected niosmes loaded with the	85
flower extract	
CHAPTER 3 RESULTS AND DISCUSSION	86
3.1 Biological activities of the Thai flower extracts	86
3.1.1 Physical characteristics of the extracts	86
3.1.2 Biological activities of the extracts	87
3.1.2.1 DPPH radical scavenging activity	87

89
90
90
91
91
97
98
98
99
105
107
107
107
109

xvi

ลขสทรมหาวทยาลยเชยงเหม Copyright[©] by Chiang Mai University All rights reserved

xviii

LIST OF TABLES

	LIST OF TABLES	
able		Page
1	The chemical compositions found in the extract of G. jasminoides	9
	flowers	
2	The chemical compositions found in the extract of <i>M hortensis</i>	16
	flowers	
3	The chemical compositions found in the extract of <i>M. elengi</i>	19
	flowers	
1	Classifications of the liposome based on their structural properties	35
	and the preparation methods	
5	Liposomal cosmetic formulations currently in the market	37
6	The vesicles formation ability, HLB values and chemical structure	39
	of some non-ionic surfactants	
7	The critical temperature, pressure and density of substances	47
	common used as supercritical fluids	
8	The advantages and disadvantages of different methods for the	55
	separation of the vesicles from the unentrapped drug	
9	Body distribution of collagen types	63
0	Types of MMPs	63

11	Comparison of appearance, percentage yields, antioxidative,	88
	tyrosinase inhibition activities and the percentages of cell growth	
	on human skin fibroblasts (15 th passage) of the three flower	
	extracts prepared by the two non-heated methods ($scCO_2$ and	
	hexane maceration)	
12	Stability of the extract using ylinoleic acid percent remaining	97
	as the marker determination by HPLC	
13	The antioxidant activities including DPPH radical scavenging	101
	(SC ₅₀), metal chelating (MC ₅₀) and lipid peroxidation inhibition	
	(LC_{50}) of the extracts loaded and non-loaded in niosomes	
14	Rabbit skin erythema measured by Mexameter of various samples	106
15	The estimated cost of the extracts and the extracts loaded in	108
	niosomes	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

	LIST OF FIGURES	
Figur	e	Page
1	The flower of <i>G. jasminoides</i>	6
2	The flowers of <i>M. hortensis</i>	8
3	The flowers of <i>M. elengi</i>	17
4	Chemical structures of some common alkaloids	26
5	Chemical structures of flavoniod classes	27
6	Chemical structures of saponins	28
7	Chemical structures of condensed (proanthocyanins) and	29
	hydrolysable (corilagin and geraniin) tannins	
8	Chemical structures of reducing forms of glucose (left) and	31
	fructose (right)	
9	The critical packing parameter (CPP) of lipids and their structure	33
	form (DGDG: digalactosyl diglyceride and diglucosyl diglyceride;	
	MGDG: monogalactosyl diglyceride and monoglucosyl	
	diglyceride)	
10	Pressure-temperature phase diagram and supercritical fluid region	47
11	Reaction of the DPPH radical in the presence of the antioxidant	57
	during the DPPH assay	
12	Melanogenesis pathway	58

13	The reaction of lipid peroxidation in ferric thiocyanate assay	59
14	Structure of MTT and their corresponding reaction products	60
15	Gelatin zymography	65
16	The percentage yields of M. elengi, M.emosop and G. jasminoides	87
	by Hexane Maceration and scCO ₂ with the various concentrations	
	of ethanol	
17	MMP-2 inhibition activity of the flower extracts from <i>M. elengi</i>	91
	(Bullet Wood) prepared by $scCO_2$ with 33% (w/v) ethanol, <i>M</i> .	
	<i>hortensis</i> (Cork Tree) by scCO ₂ with 20% (w/v) ethanol and G.	
	<i>jasminoides</i> (Gardenia) by $scCO_2$ with 33% (w/v) ethanol	
	compared to vitamin C and E. (A) zymograms and (B) the	
	percentages of MMP-2 inhibition. MMP-2 inhibition (%) = $100 -$	
	[(MMP-2 content sample / MMP-2 content control) ×100]. The density	

area of the volume

Physical appearances at initial of (A) the blank niosomes, the 93 niosomes loaded with the extracts of (B) *Mimusops elengi* (C) *Gardenia jasminoides* and (D) *Millingtonia hortensis*

94

was the total intensity of all the pixels in the volume divided by the

19 Morphology of niosomes loaded with (A) *Mimusops elengi*, (B) *Millingtonia hortensis* and (C) *Gardenia jasminoides* extract. The niosomal dispersion stained with 1% methylene blue was observed under 100x optical microscope

- Vesicular sizes of niosomes loaded with *Mimusops elengi* (A),
 Millingtonia hortensis (B) and *Gardenia jasminoides* (C) extracts
 kept at 4±2, 27±2 and 45±2°C for 3 months
- Zeta potential values of niosomes loaded with *Mimusops elengi*(A), *Millingtonia hortensis* (B) and *Gardenia jasminoides* (C)
 extracts kept at 4±2, 27±2 and 45±2°C for 3 months
- 22 Percentages of cell viability of human skin fibroblasts treated with the flower extracts loaded and non-loaded in niosomes. Vitamin C was used as a standard
- Zymograms of MMP-2 inhibition of the non-loaded and loaded 102
 flower extracts in niosomes in comparing to the negative (untreated cells) and positive (vitamin C) control systems at various
 concentrations (0.01, 0.1 and 1 mg/ml)
- The percentages of MMP-2 inhibition of the *Mimusops elengi* (A), 103
 Millingtonia hortensis (B) and *Gardenia jasminoides* (C) loaded
 and non-loaded in niosomes

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงไหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

95

96

100

xxiii

ABBREVIATIONS AND SYMBOLS

внт	butylated hydroxytoluene
D-MEM	dulbecco's modified eagle's medium
DMSO	dimethyl sulfoxide
DLS	dynamic light scattering
EDTA	ethylenediaminetetraacetic acid
FBS	fetal bovine serum
FeCl ₂	ferrous chloride
h	hour
HPLC	high performance liquid chromatography
IC ₅₀	concentration providing 50% inhibition
MEM	eagle's minimal essential medium
MTT	3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-2 <i>H</i> -tetrazolium
	bromide
mg	milligram
ml	milliliter
mM	millimolar
nm	nanometer
PB	phosphate-buffered
PBS	phosphate-buffered saline
rpm	revolutions per minute
^s r i ø	second s reserved
SC ₅₀	concentration providing 50% scavenging

SRB sulphorodamine B transmission electron microscopy TEM TLC thin layer chromatography Tween 61 polyoxyethylene sorbitan monostearate wavelength in nanometer λ microgram μg μL microliter celcius degree °C

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxiv