## TABLE OF CONTENTS

| Page |                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------|
| iii  |                                                                                                             |
| v    |                                                                                                             |
| vii  |                                                                                                             |
| xiii |                                                                                                             |
| XV   |                                                                                                             |
| 9 1  |                                                                                                             |
| 1    |                                                                                                             |
| 3    |                                                                                                             |
| 3    |                                                                                                             |
| 5    |                                                                                                             |
| 6    |                                                                                                             |
| 6    |                                                                                                             |
|      |                                                                                                             |
| 8    |                                                                                                             |
|      |                                                                                                             |
| rve  |                                                                                                             |
|      | Page<br>iii<br>v<br>vii<br>xiii<br>xv<br>1<br>1<br>3<br>3<br>5<br>6<br>6<br>6<br>6<br>7<br>8<br>8<br>8<br>9 |

|     | 2.1.2 $90^{\circ}$ mass analyzing magnet                                   | 9  |
|-----|----------------------------------------------------------------------------|----|
|     | 2.1.3 Double steering magnets                                              | 11 |
|     | 2.1.4 Target chambers                                                      | 11 |
| 2.2 | The paraxial ray equation for axially symmetric systems                    | 12 |
| 2.3 | Beam optics                                                                | 18 |
|     | 2.3.1 Transformation matrix of the drift space                             | 20 |
|     | 2.3.2 Transformation matrix of the uniform field                           | 20 |
|     | 2.3.3 Transformation matrix of double-aperture lens                        | 21 |
|     | 2.3.4 Transformation matrix of Einzel lens                                 | 23 |
| 2.4 | Aberration in the ion optical elements                                     | 23 |
|     | 2.4.1 Spherical aberration                                                 | 24 |
|     | 2.4.2 Chromatic aberration or the effect of momentum dispersion            | 25 |
|     | 2.4.3 Ellipticity astigmatism                                              | 26 |
|     | 2.4.4 Diffraction                                                          | 27 |
|     | 2.4.5 Total aberration                                                     | 27 |
| 2.5 | Ion beam energy deceleration                                               | 27 |
|     | 2.5.1 Ion beam energy deceleration by mechanic theory                      | 28 |
|     | 2.5.2 Ion beam energy deceleration by electrostatic theory                 | 30 |
|     | 2.5.2.1 Analytic ion beam energy deceleration without space charge         | 30 |
|     | 2.5.2.2 Analytic ion beam energy deceleration with space charge            | 32 |
| 2.6 | Measurement of decelerated low-energy ion beam by using a deflecting       |    |
|     | electrostatic field                                                        | 34 |
|     | 2.6.1 The first part: considering an ion passing through an electric field | 35 |
|     |                                                                            |    |

X

|      | 2.6.2 The second part: considering the ion's trajectory and the deflecting | g  |  |
|------|----------------------------------------------------------------------------|----|--|
|      | distance after passing through the electric field                          | 36 |  |
| 2.7  | Measurement of beam current                                                | 38 |  |
| 2.8  | Fundamentals of ion implantation                                           | 39 |  |
|      | 2.8.1 Interaction of energetic ions with solid surface                     | 39 |  |
|      | 2.8.2 Stopping cross section                                               | 40 |  |
|      | 2.8.3 Ion implantation rang and projected rang                             | 41 |  |
| 2.9  | Interaction between energetic ions with DNA                                | 43 |  |
|      | 2.9.1 DNA structure                                                        | 43 |  |
|      | 2.9.2 Fluence                                                              | 44 |  |
|      | 2.9.3 Breaks of DNA single strands and double strands                      | 45 |  |
|      | 2.9.4 Gel electrophoresis                                                  | 46 |  |
| Chap | ter 3 Simulation of Deceleration Lens System                               | 48 |  |
| 3.1  | 48                                                                         |    |  |
| 3.2  | Deceleration lens simulation                                               | 49 |  |
| 3.3  | Simulation the deceleration lens with space charge                         | 59 |  |
| 3.4  | Simulation of measurement of low ion-beam energy                           | 65 |  |
| Chap | ter 4 Experiment                                                           | 72 |  |
| 4.1  | Designing, construction, and test of the deceleration lens                 | 72 |  |
| 4.2  | Designing and construction of the deceleration lens system for ion         |    |  |
|      | bombardment of DNA                                                         | 76 |  |
| 4.3  | Designing and construction of the deceleration lens system for beam        |    |  |
|      | energy measurement                                                         | 77 |  |

| <ul><li>4.4 Installation of the deceleration lens systems</li><li>4.5 Measurement of ion beam energy</li></ul> | 80<br>80   |
|----------------------------------------------------------------------------------------------------------------|------------|
| 4.5 Measurement of ion beam energy                                                                             | 80         |
|                                                                                                                |            |
| 4.6 DNA preparation                                                                                            | 85         |
| 4.7 Bombardment of DNA                                                                                         | 85         |
| 4.8 Gel electrophoresis for analyzing plasmid DNA forms                                                        | 86         |
| Chapter 5 Results and Discussion                                                                               | 89         |
| 5.1 The deceleration lens systems                                                                              | 89         |
| 5.2 Measurement of ultra-low-ion beam energy                                                                   | 89         |
| 5.3 Ultra-low ion energy bombardment of naked DNA                                                              | 99         |
| Chapter 6 Conclusions                                                                                          | 04         |
| 6.1 Designing, construction, and installation of the deceleration lens                                         | 04         |
| 6.2 Measurement of ultra-low ion beam energy                                                                   | 05         |
| 6.3 Bombardment of naked DNA using ultra-low energy ion beam 1                                                 | 06         |
| References 1                                                                                                   | 07         |
| Appendices 1                                                                                                   | 13         |
| Appendix A Preparation the 30 kV-Vertical Bioengineering Ion Beamline 1                                        | 14         |
| Appendix B Ion Beam Current Depend on Position of the measurement Ion                                          |            |
| Beam Energy                                                                                                    | 17         |
| Curriculum Vitae 1                                                                                             | 27         |
| Copyright <sup>©</sup> by Chiang Mai Univ                                                                      | <b>e</b> r |
|                                                                                                                |            |
|                                                                                                                |            |

xii

### LIST OF TABLES

xiii

#### Table

- 3.1 Simulation data. (a) The potentials of each electrode of each model.(b) The original, final kinetic energies and diameters of each model
- 3.2 Summary. (a) The potentials of each electrode in each model. (b) The original, final ion energies and the distance bending by theory and simulations
- 5.1 Summary of fist experiment information on the measurement of the decelerated-ion energy. (a) The potential of each electrode of the deceleration lens in the simulation and experiment. (b) Information of the measurement of the ion beam energy (diameter, distance of ion beam bending, ion beam energy, and ion beam energy measurement error)
- 5.2 Summary of the second experiment information. (a) The potential of each electrode of the deceleration lens in the simulation and experiment. (b) Information of the measurement of the ion beam energy
- 5.3 Summary of the third experiment result. (a) The potential of each electrode of the deceleration lens in the simulation and experiment.(b) Information of the measurement of the ion beam energy

71

93

94

Page

- 5.4 Summary of the fourth experiment result. (a) The potential of each electrode of the deceleration lens in the simulation and experiment.(b) Information of the measurement of the ion beam energy
- 5.5 Summary of ion beam energy and ion beam energy error calculated by simulation, theory, and measured by experiment



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

97

98

# LIST OF FIGURES

| Figure |                                                                      | Page   |  |  |
|--------|----------------------------------------------------------------------|--------|--|--|
| 2.1    | Schematic drawing of CMU3 ion beam line                              | 10     |  |  |
| 2.2    | Schematic diagram of a double-aperture lens                          | 19     |  |  |
| 2.3    | Drift space without deflection                                       | 21     |  |  |
| 2.4    | Paraxial case of acceleration of charged particle through a uniform  |        |  |  |
|        | field. For clarity, the length of $r_1$ and $r_2$ are enlarged       | 21     |  |  |
| 2.5    | Schematic diagram of the Einzel lens arrangement and potential       |        |  |  |
|        | variation (above the lens)                                           | 22     |  |  |
| 2.6    | Schematic diagrams of typical trajectories exhibiting (a) spherical  |        |  |  |
|        | aberration and (b) chromatic aberration                              | 24     |  |  |
| 2.7    | A schematic diagram of ion beam deceleration to lower the ion energy |        |  |  |
|        | by a retarding field                                                 | 28     |  |  |
| 2.8    | A schematic diagram of the method to measure the ion beam energy     |        |  |  |
|        | in this work                                                         | 35     |  |  |
| 2.9    | Schematic diagram of measurement of ion beam current using the       |        |  |  |
|        | Faraday cup                                                          | 39     |  |  |
| 2.10   | Schematic drawing of ion and solid interaction                       | 41<br> |  |  |
| 2.11   | Schematic of ion's total path length and projected range             | 42     |  |  |
|        |                                                                      |        |  |  |

- 2.12 Schematic diagram of DNA. (a) The model of DNA double helix and (b) the scheme of the marcromolecule
- 2.13 Schematic diagram of gel electrophoresis. (A) Equipment for gel electrophoresis method. An electric field pulls DNA in different forms (relaxed, supercoiled and linear forms) to pass agarose gel from the cathode pole to the anode pole as the total charge of DNA is negative.
  (B) Result of electrophoresis showing mobility of different DNA forms
- 3.1 The features of SIMION program version 8.0 which is used for the simulations in this thesis
- 3.2 The SIMION simulated the deceleration lens which decreases the original energy of 20 keV to final energy 64 eV. (a) The electrodes and the beam optics. The electrodes are numbered with the numbers below them. (b) Equipotential surface. (c) The three-dimensional view. Blue color shows ion's trajectories and red color shows equipotential surface. The ions travel from the left to the right hand side
- 3.3 The SIMION simulated the deceleration lens with the cover.(a) Equipotential surface. (b) The three-dimensional view
- 3.4 The first simulation reduces ion beam energy from 20 keV to 64 eV.(a) A two-dimensional view with equipotential surfaces, and (b) a three-dimensional view
- 3.5 The features of (a) the Particles Define mode which definesthe properties of ion beams and (b) Adjustment Voltages mode

44

47

52

| 3.6  | The diameters of the first model before ion beam enters and after it       |    |
|------|----------------------------------------------------------------------------|----|
|      | passes through the deceleration lens. The red circles are diameters of ion |    |
|      | beam (this case diameters of ion beam before entering and after passing    |    |
|      | through the deceleration lens same)                                        | 55 |
| 3.7  | The second simulation reduces ion beam energy from 15 keV to 230 eV.       |    |
|      | (a) A two-dimensional view with equipotential surfaces and (b) a three-    |    |
|      | dimensional view                                                           | 56 |
| 3.8  | The third simulation reduces ion beam energy from 15 keV to 304 eV.        |    |
|      | (a) A two-dimensional view with equipotential surfaces and (b) a three-    |    |
|      | dimensional view                                                           | 57 |
| 3.9  | The fourth simulation reduces ion beam energy from 15 keV to 408 eV.       |    |
|      | (a) A two-dimensional view with equipotential surfaces and (b) a three-    |    |
|      | dimensional view                                                           | 58 |
| 3.10 | The fifth simulation reduces ion beam energy from 15 keV to 511 eV.        |    |
|      | (a) A two-dimensional view with equipotential surfaces and (b) a three-    |    |
|      | dimensional view                                                           | 59 |
| 3.11 | Mode of ion beam repulsion of the SIMION program version 8.0               | 63 |
| 3.12 | The deceleration lens simulations vary the beam current: (a) 1 A,          |    |
|      | (b) 0.1 A, (c) 0.01 A, (d) 1 mA, (e) 0.1 mA, (f) 10 µA, (g) 1 µA,          |    |
|      | (h) 100 nA, and (i) 10 nA, respectively                                    | 63 |
| 2.8  | Schematic diagram of the method used to measure the ion beam energy        | 66 |
|      |                                                                            |    |
|      |                                                                            |    |
|      |                                                                            |    |

3.13 The first simulation of measurement of ion beam energy.

(a) Configuration of the deceleration lens with the electric plates. (b)The ion beam bending by an electrostatic field in two-dimension view, and (c) Three-dimension view. Ions travel from the left to the right hand side. The red lines are the equipotential surfaces and the blue color is the ion's trajectories

3.14 The second simulation of measurement of ion beam energy.

(a) The ion beam bending by the electrostatic field in 2-D view,

and (b) 3-D view

- 3.15 The third simulation of measurement of ion beam energy.(a) The ion beam bending by an electrostatic field in 2-D view, and (b) 3-D view
- 3.16 The fourth simulation of measurement of ion beam energy.(a) The ion beam bending by an electrostatic field in 2-D view, and (b) 3-D view
- 4.1 The constructed deceleration lens. (a) Photograph of Al-electrodes.(b) Schematic and (c) drawing of the deceleration lens. (d) Photograph of the finished six deceleration lens
- 4.2 Schematic of the breakdown test of the deceleration lens.
  HV: high volt. G: ground potential
  4.3 Six deceleration lens supported by two power supplies, 15 and 30 kV
- 4.4 The entire deceleration lens system. (a) schematic drawing

and (b) photograph of the system for DNA bombardment

70

70

74

76

68

69

| 4.5       | The deceleration lens system for ion beam energy measurement.          |                   |
|-----------|------------------------------------------------------------------------|-------------------|
|           | (a) Schematic drawing and (b) photograph of deceleration lens system   |                   |
|           | for measurement of ion beam energy. The inset in (b) at the right hand |                   |
|           | side shows enlargement details of the ion energy measurement part      | 79                |
| 4.6       | The deceleration lens systems installed in the beam line of the 30-kV  |                   |
|           | vertical bioengineering ion implanter (CMU3) in the big chamber        | 81                |
| 4.7       | The system for measurement of ion beam energy                          | 83                |
| 4.8       | The equipment used for ion beam energy measurement                     | 84                |
| 4.9       | An example of measured ion beam profile along the beam bending         |                   |
|           | distance for each case. D.L.: deceleration lens. The beam profile      |                   |
|           | center is taken as the beam position for calculation                   | 84                |
| 4.10      | Illustration of decelerated ion beam bombardment of naked DNA.         |                   |
|           | (a) System for bombardment of DNA. (b) Sample holder and               |                   |
|           | Faraday cup                                                            | 87                |
| 5.1       | Test of the beam position at the deceleration lens for alignment of    |                   |
|           | the lens. (a) Shape of ion beam. (b) Paper was burned by ion beam      |                   |
|           | at the top of cover                                                    | 90                |
| 3.10      | Configuration of the deceleration lens with the electric plates for    |                   |
|           | bending ion beam                                                       | 92                |
| 5.2       | Result of the first experiment showing the dependence of ion beam      |                   |
|           | current on position and the bending distance of ion beam as 8 mm       | 92                |
| COPYII5.3 | The result of the second experiment, showing the ion beam current      |                   |
|           | depending on position and the bending distance of ion beam as 8 mm     | <sup>92</sup> e d |

| 5.4 | The result of the third experiment, showing the ion beam current                      |     |  |  |  |  |
|-----|---------------------------------------------------------------------------------------|-----|--|--|--|--|
|     | depending on position and the bending distance of ion beam as 10 mm                   | 95  |  |  |  |  |
| 5.5 | The fourth experiment result, showing the ion beam current                            |     |  |  |  |  |
|     | depending on position and the bending distance of ion beam as 13 mm                   | 95  |  |  |  |  |
| 5.6 | Gel electrophoresis result. Lanes 1 and 5 are markers. Lane 4 is                      |     |  |  |  |  |
|     | natural control. Lane 3 is vacuum control. Lane 2 is bombarded.                       |     |  |  |  |  |
|     | The DNA bands are pointed and marked by the arrows                                    | 100 |  |  |  |  |
| 5.7 | Naked DNA was bombarded by Argon ion, the fluence                                     |     |  |  |  |  |
|     | at $1 \times 10^{15}$ ions/cm <sup>2</sup> . (a) Ion beam energy at 242 eV,           |     |  |  |  |  |
|     | (b) at 304 eV, (c) 407 eV, and (d) 510 eV                                             | 101 |  |  |  |  |
| 5.8 | Light intensity of each DNA band calculated from                                      |     |  |  |  |  |
|     | the gel electrophoresis for the DNA bombarded by argon ion beam                       |     |  |  |  |  |
|     | at the fluence of $10^{15}$ ions/cm <sup>2</sup> using at different energy of natural |     |  |  |  |  |
|     | and vacuum controls                                                                   | 102 |  |  |  |  |
| A.1 | Vacuum system for ion source, ion source, and main switch control                     |     |  |  |  |  |
|     | of the 30 kV- vertical bioengineering ion beamline (CMU3)                             | 115 |  |  |  |  |
| A.2 | Drawing of the 30-vertical bioengineering ion beamline (CMU3)                         | 116 |  |  |  |  |

## ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved