
CHAPTER 2 

THEORY 

 

My research work involved operation of the 30-kV bioengineering ion 

implanter (CMU3) at Chiang Mai University, designing and construction of a 

deceleration lens system using the ion beam optics program SIMION, installation of 

the deceleration lens to the CMU3 ion beam line, measurement of the decelerated ion 

beam energy, bombardment of naked DNA using the decelerated ion beam, and 

analysis of the ion-bombarded DNA form using gel electrophoresis. Therefore, in this 

chapter all of the relevant theories on the CMU3 ion implanter, ion beam optics, ion 

beam deceleration, measurement of decelerated ion beam energy and gel 

electrophoresis are introduced.  

 

2.1 The 30 kV vertical bioengineering ion implanter (CMU3) 

The bioengineering ion implanter CMU3 was installed about ten years ago at 

the Plasma and Beam Physics Research Facility, Department of Physics and Materials 

Science, Faculty of Science, Chiang Mai University. The ion implanter has been used 

almost in the biophysics field such as ion beam induced mutation of crops and gene 

transfer into cells. CMU3 consists of an ion source, a mass analyzer, a steering 
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magnet, a beam scanner, a target beam current measurement system, a small chamber, 

a big chamber, vacuum systems, power supplies, and support systems, as shown in 

Figure 2.1. 

2.1.1 Ion source 

Nielsen ion source (Danfysik 910)(นิติศกัด์ิ ปาสาจะ, 1999) is of a hot cathode 

type which has electron emission from a tungsten filament to collide with atoms of 

gas to produce plasma. The Nielsen ion source is designed to work at high 

temperatures (up to 1200 0 C) providing possibilities to be able to produce various ion 

species, either gaseous or solid, non-metal or metal (Yu Liangdeng, 1997). The 

Danfysik 910 ion source can increase the efficiency of generating plasma by a 

solenoid magnet due to its role in increasing the mean free path of electrons, because 

the electrons are influenced by the magnetic force to have the helical trajectories in 

order increase collision rate with atoms inside the chamber before they are captured 

by the anode. Ions in the ion source chamber are extracted by an electrode which has 

potential lower than that of the anode. An einzel lens system after the extractor 

focuses the ion beam which is divergent after extraction. The einzel lens consists of 3 

electrodes, as shown in the Figure 2.1 of which the first and the third electrodes are at 

the ground potential while the second electrode is at a high voltage potential. 

2.1.2 90° mass analyzing magnet 

The magnet is supported and fixed vertically by a four-post steel frame work 

capable of being adjusted (shifted) in position both horizontally and vertically 

(Prakrajang, 2012). The beam line after the mass analyzing magnet is vertical in order
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Figure 2.1.  Schematic drawing of CMU3 ion beam line. 
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to accommodate convenient horizontal holding of biosamples which are normally 

very difficult to hold in vertical because of their irregular and various shapes and 

sizes. The dipole magnet is used to bending ion beam in horizontal plane to vertical 

plane, as shown in Figure 2.1. The magnetic analyzer works based on the principle of 

the Lorentz force. It can focus ion beam in the horizontal plane. The field at central 

and near central area between magnet poles is quite uniform, and the edge area is not 

uniform (fringe field). A fringe field plays an important role in vertical focusing. The 

analyzing magnet is used to select the proper ion species. Its power supply is used to 

supply the current up to 45 A to the magnet which can bend high current ion beam by 

90° mass analyzing magnet. The magnet is cooled by chilled water (Prakrajang, 

2012). 

2.1.3 Double steering magnets 

Two beam sweeping dipole magnets are used for separating ion beam from 

neutral beam and scanning ion beam for homogeneous bombardment. The first 

magnet bends ion beam in a small angle from the vertical direction and the second 

magnet bends the beam back to the vertical direction and also scans the ion beam. 

2.1.4 Target chambers 

The target chambers are the main components of the ion implanter. CMU3 

has two target chambers. The first, a small target chamber, is installed next the 

steering magnet. This target chamber is used in bombardment of materials and 

biosamples. The size of chamber is about 20 cm in diameter and about 20 cm in 

height. The small chamber is designed for fast pumping to reduce the risk of 

biosample dehydration of staying in vacuum too long. The target chamber can be 
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pumped down to an order of 10
-5

 torr within 30 minutes monitoring by vacuum 

gauges. A Faraday cup is installed inside the chamber in order to measure the ion 

beam current. The movement of the sample holder is controlled by a stepping motor.  

Cooperation of the sample holder translation and beam scanning makes a bombarding 

area of 5 cm × 5 cm in maximum (Yu Liangdeng et al., 2007).   

The big chamber is installed at the end of the CMU3 beam line. It is 

cylindrical with 45 cm in diameter and 50 cm in height for special instruments 

installation, for example, an in situ atomic force microscope (AFM), an in situ X-ray 

detecting system and the deceleration lens system.   

 

2.2 The paraxial ray equation for axially symmetric systems 

In situations where the ions move close to and with small angle to the axis, 

ion trajectories can be determined (Wilson and Erwer, 1973) by the paraxial ray 

equation for axially symmetric systems. This section will calculate ion trajectories by 

the paraxial approximation without space charge theory. The paraxial without space 

charge theory is based on the assumptions: 1) an ion is travelling close enough to the 

axis that the higher order terms in an expansion of the electric field can be neglected 

therefore the focusing of the lenses is linear with radius, and 2) the beam current is 

low enough so that the effect of space charge of the beam can be neglected. The ion 

trajectories are considered in the cylindrical coordinates. We begin with the force on 

the point charge q  in an electromagnetic field, the Lorentz force F, given by 

 )( BvEqF


 ,       (2.1) 
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where E


 is the electric field in volt per meter, v


 is the velocity of the moving charge 

in meter per second, and B


 is the magnetic field in tesla. The motion of particle is 

determined by Newton’s equation 

 )( BvEqF
dt

Pd 


 ,      (2.2) 

where P


 is the mechanical momentum in non-relativistic mechanics, simply the 

product of mass and velocity. However, in relativistic mechanics the mechanical 

momentum is more complicated, according to the theory of special relativity, given by 

 
  2/122 /1 cv

vm
P





,  or vmP


 ,     (2.3) 

where   is the Lorentz factor. Equation (2.2) can be expanded in cylindrical 

coordinates  zr ,, . The velocity is given by 











zrrv ,, 


 and then the equations of 

motion are 

 )(
)( 2




BzBrEqmr
dt

rmd
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


 ,    (2.4) 
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
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,    (2.5) 

 )( rz BrBrEq
dt

zmd



















 .     (2.6)  

The assumptions of paraxial motion are that the particle trajectories remain 

close to the axis [Martin Reiser, 1994], that is, r  is very small compared to the radii 

of electrodes. Therefore, the slope of the particles trajectories remain small 
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











zrorr 1 , and the r   is defined by dzdr / . Furthermore, the azimuthal 

velocity v  must remain very small compared to the axial velocity 











zr . Thus, 

the linear approximation gives vrrvz 










2/1

2222  . Due to these assumptions 

only first order terms in the expansion of the fields can be considered while the all 

term of order 
22 ,, rrrr  , and higher order in the equation of motion can be dropped. 

The first order electric and magnetic field terms are 

 ,VEz
  

z

Er
rVE z

r





22

1
,    (2.7) 

 ,
2

1
rBBr
   BBz  .     (2.8) 

 Note that ,0,0   BE  which follow from 0 E


 and 0 B


 with 

0/   .  )(zVV   and )(zBB   are the electrostatic potential and magnetic field 

on the z-axis )0( r , respectively. 

 If we substitute the electric and magnetic field equations (2.7) and (2.8) into 

equations (2.4) to (2.6), we can obtain the radial, azimuthal, and axial equations of 

motion as the following, 

 BqrV
qr

mr
dt

rd
m




 


2

)( 2
,     (2.9) 
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,    (2.10) 
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q
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Here        ArldASdASdB 2


 is the magnetic flux enclosed 

by the particle trajectory, and 










constqrArPqrAmrpp   2  is the 

canonical angular momentum, respectively. Since in the paraxial approximation 

)( vrvcvz 


  , we can neglect the term 2/2 Bqr 


  on the right hand side 

of equation (2.11). The left hand side term in the equation (2.11) can be changed into 

differentiation with respect to the z-coordinate as following, 
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or, with 
3/  , 
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.       

Thus, equation (2.11) may be written as  

       Vqmc 2 .                        (2.12) 

From equation (2.10) we obtain the angular velocity of the particles 
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Substitution equation (2.13) into equation (2.9) obtains for the radial motion 
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Now we consider 

 cz  


,       (2.15) 

 crzrr 


,       (2.16) 

   222 crcrcr
dz

d
cr  



.     (2.17) 

By using equation (2.15) to equation (2.17) and the relation 
3/  , the left 

hand side of equation (2.14) may be written as 

  rrc
dt

rd





 22)(

.      (2.18) 

From equation (2.12), we have 

   2mcVq .       (2.19) 

Substitution of equations (2.18) and (2.19) into equation (2.14) yields  
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22 32222
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


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p
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



  .  (2.20) 

This is the relativistically corrected paraxial ray equation that defines the radial 

motion of the particles near the z-axis where the non linear force terms are neglected.  
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The azimuthal position of the particles as a function of distance z can be determined 

by equation (2.13). 

The meaning of each term of equation (2.20) is as follows. The first term, r   

represents the change the slope of the particle trajectory. The second term contains the 

effect of the axial electric field (acceleration or deceleration). The third term concerns 

the radial electric field (focusing or defocusing). The fourth term represents the 

magnetic force. The last term adds a centrifugal potential or an effective repulsive 

core when the canonical angular momentum is different from zero, and in this case 

the particle never crosses the axis. 

In the non-relativistic limit, we can make the substitutions 
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2
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      (2.21) 
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
.      (2.23) 

By these approximations, the equation (2.20) can be written in the non-relativistic 

paraxial ray equation 

 0
1

2842 3
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For the angle  , the non-relativistic approximation from equation (2.13) (the 

initial condition 0   and 0zz  ) gives 
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2.3 Beam optics 

Section 2.2 considers the ion trajectories by paraxial without space charge 

approximation, and finally obtains equation (2.20). However, my research has been 

focused in ultra-low ion beam energy and concentrated on an electric field only, and 

thus the fourth term in the equation vanishes. As the initial angular velocity is zero, 

the last term in the non-relativistic approximation of the paraxial ray equation 

vanishes. Then equation (2.24) becomes  

 0
42








V

rV

V

rV
r .       (2.26) 

The paraxial ray equation (2.26) can be integrated and the equation essentially relates 

the change in transverse momenta between the two planes. A direct integration of 

equation (2.26) is very difficult. However there is a transformation method for 

calculation of the ion trajectories. Ion beam optics characteristics of each element can 

be expressed by transformation which relates the radius and slope of ion trajectories at 

the input and output planes. This transformation forms a matrix which conveniently 

multiplies with the matrix of each optical element. 

For example, a double-aperture lens is shown in Figure 2.2. The ion beam 

trajectories are calculated by the transformation matrix method. The matrices of the 

double-aperture lens consist of the matrix of aperture lens 12(M
 
and )34M  and the 

matrix of constant field region between potentials 1V  and 2V )( 23M .  Then the 

trajectories of ion beam are 
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Figure 2.2.  Schematic diagram of a double-aperture lens (Wilson and Erwer, 1973). 

 

where r  and 'r  represent the transverse position and the slope in the r  plane, 

respectively. Subscription i  and o represent the position and the slope at the image 

(ion beam exit) and the object (ion beam entrance) plane, respectively.  Details of 

matrices will be shown later.     

The focal length )( f  of lens system is 

  21

1
a

f
 .        (2.28) 

If a focal length is positive, it is converging and vice versa. The Lagrange invariant 

imposes the condition that the determinant of the matrix is unity,  

121122211  aaaa .       (2.29) 
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2.3.1 Transformation matrix of the drift space  

Ion beams in a field free drift space of length L  at potential V  between input 

and output reference planes (Figure 2.3) will travel in straight lines. The transverse 

velocity is constant and change in transverse position is just equal to slope of the input 

trajectory multiplied by the drift length. As shown in Figure 2.3,  

'

112 Lrrr          (2.30) 

'

1

'

2 rr  .        (2.31) 

It can be written in a transformation matrix format:  
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where DM  is the drift space transformation matrix. The potential in the drift space is 

constant, thus 21 VVV  . 

2.3.2 Transformation matrix of the uniform field (Liebl, 2008) 

The trajectory and slope of ion beam after passing through a uniform electric 

field when considering the paraxial case (Figure 2.4) can be determined by using the 

transformation matrix. The transformation matrix of the uniform field is 
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where FM  is the uniform field transformation matrix. For the ion beam, 21 VV   is an 

acceleration case, while 21 VV   is a deceleration case and 21 VV   is a drift space 

case. 
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Figure 2.3.  Drift space without deflection (Liebl, 2008). 

 

 

 

Figure 2.4.  Paraxial case of acceleration of charged particle through a uniform field 

(Liebl, 2008). For clarity, the length of 1r  and 2r  are enlarged. 

2.3.3 Transformation matrix of double-aperture lens (Wilson and 

Erwer, 1973) 

From Figure 2.2, a double-aperture lens is composed of two apertures and 

there is no electric field before the first electrode. The focal length of the first aperture 

is given by 
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And the focal length of the second aperture is given by  
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The matrices of double aperture lenses are  
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and 
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By using equations (2.33), (2.36) and (2.37) to equation (2.27), it is then 
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where DLM  is the double-aperture lens transformation matrix. This matrix can be 

used as an approximation to that representing an accelerating or decelerating gap 

between plates or cylinders. It will form a more accurate representation as the ratio of 

the gap length ( L ) to the aperture diameter becomes larger. 

 

Figure 2.5.  Schematic diagram of the Einzel lens arrangement and potential variation 

(above the lens) (Wilson and Erwer, 1973). 
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2.3.4 Transformation matrix of einzel lens (Wilson and Erwer, 1973) 

An einzel lens is composed of 3 electrodes, in which the first and the third 

electrodes have the same potentials (Figure 2.5). The einzel lens is used to focus ion 

beam trajectory without changing the energy. The einzel lens initially decelerates 

)( 12 VV   ions, yielding ion trajectories closer to the axis (than the case 21 VV  ) and 

thereby losing spherical aberration. The transformation matrix of the Einzel lens is 

beam trajectory without changing the energy. The einzel lens initially decelerates 

)( 12 VV   ions, yielding ion trajectories closer to the axis (than the case 21 VV  ) and 

thereby losing spherical aberration. The transformation matrix of the Einzel lens is  
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From the transformation matrix of Einzel lens, one can find that a positive 

focal length )( 12 VV   means that this lens has the property of focusing ion beam, 

while if all electrodes have the same potential )( 21 VV  , the focal length equals to 

infinity. 

 

2.4 Aberrations in the ion optical elements 

The size and shape of a focused ion beam can be strongly influenced by 

imperfections in the several ion optical elements which make up the beam transport 

system (Wilson and Erwer, 1973). The important four types of aberrations will be 

described in the following. The spherical and chromatic aberrations are shown in  
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Figure 2.6.  Schematic diagrams of typical trajectories exhibiting (a) spherical 

aberration and (b) chromatic aberration (Wilson and Erwer, 1973). 

 

Figure 2.6.   

 From Figure 2.6 (a), aberrations will result in a minimum beam diameter, 

which is called the disk of least confusion. This minimum diameter results from the 

crossing of several ion trajectories passing through the lens that does not come to a 

focus at the same axial position, in contrast with the beam minimum due to space 

charge repulsion (Orloff, 2009).   

2.4.1 Spherical aberration 

This defect is caused by focusing fields that are invariably stronger near that 

the electrodes that produce them, usually result of the focal position closer to the lens 

than the paraxial focal position, as shown in Figure 2.6 (a). For the disk of the least 

confusion, radius s  is given by 

 3)4/1( iss C   ,       (2.40) 
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where sC  is the spherical aberration constant, usually relates to the paraxial focal 

length f  by fKC ss  , sK  a constant dependent on the lens geometry, and i  is the 

convergence haft-angle at the image side of the lens. i  can be related to the 

equivalent angle on the object side o  by the Lagrange-Helmholz relation (Grivet, 

1965)   

 iii hVhV  000 ,       (2.41) 

where 0V  and iV  are the potentials, 0h  and ih  are the distances of the ray from axis on 

object and image sides of the lens, respectively. The spherical aberration is impossibly 

eliminated from beam, therefore it is of the great importance to design the element 

with minimum spherical aberration constant )( sC . 

2.4.2 Chromatic aberration or the effect of momentum dispersion 

The chromatic aberration in a lens refers to the sensitivity of the focal 

properties to the velocity with which the particles enter the lens. A higher velocity 

particle will come to a focus farther from the lens than a particle with lower entrance 

velocity. For the disk of the least confusion in chromatic aberration case [Figure 

2.6(b)], the radius )( c  is given by 

 
0V

V
C icc


  ,       (2.42) 

where cC  is the chromatic aberration constant, frequently expressed as fKC cc  .  

V  and 0V  represent the energy spread and the mean energy of the incoming ions, 

respectively. The chromatic aberration depends on the parameters of the lens 

characteristics, the incident ion energies, and electronic aberration. Since the lens 
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characteristics depend on the applied voltage, therefore the chromatic aberration will 

occur if the voltages vary because of power supply ripple or drift.      

2.4.3 Ellipticity astigmatism 

This aberration can occur if the apertures of electrostatic optical elements are 

not circular, or are displaced or tilted with respect to the optical axis. In these cases 

the elliptical shape of the resulting electric field will cause an aberration called 

ellipticity astigmatism. The disk radius of confusion is given by 

 iee C   .        (2.43) 

For a noncircular aperture, eC  is the ellipticity constant. Grivet gives equations 

relating the mechanical displacement or tilt of the principle aperture of a lens to the 

ellipticity constant. If this aperture is displaced off center by e  with respect to the 

optical axis, then the ellipticity constant is 
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f

e
CC se

       (2.44) 

where sC  is the spherical aberration coefficient. If a circular lens is tilted at an angle 

  with respect to the optical axis, the ellipticity constant is given by 

 2se CC          (2.45) 

This aberration can be decreased by serious concerns in the designing and 

construction of ion optical elements since the astigmatism results from mechanical 

type error. The astigmatism can be corrected by the use of a stigmator which, in its 

simplest form, is an n-pole element of opposite electric fields arranged around the 

beam (Wilson and Erwer, 1973). 
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2.4.4 Diffraction 

In passing through a limited aperture, a beam will be diffracted to form a 

spot of radius  

 





6.0
d ,        (2.46) 

where  λ=0.286/(V0M)
1/2

 Å for ions V0=potential(V), M=atomic mass. This effect will 

be a limitation only in very high resolution devices and is not usually of practical 

importance. 

2.4.5 Total aberration 

If the several aberrations discussed above are independent, the observed 

minimum beam radius at the focused spot can be represented by 

 
222

secobserved   .      (2.47) 

The radii of the disks of confusion are added as the rms sum. Practical beam transport 

systems will be made up of several ion-optical elements, each contributing distortion 

to the beam. It is of interest to be able to determine the total aberration resulting from 

two lenses in series. The effect of additional lenses can obviously be determined by 

repeating use of the relation for two lenses (Liebmann, 1949). 

2.5 Ion beam energy deceleration 

A retarding field is used for decelerating ion beam since the force direction 

of the retarding field is opposite to the incident direction of ion beam, as shown in 

Figure 2.7. In this section, the methods for calculating the ion beam energy 

deceleration are described. There are two methods, the first considering the energy 
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conservation principle in the mechanic theory and the second considering principles 

in the electrostatic theory. The second method can be separated in two cases which 

are ions motion between electrode plates without space charge and with space charge 

effects. 

In Figure 2.7, two infinite parallel conducting plates are considered. The first 

plate is at 0x  with potential 1V  and the second plate is at dx   with potential 

2V . Such a configuration is known as a planar diode. The primary ion beam enters 

the planar diode field from the left at the entrance aperture and the decelerated ion 

beam leaves the field from the exit at the right.  

2.5.1 Ion beam energy deceleration by mechanical theory 

The energy conservation principle states that energy cannot be created or 

destroyed but it can be changed from one form to another. Thus, in an isolated or 

closed system the sum of all forms of energy remains constant. In the case of using 

the retarding field to decelerate ions, the energy conservation is 

 

 

 

 

Figure 2.7.  A schematic diagram of ion beam deceleration to lower the ion energy by 

a retarding field (Liebl, 2008). 
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22112,1, PKPKEEE totaltotaltotal  ,    (2.48) 

where totalE  is the total energy, 1E  is the ion energy at the entrance position, position 

1, where an ion beam has the kinetic energy gained from the ion source 

extraction/acceleration only, 2E  is the ion energy at the exit position, position 2, 

where the ion beam passes the retarding field and has the kinetic energy but affected 

by the potential energy, assuming the electrostatic field between the plates uniform, 

K  is the kinetic energy and P is the potential energy. From Figure 2.7, following the 

energy conservation principle, one has 
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1 VVqmvmvVVqmvmv   ,  (2.49) 

where 1v  is the ion velocity at position 1, 2v  is the ion velocity at position 2, q  is 

proton charge, 1V  is the voltage of plate 1 and 2V  is the voltage of plate 2.    

The total ion energy at position 1 has only the kinetic energy since the ion 

beam is extracted/accelerated from the ion source and the total energy at position 2 

has the kinetic energy and affected by the potential energy which is given by the 

retarding field between two electrode plates. For a retarding field, 1V  is lower than 2V

; if 21 VV  , that is a free space. For example, an ion beam extracted from the ion 

source has energy of 15 keV at position 1; after it passes through the retarding field 

which has 1V  and 2V to be 0 and 14.5 kV, respectively, thus from energy conservation 

principle one can know that the ion beam energy at position 2 is 0.5 keV (assuming 

singly charged ion). 
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2.5.2 Ion beam energy deceleration by electrostatic theory 

2.5.2.1 Analytic ion beam energy deceleration without space charge 

For convenience in analyis, the parameters are defined as following: the first 

plate at 0x  with potential 0  and the second plate at dx   with potential 

V , respectively. The static electric field between the two plates is given by 




E  and the potential )(x  can be calculated from Laplace’s equation (without 

space charge case, 0 ) 

 0
2

2
2 

xd

d 



,       (2.50) 

with the solution 
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x )( ,        (2.51) 

and 
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,       (2.52) 

the electric field is uniform between plates. 

The non-relativistic equations of motion in Newton’s form in the x-direction 

are (in Figure 2.7 it can seen that the electrostatic field direction is opposite to the ion 

velocity direction), 

 qExm 
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,        (2.53) 
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and in the y-direction, 
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ym ,        (2.56) 
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Substituting 
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 yyt  from equation (2.58) into equation (2.55) gives the trajectory 

equation  
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which is a parabola. 

The kinetic energy loss is 
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Substituting 
m
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t

x
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2
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

 from equation (2.55) into equation (2.60) gives the kinetic 

energy loss, 

 qExxx
m

TTT 














 2

0

2

0
2

.     (2.61) 

In the case without space charge, the kinetic energy loss 
d

x
qV0  and T  loss 0qV

,
 

when ion arrives the second plate, from the analytic ion energy deceleration in the 

energy conservation principle and the electrostatic without space charge theory have 

the results corresponding to each other. 
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2.5.2.2 Analytic ion beam energy deceleration with space charge 

Let us now include the effect of the space charge of the ion current in the 

planar diode on the potential distribution and ion motion. To simplify analysis, all 

ions are launched with initial velocity zero from the first plate. The electrostatic 

potential is determined from the space charge density   via Poisson’s equation 

(Reiser, 1994). The relationship between  , the current density J


, and the ion 

velocity follows from the continuity equation. To solve the effect, the three equations 

are used as the following, 
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Substituting   2/1
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

 from equation (2.64) into equation (2.63) and 



 xJ x /  from equation (2.63) into equation (2.62) yields 
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where the current density xJJ   is defined as a positive quantity. After 

multiplication of both sides of equation (2.65) with 
dx

d
, we can integrate and obtain 
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Now 0  at 0x , and if we consider a special case where 0/ dxd  at 0x , we 

obtain 0C .  A second integration yields 
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Using boundary condition, 0V  at dx   gives the equation        
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which is known as the Child’s law or the Child-Langmuir law. Substitution of 

Equation (2.68) into equation (2.67) and rearrangement of the variables yield 
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The kinetic energy loss in this case, from equation (2.61)  qExT   and equation 
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In the case with space charge, the kinetic energy loss x
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qV , when ion arrives the second plate, can be seen 4/3 times that (eq. 2.61) without 

space charge effect. 
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2.6 Measurement of decelerated low-energy ion beam by using a deflecting 

electrostatic field 

The deceleration lens system is designed and constructed for reducing ion 

beam energy from keV to 10-100 eV. To verify the deceleration effect, measurement 

of ion beam energy must be done. There have been some methods of the measurement 

of the decelerate ion beam energy. I used a simpler, cheaper and reliable method, that 

is, using a deflecting electrostatic field to bend the ion beam and the beam bending 

distance being related to the ion energy. The method is described in details in this 

section. 

The basic idea is to use a uniform electrostatic field to deflect the beam, as 

shown in Figure 2.8, and the deflection distance depends on the ion energy. 

When an ion beam passes an electrostatic field whose direction is 

perpendicular to the ion beam travelling direction, its ion beam is bent in a quadratic 

path. After exiting from the end of the electrostatic field the ion beam trajectory is in a 

straight line. If the electrode plates are too short, the electrostatic field may not be 

uniform and have an edge effect. Thus, to reduce the edge effect, the electrode plates 

must not be too short. The electrostatic force on an ion passing through the field is  

deUF / ,        (2.71) 

where e is the unit charge, assuming that the ion is a singly charge. This force deflects 

the ion's trajectory and also accelerates the ion in the perpendicular direction to a final 

velocity hv  after the ion leaves the field, but does not change the ion velocity 0v  

along the incident direction. 
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Figure 2.8.  A schematic diagram of the method to measure the ion beam energy in 

this work. 

 

2.6.1 The first part: considering an ion passing through an electric field 

From the Newton’s second law and eq. (2.71), we have 
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The electric field has the effect on the moving ion in the direction (y-axis) 

perpendicular to the ion moving direction and the time duration of the ion passing the 
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The equation of ion's trajectory is then 
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where 1y  is the deflecting distance, 
yu0
 is initial velocity in perpendicular direction 

which equals to zero. From eq. (2.72) and eq. (2.73), the equation of ion's trajectory, 

i.e. eq. (2.74), becomes 
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where U  is in volt and 0E  is the original ion energy in eV. 

2.6.2 The second part: considering the ion's trajectory and the deflecting 

distance after passing through the electric field 

The force that accelerates the ion in the perpendicular direction to the 

incident direction is,  
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where hv  is the final velocity of the ion in the perpendicular direction when the ion 

just exits from the electric field, and  
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From equation (2.73) and equation (2.76), there is a relation 
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Substituting equation (2.71) for F in equation (2.78) gives 
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The total deflecting distance 0y  from the center of the primary ion beam before 

passing the field is the sum of equations (2.75) and (2.79): 
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It is seen that the total beam bending distance depends on the electrostatic field 

voltage U  and the original ion energy 0E , while others are constants. By adjusting U  

and measuring 0y , we are able to know the ion energy 0E , that is 
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The measurement error of 0E  can be estimated by: 
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2.7 Measurement of beam current (Yu Zengliang, 2006)(Yu Liangdeng, 1997) 

Measurement of the ion beam current can be done both electrically and 

thermally (Yu Zengliang, 2006). In my research an electric mode was used for 

measurement of ion beam current. The ion beam current measurement is essential for 

ion implantation since it is the parameter related to fluence for determining time of 

implanting the sample. 

The electrical method measures total ion charge delivered and then converts this to a 

beam current. Figure 2.9 schematically shows components of the ion beam current 

measurement device, a Faraday cup. The first plate (top) is a grounded electrode 

(aperture) for preventing ions from hitting the electron suppressor plate.  The second 

plate is the electron suppressor which is given negative voltage at -100 - -500 V. 

When ions bombard the measurement piece of the Faraday cup at the bottom, 

secondary electrons will be emitted from the piece surface. The surface loses the 

negative charges of the electrons or in other word it gains positive charges which will 

be sent to the measurement meter and consequently the measured current will be 

higher than it should be. To prevent the error, the emitted secondary electrons must be 

suppressed and collected back to the measurement piece of the Faraday cup. The third 

is an electron collector which is normally a conducting tube and connected to the 

measurement piece to collect secondary electrons and send them to a current meter 

(Ammeter). The three components are insulated each other. An empirical rule tells 

that the length of the tube and the diameter of the measurement piece or the Faraday 

cup should be in a ratio of 3:1. 
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Figure 2.9.  Schematic diagram of measurement of ion beam current using the 

Faraday cup (Yu Zengliang, 2006). 

 

2.8 Fundamentals of ion implantation 

2.8.1 Interaction of energetic ions with solid surface 

When a primary ion bombards a solid target surface and penetrates inside the 

solid, various physical processes occur, as shown in Figure 2.10. At the top surface of 

the solid, due to the collision between the ion and the atom of the target, some 

electrons in the target may be emitted from the surface, which is called secondary 

electron emission. The secondary electron emission will be described later since the 

process has importance in accuracy measurement of ion beam current. The elastic 

collision between the ion and the target atom may cause the incident ion to be back-

scattered. When the ions impact with the target atom, electrons of the atom may be 

excited and then fall to the lower energy level to produce X-ray, visible light, UV, or 
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photon emission. When ions penetrate in the solid, its energy, momentum, and charge 

are transferred to the target atoms. If the collision energy is larger than the critical 

energy for displacement of the solid atom, the solid atom is displaced. A series of 

consecutive collisions and displacements occur in the solid to form a collision 

cascade. A consequence of the collision cascade is damage to the target material 

structure, creating vacancies, interstitials, etc. When an ion loses energy continuously 

until finally stops below the surface, it is an implanted ion.     

Electrons emitted from a solid surface that is bombarded with energetic 

incident ions are called secondary electrons, and the phenomenon is called secondary 

electron emission (Yu Zengliang, 2006). The parameter characterizing secondary 

electron emission in any given situation is the secondary electron emission 

coefficient. This is defined as the mean number of secondary electrons produced by 

each incident ion. The secondary electron emission coefficient depends on the 

incident ion energy, charge state of the incident ion, target material, and a rough or 

convoluted surface. Biological organisms have structurally complex surfaces and are 

electrically inert as well. Therefore, the secondary electron emission coefficient from 

the biological organism surface is greater than that from metallic or semiconductor 

surfaces when they are ion-bombarded under similar implantation conditions (Yu 

Zengliang, 2006).    

2.8.2 Stopping cross section 

Ion energy loss during ion penetration can be described by the stopping cross 

section )(ES , which is defined by 
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Figure 2.10.  Schematic drawing of ion and solid interaction (Yu Liangdeng, 1997). 
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where dE  is the energy loss of the ion travelling a distance dx  and N  is the number 

density of the target atoms. 

For a two element target with compositions of nm BA , the mean stopping 

cross section is given by 

 BABA
nSmSS nm   (mean S  per molecule, for compounds), (2.84) 

 BABA
S

nm

n
S

nm

m
S nm





  (mean S  per atom, for mixtures). (2.85) 

2.8.3 Ion implantation range and projected range 

The stopping cross section is the most fundamental and important concept in 

the ion solid interaction, which can lead to calculation of the projected range of ions. 
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The total path length R  of the implanted ion in a solid is calculated by 

 
0

0
)(

1
E

ES

dE

N
R ,       (2.86) 

where 0E  is the original energy of the incident ion. The shortest distance from the top 

surface of solid to the depth where ions stop is called the projected range 
pR , as 

illustrated in Figure 2.11, which is defined by 

 cosRRp  ,        (2.87) 

where   is the deviating angle of the incident ion from the normal. An approximation 

for the relationship between the total path length and the projected range is 
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 ,       (2.88) 

where R is the average ion path length, pR  is the average ion projected range, 1M  

and 2M  are the masses of the ion and the target atom, respectively.  This is a fairly 

good approximation for the case of low energies. 

 

Figure 2.11.  Schematic of ion’s total path length and projected range (Yu Zengliang, 

2006). 
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2.9 Interaction between energetic ions with DNA 

 2.9.1 DNA structures 

A DNA molecule is composed of two poly-deoxyribonucleotide stands. The 

backbone of each strand is made from a connection between phosphodiester and two 

nucleoside furan β-D-deoxyriboses via 3’ and 5’ bonds. Both strands are dextrogyrate.  

They wind in opposite direction around the same axis, forming a dextrogyrate double 

helical structure. The helix rise per base pair is 3.4 Å. Every ten nucleotides from a 

helical turn and the height of each turn is 34 Å. The bases are inside the helix with 

their planes perpendicular to the helical axis. Phosphates are outside. The average 

diameter of the helix is 20 Å. The two strands are linked by hydrogen bonds between 

base pairs. The model of DNA is shown in Figure 2.12. 

The spatial arrangement of base pairs is remarkably specific. Each adenine residue is 

paired with a thymine residue  TA   by two hydrogen bonds, and each guanine 

residue is paired with a cytosine residue  CG   by three hydrogen bonds.  Since the 

bases from two strands are on the same plane, they must be adapted to the phospho-

deoxyribose backbone. Thus a base pair must be composed of a purine and a 

pyrimidine, and at positions opposite to pyrimidine must be purine. However, note 

that adenine )(A  and cytosine )(C  cannot form a base pair, neither can guanine )(G  

and thymine )(T  form a hydrogen-bonded pair. This means that on the position 

opposite to A  must be T  and on the position opposite to G  must be C . 

The total number of the purine bases in a DNA molecule is the same as the 

number of pyrimudine bases. This is determined by the strict pairing rule between two  
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Figure 2.12.  Schematic diagram of DNA. (a) The model of DNA double helix and (b) 

the scheme of the marcromolecule. 

 

single strands in the DNA molecule. But on each strand the bases types in front and 

behind are not controlled by any rule. Hence in a DNA molecule containing a large 

number of bases, information that can be carried is extremely large. However, the 

versatile structure is maintained in the replication process only if the DNA molecule 

suffers no damage. 

2.9.2 Fluence 

The ion implantation fluence is an important parameter determining physical 

and chemical changes of materials including biological living materials. It should be 

noted that the fluence used here is different from the concept of dose used in 

radiobiology (Yu Zengliang, 2006). Fluence is defined as the number of incident 
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particles passing through unit cross sectional differential area. The conventional unit 

of fluence is ions/cm
2
. The fluence can be estimated by 

 
eA

It
Fluence  ,       (2.89) 

where I  is the target current in ampere, 

 t  is the total implantation time in second, 

 e  is magnitude of charge on electron (1.6022 x 10
-19

 C), 

 A  is the implantation surface area in cm
2
 .  

2.9.3 Breaks of DNA single strands and double strands 

Helical strands are the basic structure of all regular linear polymers in nature.  

This spatial configuration provides every individual with the same spatial orientation 

in its molecules, namely every individual forms the same secondary bond. Otherwise, 

if some secondary bond in the structure were stronger than others, instability would 

occur. At first glance, a DNA molecule is a fairly irregular polymeric strand and 

seemingly thus cannot form regular helical strands. But most DNA molecules contain 

two complementarily structural polynucleotide strands. The helical structure is 

stabilized by secondary internal and external bonds. Two strands are bonded by 

hydrogen bonds produced from complementary purine and pyrimidine base pairs.  

This arrangement stacks their flat planes on each other. A strand alone cannot form a 

regular backbone. Because pyrimidine is smaller than purine, the angle of helical 

spatial orientation would change with base sequence. This is obviously not a proper 

arrangement. As every base pair (-purine-pyrimidine) is the same in size, the double 

helical DNA formed from the complementary base pairs can have a regular structure 

and thus is also the most stable structure. 
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Double helical DNA molecules are quite stable at physiological 

temperatures. To disintegrate a DNA molecule, the hydrogen bonds between the 

double helical strands must be broken. But this is not to say that the DNA double  

helical structure is a totally fixed strong structure. In some cases, such as being 

impacted by energetic ions, DNA molecules and atoms can be displaced and 

rearranged to cause breaking of the double helical DNA single strand and double 

strands, despiralization and cross-linking. 

2.9.4 Gel electrophoresis 

Gel electrophoresis is a method used to separate proteins by charge and/or 

size. The total charge of DNA is negative since phosphate groups in the DNA 

backbone carry negatively charged oxygen molecules giving the phosphate sugar 

backbone of DNA an overall negative charge. Figure 2.13 shows a schematic diagram 

of the gel electrophoresis. 

Ion-bombarded DNA is analyzed using gel electrophoresis for topological 

form change of DNA. A double-strand DNA is originally in the supercoiled form. 

When DNA has a single strand break, it would be in a relaxed form, and when DNA 

has a double strand break, it would be in a linear form. In gel electrophoresis, 

different DNA forms move in an electrical potential in different speeds, the linear 

form the fastest, the supercoiled form the second, and the relaxed form the slowest, 

due to different resistances from the gel. After a certain time period of running, 

different DNA forms are separated in the gel and the separations are used to identify 

the DNA forms. To observe movement of the DNAs, ethidium bromide is used to 

stain the DNAs. Stained DNAs can be visualized under ultraviolet (UV) light. 
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Figure 2.13.  Schematic diagram of gel electrophoresis. (A) Equipment for gel 

electrophoresis method. An electric field pulls DNA in different forms (relaxed, 

supercoiled and linear forms) to pass agarose gel from the cathode pole to the anode 

pole as the total charge of DNA is negative. (B) Result of electrophoresis showing 

mobility of different DNA forms. 
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