TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	3 iii
ABSTRACT (ENGLISH)	COS V
ABSTRACT (THAI)	ix
TABLE OF CONTENT	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xxi
ABBREVIATIONS AND SYMBOLS	xxvii
CHAPTER I: INTRODUCTION	91
1.1 Statement and significance of the problem	1
1.2 Purposes of the study	4
1.3 Education advantages	5
CHAPTER II: LITERATURE REVIEW	6
2.1 Nanodelivery	6
2.2 Microemulsion	6
2.2.1 Definition	6
2.2.2 Components of microemulsion	nivers
2.2.2.1 Oil phase	8
2.2.2.2 Surfactant	9

	2.2.2.3 Cosurfactant	10
	2.2.2.4 Aqueous phase	12
2.3	Phase behavior	12
2.4	Topical microemulsion and recent researches on microemulsion	13
2.5	Antityrosinase activity	16
2.6	Antioxidant activity	18
CHA	APTER III: MATERIALS AND METHODS	21
3.1	Instruments	21
3.2	Chemicals	23
3.3	Plants materials	26
3.4	Extraction of essential oil	28
3.5	Study of outer appearance and density of oil	31
3.6	Study of chemical components by gas chromatography/mass spectrometry	31
3.7	Study of the biological activities of the oils	32
	3.7.1 Determination of antioxidant activity	32
	3.7.1.1 Ferric Reducing Antioxidant Power (FRAP)	32
	3.7.1.2 ABTS Method	33
	3.7.2 Determination of tyrosinase inhibitory activity	33
3.8	Solubility study	36
3.9	Refractive index and surface tension of oil	38
3.10	Cytotoxicity tests	40
3.11	The study of phase diagram	40
	3.11.1 Preliminary study for phase diagram construction	41

xiii

		3.11.2	Pseudoternary phase diagram construction	47
	3.12	Microen	nulsion base and drug loaded microemulsion preparation	50
	3.13	Drug rel	ease study	52
	3.14	Stability	study of the microemulsion	53
	СНА	PTER IV	7: RESULTS AND DISCUSSION	55
6	4.1	Extractio	on of essential oils	55
	4.2	Study of	Fouter appearance and density of oil	58
	4.3	Study of	E chemical components by gas chromatography/mass spectrometry	63
200	4.4	The stud	ly of the biological activities of the oils	116
		4.4.1	Antioxidant activity	116
			4.4.1.1 Ferric Reducing Antioxidant Power (FRAP)	116
			4.4.1.2 ABTS Method	118
		4.4.2	Tyrosinase inhibitory activity	121
	4.5	Solubilit	ty test of the oil	124
	4.6	Refractiv	ve index and surface tension of the oil	126
	4.7	Cytotoxi	icity tests	130
	4.8	Study of	Ephase diagram	132
		4.8.1	Preliminary study for phase diagram construction	132
		4.8.2	Phase diagram construction	152
			4.8.2.1 Effect of surfactant type	152
			4.8.2.2 Effect of type and proportion of cosurfactant	153
			4.8.2.3 Effect of type and concentration of electrolyte	158
			4.8.2.1 Effect of pH	158

4.9 Microemulsion base and drug loaded microemulsion preparation	172
4.10 Stability study of microemulsion	181
4.10.1 Stability of the formulations without drug	181
4.10.2 Stability of clotrimazole loaded formulations	181
4.11 Drug release study	200
CHAPTER V: CONCLUSION	207
REFERENCES	211
APPENDICES	238
APPENDIX I	239
APPENDIX II	241
CURRICULUM VITAE	242

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		page
3.1	Plants for oil extraction used in this research	26
3.2	The part of the plant used in extraction of oil	28
3.3	Polarity, dielectric constant and solubility parameter of the solvents	37
	used in this experiment	
3.4	The amount of substances used in a system of Tween 20: $ethanol = 1:1$	42
3.5	The amount of substances used in a system of Tween 20: $ethanol = 2:1$	43
3.6	The amount of substances used in a system of Tween 20: $ethanol = 3:1$	44
3.7	The amount of substances used in a system of Tween 20: ethanol = 9:1	45
3.8	The amount of substances used in a system of Tween 80: $ethanol = 1:1$	46
3.9	The amount of substances used in a system of Tween 80: $ethanol = 2:1$	47
3.10	The amount of substances used in a system of Tween 80: $ethanol = 3:1$	48
3.11	The amount of substances used in a system of Tween 80: $ethanol = 9:1$	49
3.12	Microemulsion systems used in this study	52
4.1	The amount oil extracted as percent yield (% v/w) relative to	56
	fresh weight	
4.2	The explanation of the letter in Figure 4.1	59
4.3	The density of oil used in this experiment	61
4.4	Chemical components of essential oil from Apium graveolens Linn.	64
4.5	Chemical components of essential oil from Anethum graveolens Linn.	65

	•	٠
v	\$71	1
Λ		.1

4.6	Chemical components of essential oil from Centella asiatica Urban.	67
4.7	Chemical components of essential oil from Coriandrum sativum Linn.	69
4.8	Chemical components of essential oil from Eryngium foetidum Linn.	71
4.9	Chemical components of essential oil from Polyscias fruticosa Harms.	72
4.10	Chemical components of essential oil from Eupatorium odoratum Linn.	74
4.11	Chemical components of essential oil from Spilanthes acmella Murr.	76
4.12	Chemical components of essential oil from Cymbopogon citratus Stapf.	78
4.13	Chemical components of essential oil from Coleus amboinicus Lour.	80
4.14	Chemical components of essential oil from Melissa officinalis Linn.	82
4.15	Chemical components of essential oil from Ocimum basilicum Linn.	84
4.16	Chemical components of essential oil from Ocimum canum Sims.	86
4.17	Chemical components of essential oil from Ocimum gratissimum Linn.	88
4.18	Chemical components of essential oil from Ocimum sanctum Linn.	90
4.19	Chemical components of essential oil from Cinnamomum bejolghota	92
	Sweet.	
4.20	Chemical components of essential oil from Piper sarmentosum Roxb.	94
4.21	Chemical components of essential oil from Polygonum odoratum Lour.	96
4.22	Chemical components of essential oil from Citrus aurantifolia Swing.	98
	(Leaf)	
4.23	Chemical components of essential oil from Citrus aurantifolia Swing.	100
	(Peel)	
4.24	Chemical components of essential oil from Citrus maxima (Burm.) Merr.	102
	(Leaf)	

4.2	5 Chemical components of essential oil from <i>Citrus maxima</i> (Burm.) Merr.	104
	(peel)	
4.2	6 Chemical components of essential oil from <i>Houttuynia cordata</i> Thunb	107
4.2	7 Chemical components of essential oil from <i>Boesenbergia pandurata</i>	109
	(Roxb.) Schltr.	
4.2	8 Chemical components of essential oil from <i>Curcuma longa</i> Linn	110
4.2	9 Chemical components of essential oil from Curcuma zedoaria (Berg)	113
	Roscoe.	
4.3	Chemical components of essential oil from Zingiber cassumunar Roxb	115
4.3	1 Chemical components of essential oil from Zingiber officinale Roscoe.	117
4.3	2 Ferric reducing power (EC1) of oils	120
4.3	3 Trolox Equivalent Antioxidant Capacity (TEAC) values of oils	123
4.3	4 Tyrosinase inhibition activity of oils	125
4.3	5 The solubility of sesame oil and lemongrass oil in various solvents	128
4.3	6 The refractive index of sesame oil and lemongrass oil	129
4.3	7 Surface tension of sesame oil, lemongrass oil and various solvents	130
4.3	8 % w/w of Tween20, ethanol, oil and water (Tween 20: ethanol = 1:1)	134
4.3	9 % w/w of Tween20, ethanol, oil and water (Tween 20: ethanol = 2:1)	135
4.4	% w/w of Tween20, ethanol, oil and water (Tween 20: ethanol = 3:1)	136
4.4	1 % w/w of Tween20, ethanol, oil and water (Tween 20: ethanol = 9:1)	137
4.4	2 % w/w of Tween80, ethanol, oil and water (Tween 80: ethanol = 1:1)	138
4.4	3 % w/w of Tween80, ethanol, oil and water (Tween 80: ethanol = $2:1$)	139
4.4	4 % w/w of Tween80, ethanol, oil and water (Tween 80: ethanol = $3:1$)	140
4.4	5 % w/w of Tween80, ethanol, oil and water (Tween 80: ethanol = $9:1$)	141

- 4.46 Physical appearance of formulation of Tween 20, ethanol, oil and water 142 (Tween 20: ethanol = 1:1)
- 4.47 Physical appearance of formulation of Tween 20, ethanol, oil and water 143(Tween 20: ethanol = 2:1)
- 4.48 Physical appearance of formulation of Tween 20, ethanol, oil and water 144 (Tween 20: Ethanol = 3:1)
- 4.49 Physical appearance of formulation of Tween 20, ethanol, oil and water 145 (Tween 20: ethanol = 9:1)
- 4.50 Physical appearance of formulation of Tween 80, ethanol, oil and water 146 (Tween 80: ethanol = 1:1)
- 4.51 Physical appearance of formulation of Tween 80, ethanol, oil and water 147 (Tween 80: ethanol = 2:1)
- 4.52 Physical appearance of formulation of Tween 80, ethanol, oil and water 148(Tween 80: Ethanol = 3:1)
- 4.53 Physical appearance of formulation of Tween 80, ethanol, oil and water 149 (Tween 80: ethanol = 9:1)
- 4.54 Co-surfactants used in this study 155
- 4.55 The formulation of microemulsion and conventional emulsion used in 175 this study
- 4.56 Droplet size and size distribution of internal phase and conductivity of 179 microemulsion systems without drug
- 4.57 Droplet size and size distribution of internal phase and conductivity of 180 microemulsion systems with drug

4.58	The amount of drug remaining in formula-1 of lemongrass oil	185
	and sesame oil emulsion system	
4.59	The amount of drug remaining in formula-2 of lemongrass oil	186
	and sesame oil emulsion system	
4.60	The amount of drug remaining in formula-3 of lemongrass oil	187
	and sesame oil emulsion system	
4.61	The amount of drug remaining in formula-4 of lemongrass oil	188
	and sesame oil emulsion system	
4.62	The amount of drug remaining in formula-5 of lemongrass oil	189
	and sesame oil emulsion system	
4.63	Amount of drug released from lemongrass oil microemulsion systems	203
4.64	Amount of drug released from sesame oil microemulsion systems	204
4.65	Release rate of clotrimazole from the microemulsion systems and their	205
	respective correlation coefficient of the linear equations obtained from	
	the plot between the amount of drug release vs. time	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

T .	
нт	gure
T . T	Guit

	LIST OF FIGURES	
Figure		Page
2.1	A hypothetical pseudo-ternary phase diagram of an oil/surfactant/water	13
	system	
2.2	The pathway of melanin biosynthesis	17
3.1	Essential oil hydrodistillation	30
3.2	Tyrosinase inhibitory determination	35
3.3	Vortex mixer	38
3.4	Multipoint stirrer	38
3.5	Whilhelmy type surface tensiometer	39
4.1	The physical appearance of the oil used in this study	58
4.2	GC chromatogram of essential oil from Apium graveolens Linn.	63
4.3	GC chromatogram of essential oil from Anethum graveolens Linn.	65
4.4	GC chromatogram of essential oil from Centella asiatica Urban.	67
4.5	GC chromatogram of essential oil from Coriandrum sativum Linn.	69
4.6	GC chromatogram of essential oil from Eryngium foetidum Linn.	70
4.7	GC chromatogram of essential oil from Polyscias fruticosa Harms.	72
4.8	GC chromatogram of essential oil from Eupatorium odoratum Linn.	74
4.9	GC chromatogram of essential oil from Spilanthes acmella Murr.	76
4.10	GC chromatogram of essential oil from Cymbopogon citratus Stapf.	78

xxii

4.11	GC chromatogram of essential oil from Coleus amboinicus Lour.	80
4.12	GC chromatogram of essential oil from Melissa officinalis Linn.	82
4.13	GC chromatogram of essential oil from Ocimum basilicum Linn.	84
4.14	GC chromatogram of essential oil from Ocimum canum Sims.	86
4.15	GC chromatogram of essential oil from Ocimum gratissimum Linn.	88
4.16	GC chromatogram of essential oil from Ocimum sanctum Linn.	90
4.17	GC chromatogram of essential oil from Cinnamomum bejolghota Sweet.	92
4.18	GC chromatogram of essential oil from Piper sarmentosum Roxb.	94
4.19	GC chromatogram of essential oil from <i>Polygonum odoratum</i> Lour.	96
4.20	GC chromatogram of essential oil from Citrus aurantifolia Swing. (Leaf)	98
4.21	GC chromatogram of essential oil from Citrus aurantifolia Swing. (Peel)	100
4.22	GC chromatogram of essential oil from Citrus maxima (Burm.) Merr.	102
	(Leaf)	
4.23	GC chromatogram of essential oil from Citrus maxima (Burm.) Merr.	104
	(Peel)	
4.24	GC chromatogram of essential oil from Houttuynia cordata Thunb.	106
	GC chromatogram of essential oil from <i>Houttuynia cordata</i> Thunb. GC chromatogram of essential oil from <i>Boesenbergia pandurata</i> (Roxb.)	
4.25	YAT INTITLE	
4.25 4.26	GC chromatogram of essential oil from Boesenbergia pandurata (Roxb.)	108
4.25 4.26 4.27	GC chromatogram of essential oil from <i>Boesenbergia pandurata</i> (Roxb.)GC chromatogram of essential oil from <i>Curcuma longa</i> Linn.GC chromatogram of essential oil from <i>Curcuma zedoaria</i> (Berg) Rosc.	108 110
4.25 4.26 4.27	GC chromatogram of essential oil from <i>Boesenbergia pandurata</i> (Roxb.)GC chromatogram of essential oil from <i>Curcuma longa</i> Linn.GC chromatogram of essential oil from <i>Curcuma zedoaria</i> (Berg) Rosc.	108 110 113
4.25 4.26 4.27 4.28 4.29	 GC chromatogram of essential oil from <i>Boesenbergia pandurata</i> (Roxb.) GC chromatogram of essential oil from <i>Curcuma longa</i> Linn. GC chromatogram of essential oil from <i>Curcuma zedoaria</i> (Berg) Rosc. GC chromatogram of essential oil from <i>Zingiber cassumunar</i> Roxb. 	108 110 113 115

4.31	Effect of Tween 20 and ethanol with water and lemongrass oil	150
	(Cymbopogon citratus Stapf.)	
4.32	Effect of Tween 80 and ethanol with water and lemongrass oil	151
	(Cymbopogon citratus Stapf.)	
4.33	Microemulsion area (M) of lemongrass oil in various surfactant	156
	systems with ethanol (1 : 1)	
4.34	Microemulsion area (M) of lemongrass oil in various surfactant	156
	systems with ethanol (1 : 2)	
4.35	Microemulsion area (M) of sesame oil in various surfactant	157
	systems with ethanol (1:1)	
4.36	Microemulsion area (M) of sesame oil in various surfactant	157
	systems with ethanol (1 : 2)	
4.37	Microemulsion area (M) of lemongrass oil in Tween 20 and sesame oil	158
	in Tween 85 without cosurfactant	
4.38	Effect of carbon atom in co-surfactant molecules on the phase diagram	160
	of lemongrass oil (the ratio of surfactant: co-surfactant is 1:2)	
4.39	Effect of carbon atom in co-surfactant molecules on the phase diagram	161
	of lemongrass oil (the ratio of surfactant: co-surfactant is 1:1)	
4.40	Effect of carbon atom in co-surfactant molecules on the phase diagram	162
	of lemongrass oil (the ratio of surfactant: co-surfactant is 2:1)	
4.41	Effect of carbon atom in co-surfactant molecules on the phase diagram	163
	of sesame oil (the ratio of surfactant: co-surfactant is 1:2)	
4.42	Effect of carbon atom in co-surfactant molecules on the phase diagram	164
	of sesame oil (the ratio of surfactant: co-surfactant is 1:1)	

4.43	Effect of carbon atom in co-surfactant molecules on the phase diagram	165	
	of sesame oil (the ratio of surfactant: co-surfactant is 2:1)		
4.44	Effect of surfactant : co-surfactant on the microemulsion area (M)	166	
	of lemongrass oil		
4.45	Effect of surfactant : co-surfactant on the microemulsion area (M)	167	
	of sesame oil		
4.46	Effect of NaCl on the microemulsion area (M) of lemongrass oil	168	
	(surfactant system is Tween 20 : Ethanol = 2:1)		
4.47	Effect of CaCl ₂ on the microemulsion area (M) of lemongrass oil	168	
	(surfactant system is Tween 20 : Ethanol = 2:1)		
4.48	Effect of NaCl on the microemulsion area (M) of sesame oil	169	
	(surfactant system is Tween 85 : Ethanol = 2:1)		
4.49	Effect of CaCl ₂ on the microemulsion area (M) of sesame oil	169	
	(surfactant system is Tween 85 : Ethanol = 2:1)		
4.50	Effect of chemical structure on the microemulsion area (M) of	170	
	lemongrass oil (surfactant system is Tween 20 : Ethanol = 2:1)		
	and sesame oil (surfactant system is Tween 85 : Ethanol = 2:1)		
4.51	Effect of pH on the microemulsion area (M) of lemongrass oil	171	
	(surfactant system is Tween 20 : Ethanol = 2:1)		
4.52	Effect of pH on the microemulsion area (M) of sesame oil	171	
	(surfactant system is Tween 85 : Ethanol = 2:1)		
4.53	Appearance of the lemongrass oil microemulsion without drug	176	
4.54	Appearance of the lemongrass oil microemulsion with drug	176	
4.55	Appearance of the sesame oil microemulsion without drug	177	

4	.56	Appearance of the sesame oil microemulsion with drug	177
4	.57	The amount of drug remaining in lemongrass oil microemulsion system	190
		(HT = 45° C, RT = Room temperature about 30° C, LT = 4° C)	
4	.58	The amount of drug remaining in sesame oil microemulsion system	191
		(HT = 45° C, RT = Room temperature about 30° C, LT = 4° C)	
4	.59	The outter appearance of lemongrass oil microemulsion systems	192
		without drug which were kept in various conditions	
		(HT = 45° C, RT = Room temperature about 30° C, LT = 4° C,	
		HCC = heating and cooling cycle)	
4	.60	The outter appearance of lemongrass oil microemulsion systems	193
		with drug which were kept in various conditions	
		(HT = 45° C, RT = Room temperature about 30° C, LT = 4° C,	
4	.61	The outter appearance of sesame oil microemulsion systems	194
		without drug which were kept in various conditions	
		(HT = 45° C, RT = Room temperature about 30° C, LT = 4° C,	
4	.62	The outter appearance of sesame oil microemulsion systems	195
		with drug which were kept in various conditions	
		(HT = 45° C, RT = Room temperature about 30° C, LT = 4° C,	
4	.63	Comparison of characteristic appearance of various formulations	196
		stored at 45°C	
4	.64	Comparison of characteristic appearance of various formulations	197
		stored at 30°C	
4	.65	Comparison of characteristic appearance of various formulations	198
		stored at 4°C	

XXV

4.66	Comparison of characteristic appearance of various formulations	199
	stored in heating-cooling cycle	
4.67	The product of miroemulsion of sesame oil and lemongrass oil	200
4.68	The releasing profile of drug from lemongrass oil	206
	microemulsion systems	
4.69	The releasing profile of drug from sesame oil microemulsion systems	206

ລິບສິກສົ້ນກາວົກຍາລັຍເຮີຍວໃหນ Copyright[©] by Chiang Mai University All rights reserved

			٠	٠
Х	Х	V	1	1

ABBREVIATIONS AND SYMBOLS

Abs	=	Absorbance
°C	=	Degree celcius
Fe	=	Iron
g	=	Gram
GC-MS	Ξ	Gas Chromatography and Mass Spectrometer
hr	=	Hour
μg	=	Microgram
μL	=	Microliter
μΜ	=	Micromolar
mL	=	Milliliter
mM	=	Millimolar
М	=	Molar
min	=	Minute
nm	=	Nanometer
%	=	Percent
v/v	Ŧ	Volume/Volume
w/w	= .	Weight/Weight

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved