CHAPTER 2

Plant Communities, Wood Production, Biomass Carbon and Nutrient Storages in Ecosystems of *Pinus kesiya* Plantations, Adjacent Fragmented Forests and Montane Forest

Abstract

Studies on pine growths, wood productions, plant succession, plant communities, biomass carbon and nutrient storages at Boakaew Watershed Management Station in 14-34 year-old pine plantations of 21 age-classes and fifteen adjacent fragmented forests remained in areas nearby pine plantations and the climax montane forest at the Doi Inthanon national park, Chiang Mai province, Thailand. Average growth increments of *Pinus kesiya* in these plantations were determined: height, 0.82 m.yr⁻¹; diameter at breast height, 1.28 cm.yr⁻¹; and tree volume, 6.23 m³ha⁻¹yr⁻¹. The number of succession broad-leaved tree species in plantations varied from 17 to 72 species with different densities of 540-2,688 trees ha⁻¹. The densities of pine trees varied between 75-429 trees ha⁻¹ whereas other species had greatly different densities, 131-2,331 trees ha⁻¹. Shannon-Wiener indexes of species diversity (SWI) in the plantations were varied from low to high values, varying 1.57-4.65. The succession broad-leaved tree species in pine plantations were mainly belong to the families of Fagaceae, Euphorbiaceae, Juglandaceae, Lauraceae, and Myrtaceae, etc. The carbon storages were different among different age stands, 46-140 MgC.ha⁻¹, and separated to 12-106 MgC.ha⁻¹ for pine and 6-69 MgC.ha⁻¹ for the others. The storages of nitrogen, phosphorus, potassium, calcium and magnesium were in ranges of 370-965, 44-127, 263-680, 480-1,329 and 75-279 kg.ha⁻¹. Totally, 103 species exited in the adjacent fragmented forests. Tree densities were greatly, varied 556-1,769 trees ha⁻¹. SWI was high, 5.28. Fagaceae was the most dominant family. The dominant trees were Pinus kesiya and Castanopsis acuminatissima, whereas some were dominated by Schima wallichii and C. diversifolia. Their total volumes were in range of 36.19-78.42 m³ha⁻¹, and the timber volumes were 22.23.-51.04 m³ha⁻¹. Carbon stocks in their biomass varied between 57.93-125.16 MgC.ha⁻¹ (99.33 MgC.ha⁻¹ in average) divided into stem, branch, leaf and root components of 64.86, 19.70, 1.60 and 12.60 MgC.ha⁻¹, respectively. Average amounts of nitrogen, phosphorus, potassium and magnesium in their biomass were in the order of 1,100.62; 154.37; 753.12; 1,601.87 and 358.75 kg.ha⁻¹. P. kesiya had the largest amounts of biomass carbon and nutrients. The lower amounts were occurred for C. acuminatissima, S. wallichii, C. diversifolia and Quercus brandisiana. The climax montane forest composed of 122 species. Fagaceae Lauraceae and Cornaceae were the dominant families. The average tree density was 7,391 trees ha⁻¹. The tree species having the high density values were Mallotus khasianus, Euodia triphylla, and C. calathiformis, respectively. SWI was 5.72. The average total tree volume was 94.81 m³ha⁻¹, and timber volumes were in the order of 48.69 m³ha⁻¹. Biomass carbon stock of tree species at Doi Inthanon collected as 186 MgC.ha⁻¹, separated to stem, branch, leaf and root components as 130, 24, 2 and 29 MgC.ha⁻¹, respectively. Average amounts of nitrogen, phosphorus, potassium and magnesium in their biomass were in the order of 2,057.32, 278.54, 1390.26, 3,002.04 and 652.86 kg.ha⁻¹. At the family level, carbon stock and nutrients in biomass outstandingly appeared in the family of Fagaceae followed by Lauraceae, Cornaceae, Guttiferae, Magnoliaceae, Nyssaceae, and Rubiaceae. However, natural succession resulted in accelerated development of plantation ecosystems to be a natural lower montane forest. However, it may need more many decades to develop the forest structure of successional pine plantations to be the montane forest.

2.1 Introduction

The tropical forest biome of Southeast Asia has been recognized as one of the richest sites in biological diversity of the world. Deforestation, forest fragmentation and degradation are considered as serious problems in this region. Loss of tropical forests may have long term effects including change in regional climate especially rainfall pattern, biological productivity, acceleration of soil erosion, disruption of watershed stability, and increase in atmospheric temperature as well as further impacts on global climate dynamics.

In Thailand, as in most tropical countries, deforestation and forest degradation are widely recognized as major threats to environmental stability, economic prosperity and social welfare, particularly amongst rural communities. Remaining forest has become fragmented into patches that are incapable of supporting viable populations of many tree species. (Lynam, 1997). In the northern highlands, which constitute the country's most important watershed, large areas of degraded forestland require urgent reforestation. In areas earmarked for economic forestry, conventional reforestation with monoculture plantations (mostly pines) will remain important. Some advantages of planting *P. kesiya* in the highland are that it can grow very fast on open site with strong solar radiation, fluctuated moisture and poor soil. The roles of adjacent fragmented natural forests on succession in the plantations are significant for forest management and development of pine plantation to natural forest. Adjacent fragmented forests can disperse fruits or seeds of many species for succession in plantations to increase biodiversity enrichment, and thus the plantations can be developed to be a natural forest.

Productive forest plantations are forest plantations predominantly intended for the provision of wood, fibred, and non-wood forest products, though they can also have protective, recreational, water flow regulation, soil loss prevention, restoring the soil nutrients, improving microclimatic, releasing O_2 , carbon sequestration and other functions. Some forests classified as adjacent fragmented include trees of native species, most of which are used for productive purposes, but as these forests do not fall under the forest plantation definition.

The purposes of this chapter are to evaluate pine growths, wood productions, plant succession, biomass carbon and nutrient storages in different age-classed of *Pinus kesiya* plantations, adjacent fragmented forest and the climax montane forest as the useful information for restoration of forest plantation ecosystems which are developing to be the climax montane forest.

2.2 Research Area

The research was conducted in two areas; (1) *Pinus kesiya* plantations and adjacent fragmented forests at the Boakaew Watershed Management Station, and (2) the climax montane forest at Doi Inthanon national park, Chiang Mai province, Thailand (Figure 2-1).

2.2.1 Boakaew Watershed Management Station

Boakaew Watershed Management Station located at $18^{0}45^{-}21^{0}00^{\circ}N$, $98^{0}25^{-}$ $98^{0}40^{\circ}E$, Chiang Mai province, Thailand, about 82 km north of Chiang Mai province. The elevation of research site ranges from 1,200 to 1,600 m. a.s.l. The climate is cool throughout a year. Mean monthly temperature is 20.9 °C, with a maximum of 25.4 °C in April and minimum of 16.4° C in December. Average annual rainfall is 1,894 mm. The forest type is pine-lower montane forest (Figure 2-2).

The local people utilize the natural forest, either wood or non-wood products. Some tree species were cut for house construction, and some pine trees were fallen for collecting cones, and sold to merchant. Many oaks were cut for making fire wood.

The main causes of deforestation in Boakaew Watershed Management Station were forest clearing for agriculture and shifting cultivation. Forest rehabilitation in this area used the native pioneer fast growing species including *P. kesiya*, *Prunus cerasoides*, *Docynia indica* and *Betula alnoides* planted in pure stands to recover the degraded watershed land during 1975-1995 with the area of 2,285 ha (Table 2-1).

Planting	Age	Area	Species	Spacing
1975	34	226	Pinus kesiya	4 x 4
1976	33	144	Pinus kesiya	4 x 4
1977	32	115	Pinus kesiya, Docynia indica	4 x 4
1978	31	229	Pinus kesiya, Docynia indica	4 x 4
1979	30	160	Pinus kesiya, Docynia indica	4 x 4
1980	29	146	Pinus kesiya, Docynia indica	4 x 4
1981	28	128	Pinus kesiya, Docynia indica	4 x 4
1982	27	80	Pinus kesiya	4 x 4
1983	26	72	Pinus kesiya	4 x 4
1984	25	64	Pinus kesiya	4 x 4
1985	24	96	Pinus kesiya	4 x 4
1986	23	88	Pinus kesiya	4 x 4
1987	22	80	Pinus kesiya	4 x 4
1988	21	84	Pinus kesiya	4 x 4
1989	20	69	Pinus kesiya	4 x 4
1990	19	96	Pinus kesiya	4 x 4
1991	18	96	Pinus kesiya, Prunus cerasoides	4 x 4
1992	17	96	Pinus kesiya, Prunus cerasoides, Docynia indica	4 x 4
1993	16	128	Pinus kesiya, Prunus cerasoides, Docynia indica,	4 x 4
1994	15	48	Pinus kesiya, Prunus cerasoides, Docynia indica,	4 x 4
1995	14	40	Pinus kesiya, Prunus cerasoides, Docynia indica,	4 x 4
То	tal	2,285		

 Table 2-1
 Plantation areas of Boakaew Watershed Management Station

Figure 2-1 Location of study areas at Boakaew Watershed Station and Doi Inthanon national park

Figure 2-2 Location of pine plantations areas and adjacent fragmented forests at Boakaew Watershed Management Station

Copyright[©] by Chiang Mai University All rights reserved

2.2.2 Doi Inthanon National Park

The study about climax montane forest was conducted in Doi Inthanon national park, 50 km southwest of Chiang Mai province, Thailand and stretches from 18°24' N to 18°40' N latitude, and 98°24' E to 98°42' E longitude. Its altitude ranges from 400 m at the entrance of the national park up to 2,565 m msl. at the summit. Administratively, it belongs to the Chom Thong and Mae Chaem districts of Chiang Mai province. The mountain and surrounding area, totally 482.4 square kilometers, was declared the country's sixth national park in 1972. At present, Doi Inthanon national park is administered by the National Park Division of Department of National Parks, Wildlife and Plant Conservation in the Ministry of Natural Resources and Environment (Figure 2-3).

Annual mean of monthly minimum temperature and maximum temperature at the Royal Project Doi Inthanon Station (1300 m msl; 1993–2006) is 16.4°C and 26.3°C, respectively. The warmest month is April with the monthly mean of maximum temperature of 21.4°C. The coldest month is December and the monthly mean of daily minimum temperature drop to 2.9°C. In December and January, ground frost frequently covers the exposed ridges near the summit where the lowest of -8°C has been recorded. The total amount of rainfall ranges from 1,822 to 2,536.7 mm/year with an average of 1,949 mm/year. A 15-ha permanent plot (500 x 300 m) was established within the lower montane forest zone, which had the most diverse vegetation at the site (18°31′24″ N, 98°29′42″E, *c*.1700 m msl.). Bedrock within the plot comprises post-Silurian and post-Permian granite and pre-Cambrian gneiss (Pampasit, 2000).

2.3 Materials and Methods

2.3.1 Vegetation Sampling

1) Pinus kesiya Plantations

Sixty three sampling plots of 40 x 40 m in size were used to study growths and wood productions of *P. kesiya* plantations. Twenty-one age-class plantations including 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 and 34 years old were chosen. Three plots (replications) were used for each age-class plantation. In each plot, stem girth at breast high (gbh) and tree height of pine and other trees were measured. Timber log was estimated for all trees having \geq 30 cm. gbh. Timber grade was classified as A (straight stem), B (some curl stem), and C (very curl stem). All plots were recorded for positions using GPS (Global Positioning System) at the center of plot, altitude, slope aspect and gradient. The slope gradient was measured every ten meters along the plot using abney.

2) Adjacent Fragmented Forests

Fifteen sampling plots of 40 x 40 m were used for vegetation survey in each of adjacent fragmented forests. Each plot was divided into 16, 10x10 m subplots, and all woody trees and climbers with ≥ 1.5 m height were measured for gbh (stem girth at breast height, 1.3 m above ground), and tree height. All plots were located using GPS and topographic map.

Figure 2-3 Location of a 15 ha permanent plot at Doi Inthanon natural park

3) Climax Montane Forest

Five sampling plots of 50x50 m grid points were used for vegetation survey in the 15 ha permanent plot. In each plot, all living trees ≥ 3.15 cm in gbh were measured. Timber log was estimated for all trees having ≥ 30 cm gbh. Timber grade was classified as A (straight stem), B (some curl stem), and C (very curl stem).

2.3.2 Calculation of Ecological Parameters

The data were calculated for ecological parameters of tree species and plant communities: frequency, density, dominance, important value index (IVI), and species diversity index (Krebs, 1985).

1) Plant Frequency

Frequency	=(Number of occupied plots x 100 Number of all plots
Relative frequency	4	<u>Frequency of species i</u> x 100 Sum of frequency values of all species
2) Plan	nt Den	sity
Density	=	<u>Number of individuals of species <i>i</i></u> (trees/plot) Number of all quadrats
Relative density	-	<u>Number of individuals of species i x 100 Number of individuals of all species</u>
3) Plan	nt Don	ninance
The rela	ative o	dominance of tree species was calculated from stem basal
Relative dom	ninanc	$e = \underline{\text{Stem basal area of species } i}_{\text{Sum of stem basal area of all species}} \times 100$
4) Imp	ortan	t Value Index (IVI)
The IVI relative density and and integrated influ and 300. However,	is a relati uence it car	composite index based on measures of relative frequency, we dominance (Mueller-Dombois and Ellenberg, 1974). It is of a tree species in the forest. The value varies between 0 a be expressed in term of relative IVI.
IVI	=	Relative frequency + Relative density + Relative dominance

Relative IVI = <u>IVI of species i</u> x 100 Sum of IVI of all species

5) Index of Species Diversity

The Shannon-Wiener index (SWI) relates the proportional weight of the number of individuals per species to the total sample belonging to all species (Kreb, 1985).

$$H = -\sum_{i=1}^{S} (p_i)(\log_2 p_i)$$

Where, H = index of species diversity

S = total number of species

 p_i = proportion of individuals of species *i* to total individuals of all species

2.3.3 Calculation of Tree Volume

The data of stem girth at breast high (gbh) and tree height in pine plantations, adjacent fragmented forests and climax montane forest were used for tree volume calculation.

Tree volume of pine trees were calculated using power equations of Pornleesangsuwan, (2012).

	V	=	$0.00002 (D^2 H)^{1.0514}$	$(R^2 = 0.9783)$
Where,	V	=	stem volume over bark (m	n ³)
	D	=	diameter at breast height ((cm)
	Н	=	total height (m)	

Tree volume of other broad-leaved trees were calculated using equations of Sungpalee, *et al.* (2009).

0.00007629674(DBH².H)^{0.914502}

Where,

V	=	volume (cu.m.)
DBH	=	diameter at breast height (cm)
Н	=	total height (m)

2.3.4 Calculation of Tree Biomass

(1) Pinus kesiya Plantations

The data of stem girth at breast height (gbh) and tree height of pine trees in a series of plantations were used for biomass calculation. Above-ground biomass of pine trees were calculated using equations of Nongnuang, (2010). The root biomass of pine trees was based on allometric equations of Tsutsumi *et al.* (1983), as follow:

$W_{\rm S} = 0.0503 ({\rm D}^2 {\rm H})^{0.8775}$	$R^2 = 0.9749$
$W_B = 0.0012 (D^2 H)^{1.0996}$	$R^2 = 0.4982$
$W_L = 0.4536 (W_B)^{0.7933}$	$R^2 = 0.6324$
$W_{\rm R} = 0.0313 ({\rm D}^2 {\rm H})^{0.805}$	$R^2 = 0.9810$

Where,

 W_{S} = biomass of stem (kg)

 W_B = biomass of branch (kg)

 W_L = biomass of leaf (kg)

 W_R = biomass of root (kg)

= diameter (cm) D

= height (m) Η

(2) Adjacent Fragmented Forests

Biomass accumulations in adjacent fragmented forests and other succession broad-leaved trees in pine plantations were calculated using allometric equations of Tsutsumi et al. (1983), as follow:

W_S (stem)	=	$0.0509 (D^{2}H)^{0.919}$	$R^2 = 0.978$
$W_B \ (branch)$	=	$0.00893 (D^2H)^{0.977}$	$R^2 = 0.890$
W_L (leaf)	=	$0.0140 (D^2 H)^{0.669}$	$R^2 = 0.714$
W_R (root)	=	$0.0313 (D^2H)^{0.805}$	$R^2 = 0.981$

Where,

D

W = biomass (kg) diameter (cm) = H = height (m)

(3) Climax Montane Forest

The biomass in living tree was estimated by using allometric equation proposed by Sungpalee et, al. (2009). The root biomass was base on allometric eqations of Tsutsumi et al. (1983), as follow:

> $W_R = 0.0313 (D^2 H)^{0.805}$

Where,

 W_{S} = biomass of stem (kg) W_B = biomass of branch (kg) W_L = biomass of leaf (kg) W_R = biomass of root (kg)

D = diameter (cm)

Η = height (m)

2.3.5 Calculation of Stored Nutrients

Nutrient contents in various organs of tree species followed the data of Tsutsumi *et al.* (1983) in mix deciduous-dry evergreen forest. The mean contents in stem, branch, leaf and root were carbon: 49.9, 48.7, 48.3 and 48.2%; nitrogen: 0.53, 0.53, 1.59 and 0.53%; phosphorus: 0.08, 0.10, 0.13 and 0.02%; potassium: 0.37, 0.40, 1.10 and 0.27%; calcium: 0.76, 0.80, 1.50 and 0.88%; and magnesium: 0.17, 0.20, 0.90 and 0.10%.

2.4 Results

2.4.1 Plant Community Analysis

2.4.1.1 Pinus kesiya Plantations

Plant succession in pine plantations resulted in changes of plant communities in different age stands. Some pine trees might be died by the damage of disease, forest fire and competition (Oberhauser, 1997; Armitage and Wood 1980). Some might be cut for wood and non-wood products and provided gaps in plantations. Variations in species richness and composition were occurred in different age stands.

The data of species richness and plant composition in 14 to 34 year-old pine plantations of 21 age-class stands shown in Table 2-2 and Appendix Table 1-1. The number of succession tree species was different among 21 age-class pine stands, 17 to 72 species. Tree densities of these plantations varied between 540-2,688 trees/ha separated to be 75-429 trees ha⁻¹ of *P. kesiya* and 131-2,331 trees ha⁻¹ of broad-leaved species. The importance value index (IVI) of *P. kesiya* in plantations varied from 10.65 to 60.09% whereas the Shannon-Wiener indexes (SWI) were 1.57 to 4.65 (Table 2-2).

The succession broad-leaved species in pine plantations were almost same species existed in adjacent fragmented forests. Mother trees in plantations as well as adjacent fragmented forests had the potential role as sources of seeds/fruits in pine plantations. The natural succession in these plantations increased biodiversity enrichment, and thus the plantations could develop to be the climax montane forest. However, the seed dispersal was depended upon distance from the nearest seed source and altitude gradient (Geldenhuys, 1997; Khamyong *et al.*, 2004). Therefore, great differences of plant communities in different age pine plantations were observed, and the similarity values of plant communities among the plantations varied in a wide range, 2-78%.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

										A	ge (year)										
Code	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
1. Alitude (m)	1,410	1,561	1,655	1,561	1,389	1,393	1,361	1,314	1,202	1,204	1,368	1,362	1,463	1,358	1,410	1,606	1,376	1,409	1,362	1,453	1,39
2. Number of Species	36	54	33	61	46	38	17	41	61	50	46	39	31	70	35	32	36	39	34	53	50
3. Number of Genus	30	47	29	51	40	32	16	34	49	37	42	33	26	56	30	30	30	35	29	48	42
4. Number of Families	20	31	22	34	26	22	13	23	28	23	27	23	19	28	21	16	21	26	23	31	26
5. Basal area (m ² /ha)	22.95	16.49	25.23	19.66	29.59	29.36	26.06	36.52	31.52	24.20	27.54	28.13	43.08	30.45	27.96	22.54	32.99	30.68	35.68	34.92	33.4
6. Dominant tree (%)																					
6.1 Pinus kesiya	52.20 0	29.23	89.38	24.51	59.75	72.12	93.30	62.89	52.18	50.59	53.54	68.22	69.47	57.40	81.25	65.07	66.56	38.88	66.49	90.89	46.2
6.2 Other broad-leaved trees	47.80	70.77	10.62	75.49	40.25	27.88	6.70	37.11	47.82	49.41	46.46	31.78	30.53	42.60	18.75	34.93	33.44	61.12	33.51	9.11	53.7
7. IVI (%)																					
7.1 Pinus kesiya	26.74	12.37	40.41	10.65	27.74	40.12	60.09	32.42	22.69	23.98	33.63	39.17	43.71	24.24	41.38	36.74	36.89	19.77	41.71	41.40	23.0
7.2 Other broad-leaved trees	73.26	87.63	59.59	89.35	72.26	59.88	39.91	67.58	77.31	76.02	66.37	60.83	56.29	75.76	58.62	63.26	63.11	80.23	58.29	58.60	76.9
8. Density (trees/ha)	627	1,556	1,252	2,256	1,279	890	544	1,350	2,688	1,694	788	963	710	2,250	583	598	625	783	540	1,119	1,06
8.1 Pinus kesiya	144	75	329	106	252	385	413	406	356	306	338	429	392	290	223	233	240	125	283	329	206
(1) gbh < 30 cm	2	0	0	15	2	2	2	4	21	40	2	10	0	0	2	0	0	0	0	0	2
(2) gbh 30-50 cm	0	6	4	8	6	15	15	30	52	60	40	64	2	10	0	15	2	2	0	0	13
(3) gbh 50-100 cm	71	46	244	73	158	317	329	277	239	169	281	330	225	213	69	140	111	48	134	93	102
(4) gbh 100-150 cm	67	23	75	10	85	52	67	95	45	35	15	25	160	67	140	79	114	73	149	228	83
(5) $gbh > 150 cm$	4	0	6	0	0	0	0	0	00	2	0	0	4	0	13	0	13	2	0	8	6
8.2 Other broad-leaved trees	483	1,481	923	2,150	1,029	504	131	944	2,331	1,388	450	533	319	1,960	360	365	385	658	256	790	854
(1) gbh < 30 cm	193	1,274	841	1,793	618	255	83	584	1,791	1,066	269	296	120	1,601	244	198	129	232	93	690	483
(2) gbh 30-50 cm	154	97	38	225	263	148	30	196	424	201	76	152	86	163	45	66	115	246	43	88	154
(3) gbh 50-100 cm	105	81	44	108	137	91	17	139	103	97	78	73	75	176	56	83	130	139	80	8	158
(4) gbh 100-150 cm	29	22	0	16	10	6	1	19	13	21	10	6	17	21	15	13	9	27	28	4	38
(5) $gbh > 150 cm$	2	7	0	8	0	4	0	6	0	2	17	6	21	0	0	4	2	14	13	0	21

25

Figure 2-4 Tree densities of *Pinus kesiya* and succession broad-leaved trees with different stem-girth classes in 21 age-class plantations

2.4.1.2 Adjacent Fragmented Forests

The plant community characteristics of the fifteen adjacent fragmented forests were shown in Table 2-3 and 2-4. (Appendix Table 1-2)

(1) Species Richness

The total number of plant species existed in the forest is called species richness. In fifteen adjacent fragmented forests, totally 103 species in 82 genus and 44 families were found (Table 2-3). Dominant tree species were mainly *P. kesiya, C. acuminatissima* and *S. wallichii*. Codominant tree species were *Q. brandisiana, C. diversifolia, L. elegans, Q. vestita, T. gymnanthera, H. nilagirica, E. spicata, etc.* The small trees included mainly *T. rufescens, W. tinctoria, and V. sprengelii*. Many rare species in the forests were observed such as *M. henryi, S. albiflorum, S. cumini, T. chebula, C. armata, R. ignea, B. alnoides, A. gomezianus, C. iners, etc.* Some were true rare species and the others might be existed in more abundance in forests of lower areas. The dominant families were Fagaceae (13 species), Leguminosae (8), Lauraceae (8), Euphorbiaceae (7), Rubiaceae (6), and Theaceae (6).

The numbers of tree species per plot in fifteen adjacent fragmented forests were shown in Appendix Table 1-2. The values varied between 16 and 42 species (13-35 genus and 10-24 families). The species richness in each plot was rather low since most adjacent fragmented forests were situated at the summit of mountainous areas where forest sites were relatively dry. There were no correlation between the species richness and altitude gradient. The species richness was higher in mesic areas between 1,345-1,586 m altitude.

The species richness was typically high in LMF. Khamyong and Seramethakun (1998) reported that the same forest type at Mt. Doi Suthep in area of 1,200-1,300 m altitude consisted of 72 species (54 genus and 34 families), and it was increased to be 188 species (124 genus and 57 families) as the sampling area was expanded between 800-1,500 m (Khamyong, 2009). Loarpansakul (2000) found that

the forest at the Queen Sirikit botanic garden consisted of 97 tree species (in 68 genus and 42 families), and it was high as 184 tree species (129 genus and 61 families) for the fragmented forests in Pang Ma Pha district, Mae Hong Son province (Seanchanthong, 2005). The species richness of montane forest at Mt. Doi Inthanon was declined with higher altitude by lower air temperature and cloud covering nearly throughout a year. It was low as 47 species in upper montane (UMF) forest at Mt. Doi Inthanon summit (Khamyong *et al.*, 2004)

(2) Tree Frequency

There were five tree species having the frequency values over than 80% in fifteen adjacent fragmented forests including *W. tinctoria*, *P. kesiya*, *G. sphaerogynum*, *C. acuminatissima* and *S. wallichii*. These trees existed in most adjacent fragmented forests. The tree species having the lower frequencies (60-80%) were *P. emblica*, T. *rufescens*, *V. sprengelii*, *H. nilagiriga*, *A. fragrans*, *C. stellatum*, *T. gymnanthera*, *L. elegans*, *E. spicata*, *C. purpurea*, *Q. vestita*, *D. cultrata*, *S. albescens* and *S. benzoides*.

(3) Tree Density

The average tree density in the whole adjacent fragmented forests was 1,166 trees/ha. The shrubby tree, *T. rufescens* had the highest density (116 trees/ha), and followed by *W. tinctoria* (91), *V. sprengelii* (86), *P. kesiya* (69), *S. wallichii* (63) and *C. acuminatissima* (60).

Tree densities were greatly different among adjacent fragmented forests, 556-1,769 individuals/plot. The tree densities were low in areas of 1,230-1,260 m altitude, and higher between 1,300-1,560 m. It is found that some adjacent fragmented forests consisted of mainly intermediate-size and big trees whereas densely small trees were existed in the others. The human disturbance through selective tree cutting resulted in the big canopy gaps in some adjacent fragmented forests. This stimulated the natural regeneration, and many saplings were grown densely in the gaps. Thus, tree densities were higher in the disturbed forests.

(4) **Tree Dominance**

The dominance value was calculated on the basis of the stem basal area. *P. kesiya* had the highest relative dominance (24.10% of all species), and followed by *C. acuminatissima* (14.12%), *S. wallichii* (7.14%), *C. diversifolia* (5.84%), *Q. brandisiana* (5.28%), *T. rufescens* (4.10%) and *C. purpurea* (3.46%).

					D 19					
No	Species	No. of	Frequency	Density	Basal area	-	Relative (%	6) D	Г	VI
		trees	(%)	(trees/ha)	(m²/ha)	Frequency	Density	Dominance	(300)	(%)
ľ	Pinus kesiya	165	86.67	68.75	6.6655	3.05	5.90	24.10	33.05	11.02
	Castanopsis acuminatissima	144	80.00	60.00	3.9070	2.82	5.15	14.12	22.09	7.36
	Tristania rufescens	279	66.67	116.25	1.1333	2.35	9.97	4.097	16.42	5.47
	Schima wallichii	150	80.00	62.50	1.9762	2.82	5.36	7.144	15.32	5.11
	Wendlandia finctoria	219	93.33	91.25	0.6723	3.29	7.83	2.431	13.54	4.51
	Vaccinium sprengelii	206	66.67	85.83	0.5011	2.35	7.36	1.812	11.52	3.84
	Quercus brandisiana	84	46.67	35.00	1.4602	1.64	3.00	5.279	9.92	3.31
	Castanopsis diversifolia	59	53.33	24.58	1.6151	1.88	2.11	5.839	9.83	3.28
	Ternstroemia gymnanthera	86	60.00	35.83	0.7368	2.11	3.07	2.664	7.85	2.62
	Helicia nilagirica	71	66.67	29.58	0.7661	2.35	2.54	2.770	7.65	2.55
	Lithocarpus elegans	70	60.00	29.17	0.7739	2.11	2.50	2.798	7.41	2.47
	Engelhardtia spicata	62	60.00	25.83	0.7950	2.11	2.22	2.874	7.20	2.40
	Castanopsis purpurea	42	60.00	17.50	0.9565	2.11	1.50	3.458	7.07	2.36
ŀ	Anneslea fragrans	66	66.67	27.50	0.5384	2.35	2.36	1.946	6.65 Q	2.22
	Quercus vestita	68	60.00	28.33	0.4388	2.11	2.43	1.586	6.13	2.04
	Craibiodendron stellatum	78	66.67	32.50	0.2233	2.35	2.79	0.807	5.94	1.98
	Dalbergia cultrata	58	60.00	24.17	0.4551	2.11	2.07	1.645	5.83	1.94
	Phyllanthus emblica	63	73.33	26.25	0.1004	2.58	2.25	0.363	5.20	1.73
	Glochidion sphaerogynum	39	86.67	16.25	0.1060	3.05	1.39	0.383	4.83	1.61
	Semecarpus albescens	48	60.00	20.00	0.2431	2.11	1.72	0.879	4.71	1.57
	Eurya nitida	69	46.67	28.75	0.0859	1.64	2.47	0.311	4.42	1.47
	Styrax benzoides	36	60.00	15.00	0.1426	2.11	1.29	0.515	3.91	1.30
	Aporosa villosa	42	53.33	17.50	0.0916	1.88	1.50	0.331	3.71	1.24
	Phoebe paniculata	43	40.00	17.92	0.1560	1.41	1.54	0.564	3.51	1.17
	Diospyros glandulosa	27	46.67	11.25	0.0928	1.64	0.96	0.335	2.94	0.98
	Lithocarpus polystachyus	22	40.00	9.17	0.1924	1.41	0.79	0.696	2.89	0.96
	Viburnum sambucinum	37	40.00	15.42	0.0187	1 41	1 32	0.068	2.80	0.93
	Lithocarpus fenestratus	17	33 33	7.08	0.2526	1.17	0.61	0.913	2.69	0.90
	Glochidion acuminatum	48	26.67	20.00	0.0043	0.94	1.72	0.016	2.67	0.90
	Quercus semiserrata	10	13 33	7.92	0.3406	0.47	0.68	1.231	2.38	0.79
	Quereus semiserruu Helicia terminalis	15	40.00	6.25	0.1130	1.41	0.54	0.408	2.30	0.79
	Dillenia aurea	13	40.00	5.42	0.0599	1.41	0.46	0.216	2.09	0.70
	Svzvajum gratum	11	33 33	4 58	0.1210	1.71	0.30	0.437	2.09	0.67
	Staraosparmum nauranthum		33 33	6.67	0.0413	1.17	0.57	0.140	1.80	0.63
	Lithocarpus soctanansis	17	20.00	7.08	0.0715	0.70	0.57	0.149	1.09	0.05
	Albizia odoraticsima	1/ 6	20.00	2.50	0.0/15	1.17	0.01	0.239	1.57	0.52
	Pyranaria diospyriaana	10	20.00	2.50	0.0490	0.70	0.21	0.177	1.57	0.32
,	I yrenaria aiospyricarpa	10	20.00	6.67	0.0189	0.70	0.04	0.125	1.42	0.47
,	Linaera metcaifiana	10	20.00	0.07	0.0375	0.70	0.57	0.135	1.41	0.47
	rnoede cathla	8	20.00	3.33	0.1054	0.70	0.29	0.381	1.57	0.46
	Aibizia chinensis	6	26.67	2.50	0.0522	0.94	0.21	0.189	1.34	0.45
	Elaeocarpus stipularis	4	13.33	1.67	0.1975	0.47	0.14	0.714	1.33	0.44
	Eriolaena candollei	11	20.00	4.58	0.0616	0.70	0.39	0.223	1.32	0.44
	Rhus javanica	10	26.67	4.17	0.0016	0.94	0.36	0.006	1.30	0.43
	Rapanea porteriana	11	20.00	4.58	0.0528	0.70	0.39	0.191	1.29	0.43
	Archidendron clypearia	7	26.67	2.92	0.0272	0.94	0.25	0.098	1.29	0.43
	Beilschmiedia gammieana	9	26.67	3.75	0.0055	0.94	0.32	0.020	1.28	0.43
	Engelhardtia serrata	6	20.00	2.50	0.0982	0.70	0.21	0.355	1.27	0.42
2	Syzygium albiflorum	9	20.00	3.75	0.0563	0.70	0.32	0.204	1.23	0.41
1	Turpinia cochinchinensis	12	20.00	5.00	0.0177	0.70	0.43	0.064	1.20	0.40
0	Litsea glutinosa	5	26.67	2.08	0.0187	0.94	0.18	0.067	1.19	0.40
51	Catunaregam tomentosa	6	26.67	2.50	0.0032	0.94	0.21	0.011	1.16	0.39
52	Callicarpa arborea 💛	10	6.67	4.17	0.1484	0.23	0.36	0.537	1.13	0.38

 Table 2-3
 Quantitative characteristics of tree species in fifteen adjacent fragmented forests

Table 2-3 (Continued)

No Speces tress (%) trees/ta) (m ² /ta) Frequency Density Dens			No. of	Frequency	Density	Basal area	-	Relative (%	ó)	I	VI
53 Examples armata 1 6.67 0.42 0.236 0.23 0.04 0.820 1.09 0.36 54 Sympleos racemaa 5 2000 2.08 0.0460 0.70 0.18 0.166 1.05 0.35 55 Terminical chelula 7 20.00 2.92 0.063 0.70 0.25 0.039 0.77 0.14 0.179 0.52 59 Enclais allocritaca 4 20.00 1.67 0.032 0.70 0.14 0.079 0.56 0.32 61 Birchannia lanzm 3 1.33 1.35 0.0124 0.014 0.079 0.70 0.14 0.079 0.30 0.31 0.33 3.33 <td< td=""><td>No</td><td>Species</td><td>trees</td><td>(%)</td><td>(trees/ha)</td><td>(m²/ha)</td><td>Frequency</td><td>Density</td><td>Dominance</td><td>(300)</td><td>(%)</td></td<>	No	Species	trees	(%)	(trees/ha)	(m²/ha)	Frequency	Density	Dominance	(300)	(%)
54 Sympleces recensions 5 20.00 2.08 0.0470 0.70 0.18 0.166 1.05 0.15 55 Terminalia chelulaa 4 20.00 1.67 0.0470 0.70 0.14 0.170 0.12 0.035 57 Milicia per/ocarpe 7 20.00 2.92 0.064 0.70 0.25 0.029 0.035 0.70 0.21 0.049 0.97 0.32 58 Gerecus Kingian 3 13.33 1.25 0.1024 0.47 0.11 0.070 0.92 0.31 61 Erythrins submbrans 4 2.000 1.67 0.0124 0.70 0.14 0.045 0.88 0.30 63 Gardenis socheareityid 4 2.000 1.67 0.017 0.70 0.14 0.028 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	53	Castanopsis armata	1	6.67	0.42	0.2268	0.23	0.04	0.820	1.09	0.36
55 Terminatia chebnia 4 20.00 1.67 0.0470 0.70 0.14 0.170 1.02 0.34 56 Inex unbellulant 7 20.00 2.92 0.0163 0.70 0.25 0.039 0.07 0.32 58 Diversus kingliant 6 2.00 2.50 0.0135 0.70 0.21 0.049 0.056 0.32 58 Endelia subcorriaceu 4 20.00 1.67 0.0132 0.70 0.14 0.019 0.96 0.32 61 Eryphriza subambraus 4 20.00 1.67 0.0124 0.70 0.14 0.049 0.30 0.30 63 Gardenia scoreperuits 4 20.00 1.67 0.0107 0.70 0.14 0.049 0.88 0.29 64 Vermonia voltameritipita 4 20.00 1.67 0.007 0.70 0.14 0.028 0.30 0.30 0.88 0.29 0.31 0.35 0.33 0.35 0.33 0.35 0.33 0.35 0.33 0.35 0.33	54	Symplocos racemosa	5	20.00	2.08	0.0460	0.70	0.18	0.166	1.05	0.35
56 <i>Hexandellalata</i> 7 20.00 2.92 0.0163 0.70 0.25 0.039 1.01 0.34 57 Milletia pachycarpa 7 20.00 2.92 0.0054 0.70 0.25 0.029 0.37 58 Guéras Kingiana 6 20.00 1.67 0.013 0.70 0.14 0.109 0.67 0.32 61 Expirine subundrans 4 20.00 1.67 0.0124 0.70 0.14 0.039 0.30 0.30 62 Gardenia socopensis 4 20.00 1.67 0.0124 0.70 0.14 0.039 0.30 0.30 63 Gardenia socopensis 4 20.00 1.67 0.070 0.14 0.028 0.88 0.297 65 Survauic socopensis 4 20.00 1.67 0.070 0.14 0.023 0.71 0.24 66 Gardenia socopensis 9 1.33 2.50 0.070 0.47 0.18 <td>55</td> <td>Terminalia chebula</td> <td>4</td> <td>20.00</td> <td>1.67</td> <td>0.0470</td> <td>0.70</td> <td>0.14</td> <td>0.170</td> <td>1.02</td> <td>0.34</td>	55	Terminalia chebula	4	20.00	1.67	0.0470	0.70	0.14	0.170	1.02	0.34
Sr Milletia packycarga 7 20.00 2.92 0.0044 0.70 0.25 0.021 0.019 0.97 0.32 SR Quercus kingiana 6 2.00 1.57 0.0135 0.70 0.11 0.109 0.97 0.32 Bichelia subcriacea 3 1.3.3 1.25 0.1024 0.47 0.11 0.370 0.95 0.32 Construint subunbrans 4 20.00 1.67 0.0124 0.47 0.11 0.070 0.92 0.33 Gardenia socapensis 4 20.00 1.67 0.017 0.70 0.14 0.039 0.89 0.30 Gardenia socapensis 4 20.00 1.67 0.007 0.70 0.14 0.032 0.021 0.023 0.026 0.82 0.27 Gardenia socapensis 4 20.00 1.67 0.017 0.71 0.12 0.42 0.32 0.021 0.32 0.27 0.66 0.22 0.63 0.33 <t< td=""><td>56</td><td>Ilex umbellulata</td><td>7</td><td>20.00</td><td>2.92</td><td>0.0163</td><td>0.70</td><td>0.25</td><td>0.059</td><td>1.01</td><td>0.34</td></t<>	56	Ilex umbellulata	7	20.00	2.92	0.0163	0.70	0.25	0.059	1.01	0.34
S8 Quereux kingiana 6 20.00 2.50 0.0135 0.70 0.21 0.049 0.97 0.32 99 Enhelia subcoriacea 4 20.00 1.67 0.032 0.70 0.14 0.109 0.63 0.32 61 Erythrina subumbrans 4 20.00 1.67 0.013 0.70 0.14 0.007 0.92 0.31 62 Gardenia subumbrans 4 20.00 1.67 0.0107 0.70 0.14 0.039 0.30 63 Gardenia stoperenis 4 20.00 1.67 0.007 0.70 0.14 0.028 0.88 0.29 65 Samuain crobingfilia 4 20.00 1.67 0.007 0.47 0.32 0.026 0.82 0.27 66 Barbacs storegris 2 13.33 2.50 0.0070 0.47 0.18 0.007 0.62 0.22 67 Barbacs storegris 3 13.33 1.25 0.0170 </td <td>57</td> <td>Milletia pachycarpa</td> <td>7</td> <td>20.00</td> <td>2.92</td> <td>0.0054</td> <td>0.70</td> <td>0.25</td> <td>0.020</td> <td>0.97</td> <td>0.32</td>	57	Milletia pachycarpa	7	20.00	2.92	0.0054	0.70	0.25	0.020	0.97	0.32
59 Embedia subcoriacea 4 20.00 1.67 0.032 0.70 0.14 0.199 0.96 0.32 60 Incharanta lanzam 3 13.33 1.25 0.1024 0.47 0.11 0.070 0.95 0.32 61 Erythrian subunbras 4 20.00 1.67 0.0174 0.70 0.14 0.045 0.89 0.30 63 Gardenia scongensis 4 20.00 1.67 0.0170 7.0 0.14 0.045 0.89 0.30 65 Sagrandia roburghii 9 13.33 3.75 0.0072 0.47 0.32 0.026 0.82 0.27 66 Bonbax ancegns 2 13.33 2.08 0.0000 0.47 0.18 0.031 0.68 0.23 67 Dicklondroms semilau 3 13.33 2.08 0.0007 0.47 0.18 0.031 0.68 0.23 68 Binbax ancegnilau 3 13.33 0.83	58	Quercus kingiana	6	20.00	2.50	0.0135	0.70	0.21	0.049	0.97	0.32
66 Buchanamia lanzari 3 13.33 1.25 0.1024 0.47 0.11 0.370 0.95 0.32 61 Erythrina silumbrans 4 20.00 1.67 0.0193 0.70 0.14 0.000 0.92 0.31 63 Gardenia sootepensis 4 20.00 1.67 0.017 0.70 0.14 0.039 0.89 0.30 64 Vernonia volkamerijolia 4 20.00 1.67 0.0079 0.70 0.14 0.038 0.82 0.27 65 Sauraio conbarghtii 9 13.33 2.57 0.007 0.47 0.07 0.170 0.71 0.24 67 Gichidion hirestum 6 13.33 2.50 0.0084 0.47 0.18 0.031 0.68 0.22 70 Magnelia henryi 3 13.33 1.25 0.007 0.47 0.11 0.066 0.60 0.20 71 Dolichandone serrulati 3 13.33 <td< td=""><td>59</td><td>Embelia subcoriacea</td><td>4</td><td>20.00</td><td>1.67</td><td>0.0302</td><td>0.70</td><td>0.14</td><td>0.109</td><td>0.96</td><td>0.32</td></td<>	59	Embelia subcoriacea	4	20.00	1.67	0.0302	0.70	0.14	0.109	0.96	0.32
61 Erythrina suhambrans 4 20.00 1.67 0.0193 0.70 0.14 0.070 0.92 0.31 62 Ampelocissus marinii 4 20.00 1.67 0.0174 0.70 0.14 0.035 0.89 0.30 64 Vernonia volkameriifolia 4 20.00 1.67 0.0079 0.70 0.14 0.028 0.88 0.29 65 Saurania croburgitii 9 13.33 3.75 0.0072 0.47 0.32 0.71 0.24 66 Bonkos anceps 2 13.33 2.08 0.0000 0.47 0.18 0.001 0.66 0.22 68 Missaenda sunderinam 5 13.33 2.08 0.0000 0.47 0.18 0.007 0.66 0.22 69 Missaenda sunderinam 5 13.33 1.25 0.0170 0.47 0.11 0.061 0.66 0.22 70 Dischandrone serrulata 3 13.33 0.83	60	Buchanania lanzan	3	13.33	1.25	0.1024	0.47	0.11	0.370	0.95	0.32
62 Ampelociscus marinii 4 2000 1.67 0.0124 0.70 0.14 0.045 0.89 0.30 63 Gardenic sootepensis 4 2000 1.67 0.0107 0.70 0.14 0.029 0.89 0.30 64 Wernine volkmerifiolia 4 2000 1.67 0.0072 0.47 0.22 0.026 0.82 0.27 66 Bambax anceps 2 13.33 0.83 0.0470 0.47 0.70 0.17 0.24 67 Cichchidin brisutam 6 13.33 2.08 0.0086 0.47 0.18 0.031 0.68 0.23 68 Missenda sanderinan 5 13.33 1.25 0.070 0.47 0.11 0.061 0.64 0.21 70 Magoulo henrin 3 13.33 1.25 0.073 0.47 0.11 0.061 6.6 0.22 71 Dolichandrone serrulata 2 13.33 0.83 0.0044 </td <td>61</td> <td>Erythrina subumbrans</td> <td>4</td> <td>20.00</td> <td>1.67</td> <td>0.0193</td> <td>0.70</td> <td>0.14</td> <td>0.070</td> <td>0.92</td> <td>0.31</td>	61	Erythrina subumbrans	4	20.00	1.67	0.0193	0.70	0.14	0.070	0.92	0.31
63 Gardenia sontepensis 4 20.00 1.67 0.0107 0.70 0.14 0.039 0.88 0.29 64 Vernonia volkamerijolia 4 20.00 1.67 0.0079 0.70 0.14 0.028 0.88 0.29 65 Saurania croburghi 9 13.33 0.37 0.0070 0.47 0.22 0.026 0.82 0.27 66 Bonbax anceps 2 13.33 0.83 0.0070 0.47 0.18 0.007 0.66 0.22 67 Glochidi henryi 3 13.33 1.25 0.0070 0.47 0.11 0.061 0.64 0.21 71 Dickhandrone serulata 3 13.33 0.83 0.0004 0.47 0.07 0.032 0.57 0.19 73 Syzygium cammin 2 13.33 0.83 0.0004 0.47 0.07 0.032 0.57 0.19 74 Parenta tomentosa 2 13.33 0.83	62	Ampelocissus martinii	4	20.00	1.67	0.0124	0.70	0.14	0.045	0.89	0.30
64 Vertionia volkameriifolia 4 20.00 1.67 0.0079 0.70 0.14 0.028 0.88 0.29 65 Saurania rexhurphin 9 13.33 0.375 0.0072 0.47 0.32 0.026 0.82 0.27 66 Bombax anceps 2 13.33 0.33 0.0470 0.47 0.01 0.01 0.023 0.71 0.24 66 Circhilla connaroides 5 13.33 2.08 0.0064 0.47 0.18 0.031 0.66 0.22 70 Magnotia henryi 3 13.33 1.25 0.0073 0.47 0.11 0.064 0.21 71 Dolichandrone serrulata 3 13.33 1.25 0.0073 0.47 0.11 0.061 0.56 0.19 73 Scrysim cambri 2 13.33 0.83 0.0005 0.47 0.07 0.012 0.54 0.18 75 Cirnainonum acerifolium 6 6.57 <t< td=""><td>63</td><td>Gardenia sootepensis</td><td>4</td><td>20.00</td><td>1.67</td><td>0.0107</td><td>0.70</td><td>0.14</td><td>0.039</td><td>0.89</td><td>0.30</td></t<>	63	Gardenia sootepensis	4	20.00	1.67	0.0107	0.70	0.14	0.039	0.89	0.30
66 Saurania roxbarghii 9 13.33 3.75 0.0072 0.47 0.32 0.026 0.82 0.27 66 Bombax anceps 2 13.33 0.83 0.0470 0.47 0.07 0.71 0.24 67 Glochidion hirsuum 6 13.33 2.08 0.0066 0.47 0.18 0.031 0.68 0.23 68 Missaenda sanderiana 5 13.33 1.25 0.0170 0.47 0.18 0.001 0.66 0.22 70 Magnolia henryi 3 13.33 1.25 0.0073 0.47 0.11 0.026 0.60 0.20 71 Dolichandrone serridiana 2 13.33 0.83 0.0003 0.47 0.07 0.002 0.54 0.19 73 Syzygtim camini 2 13.33 0.83 0.0003 0.23 0.25 0.010 0.45 0.15 74 Pretetia tramentoa 2 13.33 0.83 0.0003 <td>64</td> <td>Vernonia volkameriifolia</td> <td>4</td> <td>20.00</td> <td>1.67</td> <td>0.0079</td> <td>0.70</td> <td>0.14</td> <td>0.028</td> <td>0.88</td> <td>0.29</td>	64	Vernonia volkameriifolia	4	20.00	1.67	0.0079	0.70	0.14	0.028	0.88	0.29
66 Bombax anceps 2 13.33 0.83 0.0470 0.47 0.07 0.170 0.71 0.24 67 Glichidion hirsuum 6 15.33 2.50 0.0064 0.47 0.18 0.0023 0.71 0.24 68 Trickilla connaroides 5 13.33 2.08 0.0020 0.47 0.18 0.007 0.66 0.22 70 Magnolia hearyi 3 13.33 1.25 0.0170 0.47 0.11 0.061 0.66 0.20 71 Dolichandrone serulata 3 13.33 0.83 0.0044 0.47 0.07 0.016 0.56 0.19 73 Syzygiun cumini 2 13.33 0.83 0.0044 0.47 0.07 0.002 0.54 0.18 75 Girandomum porrectum 7 6.67 2.50 0.0003 0.23 0.21 0.017 0.47 0.16 76 Perospermum acerifolium 6 6.67 1.25<	65	Saurauia roxburghii	9	13.33	3.75	0.0072	0.47	0.32	0.026	0.82	0.27
67 Glochidion hirsutum 6 13.33 2.50 0.0064 0.47 0.21 0.023 0.7 0.24 68 Trichilla comaroides 5 13.33 2.08 0.0020 0.47 0.18 0.031 0.68 0.23 69 Musseenda sanderiana 5 13.33 1.25 0.0170 0.47 0.11 0.0661 0.64 0.21 70 Magnich henryi 3 13.33 1.25 0.0073 0.47 0.11 0.0661 0.64 0.20 71 Dolichandrone serulata 3 13.33 0.83 0.0084 0.47 0.07 0.016 0.56 0.19 73 Syzgyium cumini 2 13.33 0.83 0.0005 0.47 0.07 0.016 0.56 0.19 74 Paveta tomentosa 2 13.33 0.83 0.0005 0.23 0.21 0.017 0.47 0.16 75 Cinnamonum porrectum 7 6.67 2.50 0.0003 0.23 0.21 0.011 0.45 0.15 <	66	Bombax anceps	2	13.33	0.83	0.0470	0.47	0.07	0.170	0.71	0.24
68 Trichilla conuaroides 5 13.33 2.08 0.0086 0.47 0.18 0.031 0.68 0.23 69 Masaenda sanderiana 5 13.33 2.08 0.0020 0.47 0.18 0.007 0.66 0.22 70 Magnolia henryi 3 13.33 1.25 0.0073 0.47 0.11 0.066 0.20 71 Dolichandrome serrulata 2 13.33 0.83 0.0087 0.47 0.07 0.032 0.57 0.19 73 Syzysium cumini 2 13.33 0.83 0.0044 0.47 0.07 0.002 0.54 0.18 76 Diamomum porretum 7 6.67 2.92 0.0003 0.23 0.21 0.017 0.47 0.16 75 Ginemonum porretum 7 6.67 2.50 0.0003 0.23 0.11 0.017 0.45 0.15 70 Dia salicifolia 3 6.67 1.25 0.023	67	Glochidion hirsutum	6	13.33	2.50	0.0064	0.47	0.21	0.023	0.71	0.24
6 Massaenda sanderinan 5 13.33 2.08 0.0020 0.47 0.18 0.007 0.66 0.22 70 Magnolia henryi 3 13.33 1.25 0.0170 0.47 0.11 0.061 0.64 0.21 71 Dolichandrone serulata 3 13.33 0.83 0.0007 0.47 0.11 0.026 0.60 0.20 72 Gordonia dalglieshiana 2 13.33 0.83 0.0005 0.47 0.07 0.002 0.54 0.18 73 Syzgiam cumini 2 13.33 0.83 0.0005 0.47 0.07 0.002 0.54 0.18 75 Cinnamomum porrectum 7 6.67 2.92 0.0003 0.23 0.21 0.001 0.45 0.15 76 Prerosymmum acerifolian 4 6.67 1.25 0.023 0.21 0.001 0.45 0.15 70 Olea salicifolia 4 6.67 1.25 0.02	68	Trichilla connaroides	5	13.33	2.08	0.0086	0.47	0.18	0.031	0.68	0.23
Image Image <th< td=""><td>69</td><td>Mussaenda sanderiana</td><td>5</td><td>13.33</td><td>2.08</td><td>0.0020</td><td>0.47</td><td>0.18</td><td>0.007</td><td>0.66</td><td>0.22</td></th<>	69	Mussaenda sanderiana	5	13.33	2.08	0.0020	0.47	0.18	0.007	0.66	0.22
71 Dolichandrone serulata 3 13.33 1.25 0.0073 0.47 0.11 0.026 0.60 0.20 72 Gordonia dalglieshiana 2 13.33 0.83 0.0087 0.47 0.07 0.032 0.57 0.19 73 Syzysim cumini 2 13.33 0.83 0.0005 0.47 0.07 0.016 0.56 0.19 74 Paveta tomentosa 2 13.33 0.83 0.0005 0.47 0.07 0.002 0.54 0.18 75 Chramanomum porrectum 7 6.67 2.20 0.0003 0.23 0.21 0.017 0.47 0.16 75 Ginelina philippensis 6 6.67 1.25 0.0295 0.23 0.11 0.107 0.45 0.15 70 Olea salicifolia 4 6.67 1.25 0.0134 0.23 0.11 0.107 0.43 0.14 80 Lithocarpus lindleyanus 2 6.67 1.25 0.0134 0.23 0.11 0.048 0.39 0.13	70	Magnolia henrvi	3	13.33	1.25	0.0170	0.47	0.11	0.061	0.64	0.21
72 Gordonia dalglieshiana 2 13.33 0.83 0.0087 0.47 0.07 0.032 0.57 0.19 73 Syzygium cumini 2 13.33 0.83 0.0044 0.47 0.07 0.016 0.56 0.19 74 Pavetta tomentoxa 2 13.33 0.83 0.0005 0.47 0.07 0.002 0.54 0.18 75 Cimamonum porrectum 7 6.67 2.92 0.0003 0.23 0.21 0.011 0.49 0.16 76 Ptersopermum acerifolium 6 6.67 2.50 0.0003 0.23 0.21 0.011 0.45 0.15 78 Lisea semecarpifolia 3 6.67 1.25 0.025 0.23 0.11 0.017 0.43 0.14 80 Lihocarpus lindleyanus 2 6.67 1.25 0.0134 0.23 0.011 0.048 0.39 0.13 81 Sarcosperma arboreum 3 6.67 <	71	Dolichandrone serrulata	3	13.33	1.25	0.0073	0.47	0.11	0.026	0.60	0.20
Instrument Instrum	72	Gordonia dalglieshiana	2	13.33	0.83	0.0087	0.47	0.07	0.032	0.57	0.19
1. 1.0000 1.0000 0.017 0.002 0.18 0.018 74 Pavetta tomentosa 2 13.33 0.83 0.0003 0.23 0.07 0.002 0.54 0.18 75 Cinnamomum porrectum 7 6.67 2.92 0.0003 0.23 0.21 0.017 0.47 0.16 76 Prerospermum acerifolium 6 6.67 2.50 0.0003 0.23 0.21 0.011 0.45 0.15 78 Lixea senecarpifolia 3 6.67 1.25 0.0025 0.23 0.11 0.107 0.45 0.15 79 Ole salicifolia 4 6.67 1.25 0.0134 0.23 0.11 0.048 0.39 0.13 81 Sarcosperma arboreum 3 6.67 1.25 0.001 0.23 0.11 0.048 0.39 0.13 82 Giuta usitata 1 6.67 1.25 0.0001 0.23 0.11 0.002	73	Svzvgium cumini	2	13.33	0.83	0.0044	0.47	0.07	0.016	0.56	0.19
75 Cinnamomum percetum 7 6.67 2.92 0.003 0.23 0.25 0.001 0.49 0.16 76 Pterospermum acerifolium 6 6.67 2.50 0.0047 0.23 0.21 0.017 0.47 0.16 77 Gmelina philippensis 6 6.67 2.50 0.0003 0.23 0.21 0.001 0.45 0.15 78 Lissea semecarpifolia 3 6.67 1.25 0.025 0.23 0.11 0.107 0.43 0.14 80 Lithocarpus lindleyanus 2 6.67 0.83 0.0245 0.23 0.01 0.048 0.39 0.13 81 Sarcosperma arboreum 3 6.67 1.25 0.014 0.23 0.11 0.048 0.39 0.13 82 Gluta usitata 1 6.67 1.25 0.001 0.23 0.11 0.022 0.36 0.12 83 Garuga pinnata 3 6.67 1.25	74	Pavetta tomentosa	2	13.33	0.83	0.0005	0.47	0.07	0.002	0.54	0.18
76 Pterospermum acerifolium 6 6.67 2.50 0.0047 0.23 0.21 0.017 0.47 0.16 77 Gmelina philippensis 6 6.67 2.50 0.0003 0.23 0.21 0.017 0.45 0.15 78 Litsea semecarpifolia 3 6.67 1.25 0.0295 0.23 0.11 0.107 0.45 0.15 79 Olea salicifolia 4 6.67 1.67 0.018 0.23 0.14 0.057 0.43 0.14 80 Lithocarpus lindleyanus 2 6.67 0.83 0.0245 0.23 0.07 0.089 0.39 0.13 81 Sarcosperma arboreum 3 6.67 1.25 0.0141 0.23 0.11 0.048 0.39 0.13 82 Gluta usitata 1 6.67 1.25 0.0001 0.23 0.11 0.002 0.34 0.12 83 Garuga pinnata 3 6.67 1.25	75	Cinnamomum porrectum	7	6.67	2.92	0.0003	0.23	0.25	0.001	0.49	0.16
Transponsion L <thl< th=""> L <thl< th=""> L <thl< th=""> L <thl< th=""> <thl< <="" td=""><td>76</td><td>Pterospermum acerifolium</td><td>6</td><td>6.67</td><td>2.50</td><td>0.0047</td><td>0.23</td><td>0.21</td><td>0.017</td><td>0.47</td><td>0.16</td></thl<></thl<></thl<></thl<></thl<>	76	Pterospermum acerifolium	6	6.67	2.50	0.0047	0.23	0.21	0.017	0.47	0.16
R Litea semecarpifolia 3 6.67 1.25 0.0295 0.23 0.11 0.107 0.45 0.15 79 Olea salicifolia 4 6.67 1.67 0.0158 0.23 0.14 0.057 0.43 0.14 80 Lithocarpus lindleyanus 2 6.67 0.83 0.0245 0.23 0.07 0.089 0.39 0.13 81 Sarcosperma arboreum 3 6.67 1.25 0.0134 0.23 0.11 0.048 0.39 0.13 82 Gluta usitata 1 6.67 0.42 0.0274 0.23 0.04 0.099 0.37 0.12 83 Garuga pinnata 3 6.67 1.25 0.0011 0.23 0.11 0.008 0.35 0.12 84 Antidesma ghaesembilla 3 6.67 1.25 0.0005 0.23 0.04 0.075 0.35 0.12 86 Protium serratum 3 6.67 0.83	77	Gmelina philippensis	6	6.67	2.50	0.0003	0.23	0.21	0.001	0.45	0.15
P9 Olea salicifolia 4 6.67 1.67 0.0158 0.23 0.14 0.057 0.43 0.14 80 Lithocarpus lindleyanus 2 6.67 0.83 0.0245 0.23 0.07 0.089 0.39 0.13 81 Sarcosperma arboreum 3 6.67 1.25 0.0134 0.23 0.11 0.048 0.39 0.13 82 Gluta usitata 1 6.67 0.42 0.0274 0.23 0.04 0.099 0.37 0.12 83 Garuga pinnata 3 6.67 1.25 0.0001 0.23 0.11 0.0022 0.36 0.12 84 Antidesma ghaesembilla 3 6.67 1.25 0.0001 0.23 0.01 0.005 0.35 0.12 85 Betula alnoides 1 6.67 0.83 0.0096 0.23 0.07 0.035 0.34 0.11 87 Colona flagrocarpa 2 6.67 0.83	78	Litsea semecarpifolia	3	6.67	1.25	0.0295	0.23	0.11	0.107	0.45	0.15
Note starting with the second start of the star	79	Olea salicifolia	4	6.67	1.67	0.0158	0.23	0.14	0.057	0.43	0.14
Barcosperma arboreum Barcosper	80	Lithocarpus lindlevanus	2	6.67	0.83	0.0245	0.23	0.07	0.089	0.39	0.13
1 1 6.67 0.42 0.013 0.11 0.11 0.103 0.12 82 Gluta usitata 1 6.67 0.42 0.0274 0.23 0.04 0.099 0.37 0.12 83 Garuga pinnata 3 6.67 1.25 0.0061 0.23 0.11 0.002 0.36 0.12 84 Antidesma ghaesembilla 3 6.67 1.25 0.0001 0.23 0.11 0.008 0.35 0.12 85 Betula alnoides 1 6.67 0.42 0.0207 0.23 0.04 0.075 0.35 0.12 86 Protium serratum 3 6.67 0.83 0.0096 0.23 0.07 0.035 0.34 0.11 87 Colona flagrocarpa 2 6.67 0.83 0.0055 0.23 0.07 0.020 0.33 0.11 88 Dalbergia velutina 2 6.67 0.83 0.0049 0.23 0.07 0.018 0.32 0.11 90 Vitex pinnata 1 6.67	81	Sarcosperma arboreum	3	6.67	1.25	0.0134	0.23	0.11	0.048	0.39	0.13
83 Garuga pinnata 3 6.67 1.25 0.0061 0.23 0.11 0.022 0.36 0.12 84 Antidesma ghaesembilla 3 6.67 1.25 0.0021 0.23 0.11 0.002 0.35 0.12 85 Betula alnoides 1 6.67 0.42 0.0207 0.23 0.04 0.075 0.35 0.12 86 Protium serratum 3 6.67 1.25 0.0005 0.23 0.01 0.002 0.34 0.11 87 Colona flagrocarpa 2 6.67 0.83 0.0055 0.23 0.07 0.035 0.34 0.11 88 Dalbergia velutina 2 6.67 0.83 0.0049 0.23 0.07 0.018 0.32 0.11 90 Vitex pinnata 1 6.67 0.83 0.004 0.23 0.07 0.018 0.32 0.11 90 Vitex pinnata 1 6.67 0.42 0.0142 <td>82</td> <td>Gluta usitata</td> <td>1</td> <td>6.67</td> <td>0.42</td> <td>0.0274</td> <td>0.23</td> <td>0.04</td> <td>0.099</td> <td>0.37</td> <td>0.12</td>	82	Gluta usitata	1	6.67	0.42	0.0274	0.23	0.04	0.099	0.37	0.12
Barriel Printing Barriel Prining Barriel Prining <td>83</td> <td>Garuga pinnata</td> <td>3</td> <td>6 67</td> <td>1.25</td> <td>0.0061</td> <td>0.23</td> <td>0.11</td> <td>0.022</td> <td>0.36</td> <td>0.12</td>	83	Garuga pinnata	3	6 67	1.25	0.0061	0.23	0.11	0.022	0.36	0.12
85 Betula alnoides 1 6.67 0.42 0.0207 0.23 0.04 0.075 0.35 0.12 86 Protium serratum 3 6.67 1.25 0.0005 0.23 0.11 0.002 0.34 0.11 87 Colona flagrocarpa 2 6.67 0.83 0.0096 0.23 0.07 0.035 0.34 0.11 88 Dalbergia velutina 2 6.67 0.83 0.0096 0.23 0.07 0.020 0.33 0.11 89 Shorea roxburghii 2 6.67 0.83 0.0049 0.23 0.07 0.018 0.32 0.11 90 Vitex pinnata 1 6.67 0.42 0.0142 0.23 0.04 0.051 0.32 0.11 91 Melastoma malabathricum 2 6.67 0.83 0.0004 0.23 0.07 0.001 0.31 0.30 0.10 92 Kydia calycina 1 6.67 0.4	84	Antidesma ghaesembilla	3	6.67	1.25	0.0021	0.23	0.11	0.008	0.35	0.12
Reference Reference <t< td=""><td>85</td><td>Betula alnoides</td><td>1</td><td>6.67</td><td>0.42</td><td>0.0207</td><td>0.23</td><td>0.04</td><td>0.075</td><td>0.35</td><td>0.12</td></t<>	85	Betula alnoides	1	6.67	0.42	0.0207	0.23	0.04	0.075	0.35	0.12
87 Colona flagrocarpa 2 6.67 0.83 0.0096 0.23 0.07 0.035 0.34 0.11 88 Dalbergia velutina 2 6.67 0.83 0.0096 0.23 0.07 0.035 0.34 0.11 89 Shorea roxburghii 2 6.67 0.83 0.0049 0.23 0.07 0.018 0.32 0.11 90 Vitex pinnata 1 6.67 0.42 0.0142 0.23 0.04 0.051 0.32 0.11 90 Vitex pinnata 1 6.67 0.42 0.0142 0.23 0.04 0.051 0.32 0.11 91 Melastoma malabathricum 2 6.67 0.83 0.0004 0.23 0.07 0.001 0.31 0.30 0.10 92 Kydia calycina 1 6.67 0.42 0.0064 0.23 0.04 0.015 0.29 0.10 94 Cinnamonun iners 1 6.67 0.42<	86	Protium serratum	3	6.67	1.25	0.0005	0.23	0.11	0.002	0.34	0.11
b) b) <td< td=""><td>87</td><td>Colona flagrocarpa</td><td>2</td><td>6.67</td><td>0.83</td><td>0.0096</td><td>0.23</td><td>0.07</td><td>0.035</td><td>0.34</td><td>0.11</td></td<>	87	Colona flagrocarpa	2	6.67	0.83	0.0096	0.23	0.07	0.035	0.34	0.11
Bit of grammer Constraint Con	88	Dalbergia velutina	2	6.67	0.83	0.0055	0.23	0.07	0.020	0.33	0.11
90 Vitex pinnata 1 6.67 0.42 0.0142 0.23 0.04 0.051 0.32 0.11 91 Melastoma malabathricum 2 6.67 0.83 0.0004 0.23 0.07 0.001 0.31 0.10 92 Kydia calycina 1 6.67 0.83 0.0004 0.23 0.07 0.001 0.31 0.10 92 Kydia calycina 1 6.67 0.42 0.0086 0.23 0.04 0.031 0.30 0.10 93 Radermachera ignea 1 6.67 0.42 0.0064 0.23 0.04 0.023 0.29 0.10 94 Cinnamomun iners 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 95 Combretum punctatum 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 96 Artocarpus gomezianus 1 6.67 0.42 <td< td=""><td>89</td><td>Shorea roxburghii</td><td>2</td><td>6.67</td><td>0.83</td><td>0.0049</td><td>0.23</td><td>0.07</td><td>0.018</td><td>0.32</td><td>0.11</td></td<>	89	Shorea roxburghii	2	6.67	0.83	0.0049	0.23	0.07	0.018	0.32	0.11
91 Melastoma malabathricum 2 6.67 0.83 0.0004 0.23 0.07 0.001 0.31 0.10 92 Kydia calycina 1 6.67 0.42 0.0086 0.23 0.04 0.031 0.30 0.10 93 Radermachera ignea 1 6.67 0.42 0.0064 0.23 0.04 0.031 0.30 0.10 94 Cinnamomum iners 1 6.67 0.42 0.0042 0.23 0.04 0.023 0.29 0.10 95 Combretum punctatum 1 6.67 0.42 0.0042 0.23 0.04 0.015 0.29 0.10 96 Artocarpus gomezianus 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 96 Artocarpus gomezianus 1 6.67 0.42 0.0032 0.23 0.04 0.014 0.28 0.09 97 Schefflera bengalensis 1 6.67 0.42 0.0032 0.23 0.04 0.012 0.28 0.09 <	90	Vitex ninnata	-	6.67	0.42	0.0142	0.23	0.04	0.051	0.32	0.11
91 Interactional matrix interaction in the state of the state o	91	Melastoma malabathricum	2	6.67	0.83	0.0004	0.23	0.07	0.001	0.31	0.10
93 Radermachera ignea 1 6.67 0.42 0.0064 0.23 0.04 0.023 0.29 0.10 94 Cinnamomum iners 1 6.67 0.42 0.0042 0.23 0.04 0.015 0.29 0.10 95 Combretum punctatum 1 6.67 0.42 0.0038 0.23 0.04 0.015 0.29 0.10 96 Artocarpus gomezianus 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 96 Artocarpus gomezianus 1 6.67 0.42 0.0032 0.23 0.04 0.014 0.28 0.09 97 Schefflera bengalensis 1 6.67 0.42 0.0032 0.23 0.04 0.012 0.28 0.09 98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.004 0.27 0.09 99 Entada rheedii 1 6.67 0.42 <	92	Kydia calycina	1	6.67	0.42	0.0086	0.23	0.04	0.031	0.30	0.10
94 Cinnamomum iners 1 6.67 0.42 0.0001 0.12 0.01 0.12 0.10 95 Combretum punctatum 1 6.67 0.42 0.0042 0.23 0.04 0.015 0.29 0.10 96 Artocarpus gomezianus 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 96 Artocarpus gomezianus 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 97 Schefflera bengalensis 1 6.67 0.42 0.0032 0.23 0.04 0.014 0.28 0.09 98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.004 0.27 0.09 99 Entada rheedii 1 6.67 0.42 0.0011 0.23 0.04 0.004 0.27 0.09 100 Canarium subulatum 1 6.67 0.42 0.0009	93	Radermachera ignea	1	6.67	0.42	0.0064	0.23	0.04	0.023	0.29	0.10
95 Combretum punctatum 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 96 Artocarpus gomezianus 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 96 Artocarpus gomezianus 1 6.67 0.42 0.0038 0.23 0.04 0.014 0.28 0.09 97 Schefflera bengalensis 1 6.67 0.42 0.0032 0.23 0.04 0.012 0.28 0.09 98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.004 0.27 0.09 99 Entada rheedii 1 6.67 0.42 0.0011 0.23 0.04 0.004 0.27 0.09 100 Canarium subulatum 1 6.67 0.42 0.0009 0.23 0.04 0.003 0.27 0.09 101 Horsfieldia tomentosa 1 6.67 0.42	94	Cinnamomum iners	1	6.67	0.42	0.0042	0.23	0.04	0.015	0.29	0.10
96 Artocarpus gomezianus 1 6.67 0.42 0.003 0.23 0.04 0.014 0.28 0.09 97 Schefflera bengalensis 1 6.67 0.42 0.0032 0.23 0.04 0.014 0.28 0.09 98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.012 0.28 0.09 98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.004 0.27 0.09 99 Entada rheedii 1 6.67 0.42 0.0011 0.23 0.04 0.004 0.27 0.09 100 Canarium subulatum 1 6.67 0.42 0.0009 0.23 0.04 0.003 0.27 0.09 101 Horsfieldia tomentosa 1 6.67 0.42 0.0007 0.23 0.04 0.003 0.27 0.09	95	Combretum punctatum		6.67	0.42	0.0038	0.23	0.04	0.014	0.28	0.09
97 Schefflera bengalensis 1 6.67 0.42 0.0032 0.23 0.04 0.014 0.28 0.09 98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.014 0.28 0.09 99 Entada rheedii 1 6.67 0.42 0.0012 0.23 0.04 0.004 0.27 0.09 100 Canarium subulatum 1 6.67 0.42 0.0011 0.23 0.04 0.004 0.27 0.09 101 Horsfieldia tomentosa 1 6.67 0.42 0.0007 0.23 0.04 0.003 0.27 0.09	96	Artocarpus gomezianus	1	6.67	0.42	0.0038	0.23	0.04	0.014	0.28	0.09
98 Ficus sp. 1 6.67 0.42 0.0012 0.23 0.04 0.004 0.27 0.09 99 Entada rheedii 1 6.67 0.42 0.0011 0.23 0.04 0.004 0.27 0.09 100 Canarium subulatum 1 6.67 0.42 0.0009 0.23 0.04 0.003 0.27 0.09 101 Horsfieldia tomentosa 1 6.67 0.42 0.0007 0.23 0.04 0.003 0.27 0.09	97	Schefflera bengalensis	1	6.67	0.42	0.0032	0.23	0.04	0.012	0.28	0.09
99 Entada rheedii 1 6.67 0.42 0.0011 0.23 0.04 0.004 0.27 0.09 100 Canarium subulatum 1 6.67 0.42 0.0009 0.23 0.04 0.003 0.27 0.09 101 Horsfieldia tomentosa 1 6.67 0.42 0.0007 0.23 0.04 0.003 0.27 0.09	98	Ficus sp.	1	6.67	0.42	0.0012	0.23	0.04	0.004	0.27	0.09
100 Canarium subulatum 1 6.67 0.42 0.0007 0.23 0.04 0.003 0.27 0.09 101 Horsfieldia tomentosa 1 6.67 0.42 0.0007 0.23 0.04 0.003 0.27 0.09	99	Entada rheedii		6.67	0.42	0.0011	0.23	0.04	0.004	0.27	0.09
101 Horsfieldia tomentosa 1 6.67 0.42 0.007 0.23 0.04 0.003 0.27 0.09	100	Canarium subulatum		6.67	0.42	0.0009	0.23	0.04	0.003	0.27	0.09
	100	Horsfieldia tomentosa	1	6.67	0.42	0.0007	0.23	0.04	0.003	0.27	0.09
102 Celastrus paniculata 11 6.67 0.42 0.0006 0.23 0.04 0.002 0.27 0.09	102	Celastrus paniculata	1	6.67	0.42	0.0006	0.23	0.04	0.002	0.27	0.09
103 Eurya acuminata 1 6.67 0.42 0.0002 0.23 0.04 0.001 0.27 0.09	103	Eurva acuminata	1	6.67	0.42	0.0002	0.23	0.04	0.001	0.27	0.09
Total 2.798 2.840 1.165 27.66 100 100 100 300 100	105	Total	2,798	2,840	1,165	27.66	100	100	100	300	100

Inj rsity ties in the adjacent fragmented forests.

 Table 2-4
 Quantitative data of plant communities in the adjacent fragmented forests.

	Fifteen sample plots in adjacent fragmented forests															
Parameters	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1. Altitude (m)	1,440	1,470	1,395	1,259	1,300	1,253	1,345	1,250	1,222	1,234	1,390	1,436	1,556	1,545	1,586	
2. Number of Species	16	21	42	20	21	16	34	25	29	26	40	35	37	32	32	103
3. Number of Genus	15	18	35	19	18	13	29	20	23	22	35	32	33	28	29	82
4. Number of Families	10	13	21	13	12	10	18	13	14	13	22	22	24	18	19	44
5. Basal area (m ² /ha)	31.65	25.12	32.88	29.61	27.96	26.22	22.59	23.32	25.85	17.46	31.01	32.80	36.58	27.02	24.85	27.66
6. Dominant tree (%)																
1) Pinus kesiya	63.57	53.73	25.67	33.88	16.51	38.67	31.33	33.57	25.99	39.39	-	7.33	0.91	7.00	-	24.10
2) Castanopsis acuminatissima		0.07	1.61	20.98	30.80	19.96	34.07	17.61	35.83	11.96	17.37	22.43	372	7.78	-	14.12
3) Schima wallichii	7.20	5.48	9.36	0.19	0.79		0.40	-	4.85	-	5.96	10.85	9.77	21.90	25.73	7.14
4) Quercus brandisiana	-	-	-	18.33	19.34	1.27	3.21	14.08	14.22	17.47	-	-	-		-	5.28
5) Castanopsis diversifolia	0.29	1.16	0.09	-	-	-	A I	0.11	- /		10.80	8.93	33.22	-	21.55	5.84
6) Ternstroemia gymnanthera		(-)	3.19	1.91	0.51	-	0.92	-)/	·	· • ·	2.62	6.25	9.55	5.56	4.97	2.66
7) Helicia excelsa	3.65	1.11	0.91	-	-	-	0.49	-	1.10	-	1.17	7.62	9.71	10.90	0.01	2.77
7. IVI (%)																
1) Pinus kesiya	39.64	34.16	17.61	21.77	9.44	23.27	18.59	19.12	14.89	26.61	-	4.16	1.64	3.69	-	11.02
2) Castanopsis acuminatissima	-	0.24	1.31	16.01	22.80	16.72	22.22	13.80	23.32	9.12	9.39	14.45	-	4.47	-	7.36
3) Schima wallichii	5.69	5.24	8.95	1.13	0.99	-	0.87	23	3.50	-	4.04	10.90	8.14	17.00	23.94	5.11
4) Quercus brandisiana	-	-	× -/	11.23	13.22	1.20	2.51	10.71	15.49	14.71	-	Y - /	-	-	-	3.31
5) Castanopsis diversifolia	0.41	0.79	0.30	-	-	-		0.72	-		7.34	7.45	20.16	-	17.56	3.28
6) Ternstroemia gymnanthera	-	-	4.11	3.02	0.85	-	1.36	-	-	<u> </u>	2.72	9.09	10.39	5.12	2.84	2.62
7) Helicia excelsa	4.97	1.81	0.71	-()	- <u> </u>	-	1.60	-	1.36		1.29	9.53	7.52	6.62	0.36	2.55
8. Density (trees/ha)	1,194	1,500	1,244	906	1,056	556	1,388	938	1,156	994	1,769	1,256	1,056	1,600	875	1,166
(1) $gbh < 50 cm$	905	1,249	898	617	694	316	1,177	717	950	825	1,447	870	733	1,319	596	888
(2) gbh 50-100 cm	157	170	254	165	278	163	134	139	134	110	268	295	235	217	221	196
(3) gbh 100-150 cm	113	81	79	81	66	47	45	50	40	40	40	50	31	43	33	56
(4) gbh 150-200 cm	19	-	13	44	13	25	31	31	26	19	15	34	31	22	19	23
(5) gbh 200-250 cm	-	-	-	-	6	6	-	-	6	-	-	6	13	-	6	3
(6) gbh 250-300 cm													13			1
9. Species diversity (SWI)	3.01	3.37	4.65	3.45	3.65	3.53	4.38	3.69	4.03	3.87	4.15	4.28	4.51	4.23	3.88	5.28

Copyright[©] by Chiang Mai University All rights reserved 30

(5) Stem Basal Area

The total stem basal area of all tree species in adjacent fragmented forests varied between $17.46-36.58 \text{ m}^2\text{ha}^{-1}$. This parameter was implied to forest production according to stem size and number of trees, and forest condition. Since the adjacent fragmented forests had different forest conditions, from poor to good, the values were therefore greatly different.

(6) Importance Value Index (IVI)

The IVI value combines relative frequency, relative density and relative dominance into a measure that can be use to indicate the ecological influence of each species in the forest. *P. kesiya* had the highest value (11.02% of all species), and followed by *C. acuminatissima*, *T. rufescens*, *S. wallichii*, *W. tinctoria*, *V. sprengelii*, *Q. brandisiana*, *C. diversifolia*, *T. gymnanthera* and *H. nilagirica*. These ten tree species were accounted for 49.06% of the total IVI.

These adjacent fragmented forests were remained at the ridge or upper slopes of the high mountains where the sites were relatively dried during summer. The forest conditions were favorable for the pine (*P. kesiya*) and some broad-leaved tree species. Mycorrhizal fungi usually associate with the roots of these tree species and help for nutrient uptake and moisture absorption.

(7) Species Diversity Index

Species diversity index in the whole adjacent fragmented forests by Shannon-Wiener Index (SWI) was calculated as 5.28 and varied among the adjacent fragmented forests with a range of 3.01 to 4.65 (Table 2-4). The patch sizes of adjacent fragmented forests were varied from small to big ones, and human disturbance through tree cutting was different among the patches. These indicated to some degradation of adjacent fragmented forests, and thus the SWI values were variable. The SWI of the whole adjacent fragmented forests was nearly the same with the lower montane forest at Doi Suthep-Pui national park, 5.0-5.1 (Vanaprasert, 1985), and implied to the high species diversity of original forest of these adjacent fragmented forests.

2.4.1.3 Climax Montane Forest

The plant community characteristics of the climax montane forest were shown in Table 2-5. There were 122 species, 112 genera and 49 families in five sampling plots of the 15 ha permanent plot. Dominant tree species were mainly *M. euonymoides* (11.74%), *Q. eumorpha* (10.61%), *Manglietia garretii* (8.34%), *Calophyllum polyanthum* (6.76%), *Nyssa javanica* (4.95%), and Lindera metcalfiana (3.01%). In terms of basal area, Fagaceae and Lauraceae were the dominant families. The highest and dominant family was Lauraceae (19 species) and followed by Fagaceae (8 species) and Cornaceae (3 species). The average tree density was 7,391 trees/ha. The tree species having the high density values were *Mallotus khasianus* (684), *Euodia triphylla* (552), and *C. calathiformis* (392), respectively.

Tab	Table 2-5 Quantitative characteristics of tree species in the climax montane forest No of Frequency Density Basal area Relative (%) IVI													
No	Species	No. of	Frequency	Density	Basal area		Relative (%)	IV	Ί				
110		trees	(%)	(trees/ha)	(m²/ha)	Frequency	Density	Dominance	(300)	(%)				
1	Mastixia euonymoides Prain	74	100.00	59.20	5.3500	1.15	0.80	11.74	13.70	4.57				
2	Quercus eumorpha Kurz (Syn. = Q. lenticellata Barnett)	125	100.00	100.00	4.8333	1.15	1.35	10.61	13.12	4.37				
3	Mallotus khasianus Hook. f.	856	100.00	684.80	1.0591	1.15	9.27	2.33	12.74	4.25				
4	Calophyllum polyanthum Wall.	434	100.00	347.20	3.0811	1.15	4.70	6.76	12.61	4.20				
5	Manglietia garretii Craib	108	80.00	86.40	3.7984	0.92	1.17	8.34	10.43	3.48				
6	Euodia triphylla DC.	690	100.00	552.00	0.1646	1.15	7.47	0.36	8.98	2.99				
7	Castanopsis calathiformis Kurz	491	80.00	392.80	0.7888	0.92 •	5.31	1.73	7.97	2.66				
8	Heynea trijuga Sims	385	100.00	308.00	0.6963	1.15	4.17	1.53	6.85	2.28				
9	Lindera metcalfiana Allen	245	100.00	196.00	1.3712	1.15	2.65	3.01	6.81	2.27				
10	Cryptocarya densiflora Blume	276	100.00	220.80	1.1926	1.15	2.99	2.62	6.76	2.25				
11	Nyssa javanica Wangerin	22	100.00	17.60	2.2530	1.15	0.24	4.95	6.34	2.11				
12	Symplocos macrophylla Wall. ex DC. ssp. sulcata (Kurz) Noot. var. sulcata	257	100.00	205.60	0.8551	1.15	2.78	1.88	5.81	1.94				
13	Eurya nitida Korth. var. nitida	284	80.00	227.20	0.3532	0.92	3.07	0.78	4.77	1.59				
14	Persea sp.	70	100.00	56.00	1.2752	1.15	0.76	2.80	4.71	1.57				
15	Psychotria symplocifolia Kurz	305	80.00	244.00	0.0817	0.92	3.30	0.18	4.40	1.47				
16	Syzygium angkae (Craib) P. Chantaranothai & J. Parnell ssp. angkae	158	100.00	126.40	0.6733	1.15	1.71	1.48	4.34	1.45				
17	Tarenna disperma (Hook. f.) Pit. (Syn. = Webra disperma Hook. f.)	89	100.00	71.20	0.9422	1.15	0.96	2.07	4.18	1.39				
18	Syzygium tetragonum Wall.	134	100.00	107.20	0.6496	1.15	1.45	1.43	4.03	1.34				
19	Polyosma integrifolia Blume	130	100.00	104.00	0.6497	1.15	1.41	1.43	3.99	1.33				
20	Camellia oleifera Abel var. confusa (Craib) Sealy	191	100.00	152.80	0.2757	1.15	2.07	0.61	3.82	1.27				
21	Daphniphyllum cf. glaucescens Blume ssp. beddomei (Craib) Huang	87	100.00	69.60	0.7807	1.15	0.94	1.71	3.81	1.27				
22	Chionanthus ramiflorus Roxb.	94	100.00	75.20	0.7005	1.15	1.02	1.54	3.71	1.24				
23	Elaeocarpus lanceifolius Roxb.	100	100.00	80.00	0.6085	1.15	1.08	1.34	3.57	1.19				
24	Cryptocarya cf. calcicola H. W. Li	142	100.00	113.60	0.3920	1.15	1.54	0.86	3.55	1.18				
25	Castanopsis purpurea Barnett	132	100.00	105.60	0.4310	1.15	1.43	0.95	3.53	1.18				
26	Lithocarpus vestitus (Hickel & A. Camus) A. Camus	128	100.00	102.40	0.4476	1.15	1.39	0.98	3.52	1.17				
27	Quercus brevicalyx A. Camus	68	100.00	54.40	0.6945	1.15	0.74	1.52	3.41	1.14				
28	Ostodes paniculata Blume	153	80.00	122.40	0.3491	0.92	1.66	0.77	3.34	1.11				
29	Cinnamomum bejolghota (Ham.) Sweet var. bejolghota	89	100.00	71.20	0.5522	1.15	0.96	1.21	3.33	1.11				
30	Aidia yunnanensis (Hutch) T. Yamaz.	77	100.00	61.60	0.6087	1.15	0.83	1.34	3.32	1.11				
31	Psychotria densa W. C. Chen	183	100.00	146.40	0.0235	1.15	1.98	0.05	3.18	1.06				

Copyright by Chiang Mai University All rights reserved

Table 2-5 (Continued)

Tal	ble 2-5 (Continued)												
Ŋ		No. of	Frequency	Density	Basal area		Relative (%))	IV	VI			
NO	Species	trees	(%)	(trees/ha)	(m²/ha)	Frequency	Density	Dominance	(300)	(%)			
32	Acer laurinum Hassk.	52	100.00	41.60	0.5187	1.15	0.56	1.14	2.85	0.95			
33	Rapanea yunnaensis Mez	93	100.00	74.40	0.2735	1.15	1.01	0.60	2.76	0.92			
34	Lithocarpus echinops Hjelmq.	63	100.00	50.40	0.4107	1.15	0.68	0.90	2.74	0.91			
35	Litsea subcoriacea Yen C. Yang & P. H. Huang	70	100.00	56.00	0.3653	1.15	0.76	0.80	2.71	0.90			
36	Litsea beusekomii Kostermans	146	80.00	116.80	0.0700	0.92	1.58	0.15	2.66	0.89			
37	Lasianthus hookerii C. B. Clarke ex Hook. F. var. hookeri	132	100.00	105.60	0.0311	1.15	1.43	0.07	2.65	0.88			
38	Litsea yunnanensis Yen C. Yang & P. H. Huang	106	80.00	84.80	0.2605	0.92	1.15	0.57	2.64	0.88			
39	Drypetes sp.	36	80.00	28.80	0.5885	0.92	0.39	1.29	2.60	0.87			
40	Unknown	95	100.00	2.40	0.1895	0.46	1.03	0.42	2.60	0.87			
41	Toona ciliata M. Roem.	71	80.00	56.80	0.3801	0.92	0.77	0.83	2.52	0.84			
42	Ardisia attenuata Wall. ex A. DC.	114	100.00	91.20	0.0270	1.15	1.23	0.06	2.45	0.82			
43	Lasianthus indorus Bl. (Syn. = L. tubiferus Hook. f.	130	80.00	104.00	0.0220	0.92	1.41	0.05	2.38	0.79			
44	Ardisia corymbifera Mez var. corymbifera	109	100.00	87.20	0.0130	1.15	1.18	0.03	2.36	0.79			
45	Ixora cf. kerrii Craib.	118	80.00	94.40	0.0266	0.92	1.28	0.06	2.26	0.75			
46	Drypetes indica (Mull. Arg.) Pax & Hoffm. var. indica	58	100.00	46.40	0.1976	1.15	0.63	0.43	2.21	0.74			
47	Sarcosperma arboreum BuchHam. ex C. B. Clarke	11	100.00	8.80	0.4215	1.15	0.12	0.93	2.20	0.73			
48	Litsea pedunculata (Diels) Yang & P. H. Huang	59	100.00	47.20	0.1694	1.15	0.64	0.37	2.16	0.72			
49	Podocarpus neriifolius D.Don	12	80.00	9.60	0.4925	0.92	0.13	1.08	2.13	0.71			
50	Neolitsea zeylanica (Nees) Merr.	55	100.00	44.00	0.1394	1.15	0.60	0.31	2.05	0.68			
51	Artocarpus cf. lacucha Ham.	37	100.00	29.60	0.1900	1.15	0.40	0.42	1.97	0.66			
52	Lithocarpus aggregatus Barnett ssp. aggregatus	36	100.00	28.80	0.1747	1.15	0.39	0.38	1.93	0.64			
53	Pyrenaria garrettiana Craib	40	100.00	32.00	0.1281	1.15	0.43	0.28	1.87	0.62			
54	Ardisia virens Kurz	57	100.00	45.60	0.0092	1.15	0.62	0.02	1.79	0.60			
55	Cordia cf. cochinchinensis Gagnep.	10	80.00	8.00	0.3376	0.92	0.11	0.74	1.77	0.59			
56	Capparis cf. assamica Hook. f. & Thoms.	36	80.00	28.80	0.1815	0.92	0.39	0.40	1.71	0.57			
57	Platea latifolia Blume	31	80.00	24.80	0.1923	0.92	0.34	0.42	1.68	0.56			
58	Carallia brachiata (Laur.) Merr.	8	100.00	6.40	0.1995	1.15	0.09	0.44	1.68	0.56			
59	Ilex longecaudata Comber var. longecaudata	45	80.00	36.00	0.1113	0.92	0.49	0.24	1.65	0.55			
60	Actinodaphne sp.	28	100.00	22.40	0.0816	1.15	0.30	0.18	1.63	0.54			
61	Ficus hirta Vahl var. hirta	32	80.00	25.60	0.1597	0.92	0.35	0.35	1.62	0.54			
62	Prunus wallichii Steud	28	100.00	22.40	0.0708	1.15	0.30	0.16	1.61	0.54			

Copyright[™] by Chiang Mai University

Table 2-5 (Continued)

										
Tabl	e 2-5 (Continued)									
N		No. of	Frequency	Density	Basal area		Relative (%)	IV	/I
No	Species	trees	(%)	(trees/ha)	(m ² /ha)	Frequency	Density	Dominance	(300)	(%)
63	Antidesma sootepense Craib.	40	100.00	32.00	0.0059	1.15	0.43	0.01	1.60	0.53
64	Lauraceae sp.	8	20.00	6.40	0.5448	0.23	0.09	1.20	1.51	0.50
65	Horsfieldia sp.	48	60.00	38.40	0.1272	0.69	0.52	0.28	1.49	0.50
66	Camellia taliensis (W. W. Sm.) Melch.	46	80.00	36.80	0.0306	0.92	0.50	0.07	1.49	0.50
67	Symplocos henschelii (Mor.) Benth. ex C. B. Clarke var. magnifica (Fletcher)	15	80.00	12.00	0.1689	0.92	0.16	0.37	1.45	0.48
68	Phoebe macrocarpa C. Y. Wu	4	60.00	3.20	0.3248	0.69	0.04	0.71	1.45	0.48
69	Castanopsis acuminatissima (Blume) A. DC.	28	40.00	22.40	0.2686	0.46	0.30	0.59	1.35	0.45
70	Gomphostemma arbusculum C. Y. Wu	15	100.00	12.00	0.0014	1.15	0.16	0.00	1.32	0.44
71	Symplocos hookeri C. B. Clarke	27	80.00	21.60	0.0122	0.92	0.29	0.03	1.24	0.41
72	Macaranga denticulata (Blume) MuellArg.	25	60.00	20.00	0.1247	0.69	0.27	0.27	1.24	0.41
73	Prunus phaeosticta (Hance) Maxim.	39	60.00	31.20	0.0523	0.69	0.42	0.11	1.23	0.41
74	Psychotria calocarpa Kurz	27	80.00	21.60	0.0025	0.92	0.29	0.01	1.22	0.41
75	Cinnamomum cf. soegengii Kosterm.	26	60.00	20.80	0.0952	0.69	0.28	0.21	1.18	0.39
76	Euonymus colonoides Craib	27	60.00	21.60	0.0788	0.69	0.29	0.17	1.16	0.39
77	Elaeocarpus petiolaris (Jack.) Wall ex Kurz	13	60.00	10.40	0.1377	0.69	0.14	0.30	1.13	0.38
78	Capparis sabiaefolia Hook. f. & Thoms.	38	60.00	30.40	0.0112	0.69	0.41	0.02	1.13	0.38
79	Ardisia rubro-glandulosa Fletcher	10	80.00	8.00	0.0407	0.92	0.11	0.09	1.12	0.37
80	Litsea lancifolia Hook. f.	47	40.00	37.60	0.0488	0.46	0.51	0.11	1.08	0.36
81	Gomphandra tetrandra (Wall. in Roxb.) Sleumer	24	60.00	19.20	0.0551	0.69	0.26	0.12	1.07	0.36
82	Nothapodytes cf. obscura C. Y. Wu	23	60.00	18.40	0.0503	0.69	0.25	0.11	1.05	0.35
83	Dysoxylum sp.1	24	60.00	19.20	0.0207	0.69	0.26	0.05	1.00	0.33
84	Diospyros frutescens Blume	4	80.00	3.20	0.0013	0.92	0.04	0.00	0.97	0.32
85	Beilschmiedia glauca Sin. C. Lee et L. F. Lau var. glaucoides H. W. Li	- 19	60.00	15.20	0.0307	0.69	0.21	0.07	0.96	0.32
86	Elaeocarpus braceanus Watt ex C. B. Clarke	8	60.00	6.40	0.0681	0.69	0.09	0.15	0.93	0.31
87	Dysoxylum sp.2	15	60.00	12.00	0.0075	0.69	0.16	0.02	0.87	0.29
88	Engelhardia spicata Lesch. ex Blume var. spicata	4	40.00	3.20	0.1650	0.46	0.04	0.36	0.87	0.29
89	Pterospermum grandiflorum Craib.	6	60.00	4.80	0.0484	0.69	0.06	0.11	0.86	0.29
90	Sterculia sp.	6	60.00	4.80	0.0433	0.69	0.06	0.09	0.85	0.28
91	Litsea cubeba Pers.	18	40.00	14.40	0.0741	0.46	0.19	0.16	0.82	0.27
92	Euonymus sp.1	4	60.00	3.20	0.0244	0.69	0.04	0.05	0.79	0.26
93	Litsea cf. membranifolia Hook. f.	7	60.00	5.60	0.0070	0.69	0.08	0.02	0.78	0.26

Copyright[™] by Chiang Mai University

34

Table 2-5 (Continued)

No	Species	No. of	Frequency	Density	Basal area	1	Relative (%)		IV	I
140	species	trees	(%)	(trees/ha)	(m²/ha)	Frequency	Density	Dominance	(300)	(%)
94	Annonaceae sp.	6	60.00	4.80	0.0014	0.69	0.06	0.00	0.76	0.25
95	Betula alnoides BuchHam.	1	20.00	0.80	0.2259	0.23	0.01	0.50	0.74	0.25
96	Strobilanthes aff. mucronato-productus Lindl.	18	40.00	14.40	0.0020	0.46	0.19	0.00	0.66	0.22
97	Schoepfia fragrans Wall.	11	40.00	8.80	0.0340	0.46	0.12	0.07	0.65	0.22
98	Diospyros glandulosa Lace	2	20.00	1.60	0.1751	0.23	0.02	0.38	0.64	0.21
99	Turpinia nepalensis Wall.	5	40.00	4.00	0.0243	0.46	0.05	0.05	0.57	0.19
100	Daphne composita (L. f.) Gilg	6	40.00	4.80	0.0010	0.46	0.06	0.00	0.53	0.18
101	Lasianthus sikkimensis Hook f.	5	40.00	4.00	0.0007	0.46	0.05	0.00	0.52	0.17
102	Polygala arillata Ham.	5	40.00	4.00	0.0006	0.46	0.05	0.00	0.52	0.17
103	Debregeasia longifolia (Burm. f) Wedd.	4	40.00	3.20	0.0018	0.46	0.04	0.00	0.51	0.17
104	Zanthoxylum rhesta (Roxb.) DC.	3	40.00	76.00	0.0027	1.15	0.03	0.01	0.50	0.17
105	Viburnum punctatum Ham ex D. Don	3	40.00	2.40	0.0006	0.46	0.03	0.00	0.49	0.16
106	Baliospermum micrantum Mull. Arg.	3	40.00	2.40	0.0004	0.46	0.03	0.00	0.49	0.16
107	Myrica esculenta BuchHam.	2	40.00	1.60	0.0023	0.46	0.02	0.01	0.49	0.16
108	Pittosporum chatterjeeanum Gowda.	2	40.00	1.60	0.0005	0.46	0.02	0.00	0.48	0.16
109	Lasianthus saxorum Craib.	2	40.00	1.60	0.0002	0.46	0.02	0.00	0.48	0.16
110	Archidendron clypearia (Jack) L. T. Nielsen ssp. clypearia var. clypearia	4	20.00	3.20	0.0066	0.23	0.04	0.01	0.29	0.10
111	Ficus sp.1	2	20.00	1.60	0.0120	0.23	0.02	0.03	0.28	0.09
112	Beilschmiedia purpurascens H. W. Li	3	20.00	2.40	0.0042	0.23	0.03	0.01	0.27	0.09
113	Olea cf. salicifolia Wall.	1	20.00	0.80	0.0131	0.23	0.01	0.03	0.27	0.09
114	Meliosma sp.	2	20.00	1.60	0.0019	0.23	0.02	0.00	0.26	0.09
115	Prunus sp.2	2	20.00	1.60	0.0006	0.23	0.02	0.00	0.25	0.08
116	Maytenus sp.	-1	20.00	0.80	0.0008	0.23	0.01	0.00	0.24	0.08
117	Broussonetia kazinoki Sieb.	1	20.00	0.80	0.0006	0.23	0.01	0.00	0.24	0.08
118	Miliusa sp.	1	20.00	0.80	0.0002	0.23	0.01	0.00	0.24	0.08
119	Desmodium multiflorum DC.	1	20.00	0.80	0.0001	0.23	0.01	0.00	0.24	0.08
120	Lycianthes neesiana (Wall. ex Nees) D'Arcy & Z. Y. Zhang	1	20.00	0.80	0.0001	0.23	0.01	0.00	0.24	0.08
121	Mycetia rivicola Craib.	1	20.00	0.80	0.0001	0.23	0.01	0.00	0.24	0.08
122	Strobilanthes sp.1	1	20.00	0.80	0.0001	0.23	0.01	0.00	0.24	0.08
	Total	9,239	8,680	7,391.20	45.55	100	100	100	300	100

Copyright[©] by Chiang Mai University All rights reserved 35

M.euonymoides had the highest value (13.70% of all species), and followed by *Q. eumorpha* (10.61%), *M. khasianus* (12.74%), *C. polyanthum* (12.61%) and *M. garretii* (10.43%). Species diversity index was 5.72, based on the Shannon-Wiener index (SWI)

The SWI value was usually high in this forest. Khamyong and Seramethakun (1998) reported that the forest at Mt. Doi Suthep in area of 1,200-1,300 m altitude had the value of 4.5, and it was increased to be 6.1 as the sampling area was expanded (Khamyong, 2009). Laorpansakul (2000) found that SWI of the forest at the Queen Sirikit botanic garden was 5.67, and it was higher as 6.05 for the fragmented forests in Pang Ma Pha district, Mae Hong Son province (Seanchanthong, 2005). However, the SWI value of the upper montane forest at Mt. Doi Inthanon was lower as 4.26 (Khamyong *et al.*, 2004).

2.4.2 Tree Volume and Wood Production

2.4.2.1 Pinus kesiya Plantations

(1) Growth of P. kesiya and Succession Trees

The growths of pine trees in 21 age-class pine plantations of 14 to 34 years old at Boakaew Watershed Management Station were analyzed in mean and increment values of stem diameter at breast height (dbh) and tree height for each age-class stand (Table 2-6). The mean height (H) and dbh of these stands were in ranges of 15.31-23.30 m and 24.24-35.37 cm, respectively. The annual height increment varied between 0.52-1.15 m with the mean of 0.81 m yr⁻¹, whereas the annual dbh increment was 0.94-2.24 cm, and 1.28 cm yr⁻¹ of mean value. The height and stem diameter growths were varied among different age plantations. However, they did not increase continuously with stand ages. The height and dbh of pine trees in some older stands were lower than the younger stands.

The annual growth (height and dbh) increments of *P. kesiya* can be compared to other sites of northern Thailand, e.g. Mae Hard watershed station in early aged in 7-12 year-old were 1.54 m.yr^{-1} and 2.63 cm.yr^{-1} (Rojanakul, 1997); Doi Boa Luang Plantation in 12-37 year-old were 0.49 m.yr⁻¹ and 0.66 cm.yr⁻¹ (Khamyong, 2001); and Huey Bong experimental station in 14 year-old were 0.63 m.yr⁻¹ and 1.11 cm.yr⁻¹ (Wattanasuksakul *et al.*, 1996). FAO (1968) stated that height increment of *P. kesiya* in natural forests was 0.80 m.yr⁻¹ in 10-15 year-old, increasing to 1.0 m.yr⁻¹ in 15-20 year-old and up to 1.17 m.yr⁻¹ between 20-25 year-old; whereas dbh increment in early fifteen years was 0.94 cm.yr⁻¹, increasing to 1.06 cm.yr⁻¹ in 15-20 year-old but reducing to 0.82 cm.yr⁻¹ in 20-25 year-old.

For the growth of succession trees in a series of plantations showed that the mean height and stem dbh were ranged between 11.56-17.50 m and 14.67-27.33 cm, respectively. Their annual height and dbh increment were in ranges of 0.37-0.88 m.yr⁻¹ and 0.66-1.58 cm.yr⁻¹ (Table 2-6).

The average growths (height and dbh) of *P. kesiya* and succession trees in 21 age-class plantations were characterized according to real site conditions and real stand structures under natural succession. Site condition is the most important factor for determining productivity and profit. Indeed substantial variation in growth and morphology from trees planted in a wide variety of countries is well documented (Armitage and Burley, 1980). For example, 5 year results from a provenance test at Huay Tong in Chiang Mai, Thailand demonstrated substantial difference in height growth among the 18 provenances (Granhof, 1978). Das and Stephan (1986) reported that 11 year results from a trial of 12 provenances from the Philippines, Thailand, Vietnam, Zambia and Assam in India, revealed no significant differences among provenances for either height or diameter growth.

		P. ke	siya	my l		Succes	sion trees	
Ages (vrs)	Gro	owths	Annual incre	growth ement	Gro	wths	Annual incre	growth ment
()13)	Н	DBH	Н	DBH	Н	DBH	Н	DBH
	(m.)	(cm.)	$(m.yr^{-1})$	$(\mathrm{cm.yr}^{-1})$	(m.)	(cm.)	$(m.yr^{-1}))$	$(cm.yr^{-1})$
9 14	16.13	31.35	1.15	2.24	12.25	20.57	0.88	1.47
15	15.31	28.69	1.02	1.91	12.54	23.73	0.84	1.58
16	17.59	27.61	1.10	1.73	13.68	21.09	0.86	1.32
17	15.87	26.44	0.93	1.56	12.76	21.14	0.75	1.24
18	17.14	29.33	0.95	1.63	13.10	16.49	0.73	0.92
19	17.32	26.08	0.91	1.37	14.16	17.53	0.75	0.92
20	17.07	27.03	0.85	1.35	17.50	22.63	0.88	1.13
21	19.01	26.98	0.91	1.28	13.61	18.81	0.65	0.90
22	17.11	25.72	0.78	1.17	11.56	14.67	0.53	0.67
23	18.41	25.70	0.80	1.12	13.11	18.94	0.57	0.82
24	18.23	24.24	0.76	1.01	14.14	24.51	0.59	1.02
25	18.47	25.25	0.74	1.01	12.91	18.72	0.52	0.75
26	19.72	29.81	0.76	1.15	14.34	24.31	0.55	0.94
27	20.26	26.46	0.75	0.98	15.78	20.59	0.58	0.76
28	18.68	33.44	0.67	1.19	12.81	22.80	0.46	0.81
29	15.13	28.53	0.52	0.98	11.66	21.68	0.40	0.75
30	19.58	32.79	0.65	1.09	13.82	20.70	0.46	0.69
31	21.49	35.37	0.69	1.14	14.41	21.33	0.46	0.69
32	20.46	32.32	0.64	1.01	15.34	27.33	0.48	0.85
33	23.30	34.52	0.71	1.05	16.63	26.23	0.50	0.79
34	21.47	32.10	0.63	0.94	12.54	22.43	0.37	0.66
Average	18.46	29.04	0.81	1.28	13.74	21.25	0.61	0.94

 Table 2-6
 Growth of P. kesiya and succession trees in a series of pine plantations of 21 age-class stands

(2) Stem Volumes of *P. kesiya* and Succession Trees

Stem volume of *P. kesiya* was estimated every age class of plantations following Pornleesangsuwan, (2012). The total volume of *P. kesiya* in a series of pine plantation were range from $32.73-337.10 \text{ m}^3\text{ha}^{-1}$, and the timber volume of *P. kesiya* were range from 19.93-200.62 m³ha⁻¹. The results on growth and yield indicated by the mean of annual total volume increment (MAI) of *P. kesiya* was 6.23 m³ha⁻¹yr⁻¹ (2.04-10.22 m³ha⁻¹yr⁻¹ in range). The mean of annual timber volume increment of *P. kesiya* was 4.24 m³ha⁻¹yr⁻¹ (1.17-7.21 m³ha⁻¹yr⁻¹ in range) (Table 2-7). The highest annual total volume increment of *P. kesiya* was 7.68 m³ha⁻¹yr⁻¹ for 16 to 20 year-old stands which are considered as the injuvenile stage. Stem volume increment of *P. kesiya* at Boakaew Watershed Management Station was higher than Boa Luang Plantation which was reported as $3.44 \text{ m}^3\text{ha}^{-1}\text{yr}^{-1}$ (Khamyong, 2001). Yield increment of general *P. kesiya* plantations were in range of $3-4 \text{ m}^3\text{ha}^{-1}\text{yr}^{-1}$, whereas the intensive management could increase stem volume to $6-9 \text{ m}^3\text{ha}^{-1}\text{yr}^{-1}$ (Pousujja, 1984).

Stem volumes of succession broad-leaved trees were estimated every age-class plantation by using equation of Sungpalee, *et al.* (2009). Their total volumes in a series of pine plantations were in range of 7.52-124.73 m^3ha^{-1} , and the timber log volume were 4.16-67.30 m^3ha^{-1} . The annual total volume increment of succession trees were varied between 0.23-4.43 $m^3ha^{-1}yr^{-1}$, whereas the timber log volume increments were 0.13-2.23 $m^3ha^{-1}yr^{-1}$ (Table 2-7).

		1	P. kesiya			Succ	ession trees	
Age (year)	Vol (m ³)	ume ha ⁻¹)	Annual volu (m ³ h	a ⁻¹ yr ⁻¹)	Volu (m ³ ł	ume na ⁻¹)	Annual volu (m ³ ha	me increment a ⁻¹ yr ⁻¹)
	V _{Total}	V _{Timber}	V _{Total}	V _{Timber}	V _{Total}	V _{Timber}	V _{Total}	V _{Timber}
14	78.45	50.23	5.60	3.59	57.71	25.56	4.12	1.83
15	32.73	21.12	2.18	1.41	56.35	25.91	3.76	1.73
16	160.13	108.87	10.01	6.80	12.11	5.84	0.76	0.37
17	34.63	19.93	2.04	1.17	75.38	37.97	4.43	2.23
18	135.59	89.49	7.53	4.97	61.61	30.95	3.42	1.72
19	172.77	116.44	9.09	6.13	44.19	24.95	2.33	1.31
20	194.83	127.15	9.74	6.36	10.34	5.17	0.52	0.26
21	198.04	151.42	9.43	7.21	81.76	40.38	3.89	1.92
22	126.54	94.91	5.75	4.31	55.87	26.40	2.54	1.20
23	89.83	61.35	3.91	2.67	57.58	28.66	2.50	1.25
24	121.92	87.13	5.08	3.63	91.74	49.18	3.82	2.05
25	158.79	110.37	6.35	4.41	51.46	28.70	2.06	1.15
26	252.18	173.67	9.70	6.68	91.59	54.81	3.52	2.11
27	156.70	106.16	5.80	3.93	85.08	43.60	3.15	1.61
28	143.73	103.08	5.13	3.68	30.53	16.57	1.09	0.59
29	100.07	67.30	3.45	2.32	26.47	14.29	0.91	0.49
30	163.83	117.11	5.46	3.90	71.57	39.22	2.39	1.31
31	99.51	68.37	3.21	2.21	124.73	67.30	4.02	2.17
32	223.82	154.47	6.99	4.83	86.86	44.82	2.71	1.40
33	337.10	200.62	10.22	6.08	7.52	4.16	0.23	0.13
34	140.37	91.26	4.13	2.68	101.21	55.79	2.98	1.64
Average	148.64	100.97	6.23	4.24	61.03	31.92	2.63	1.36

 Table 2-7
 Stem Volume of P. kesiya and succession trees in a series of pine plantations of 21 age-class stands.

(3) Wood Productions of *P. kesiya* and Succession Trees

Timber volumes of *P. kesiya* and succession trees in a series of pine plantations were classified with different stem-girth classes presented in Table 2-8 and 2-9. Most of *P. kesiya* were large trees which had stem gbh in range of 50-150 cm. Timber A grade was higher, it were varied in $5.87-109.76 \text{ m}^3\text{ha}^{-1}$. The succession trees were large trees which had stem gbh in range of 50-100 cm. Timber B grade was higher, it were $0.89-14.34 \text{ m}^3\text{ha}^{-1}$.

	0)	Volume	of timbe	er grade o	classific	ation with	differen	t stem-g	girth clas	sses (m ³	ha⁻¹)	
Age (vear)	3	0-50 cr	n	5	0-100 cm	1	10	0-150 cm	1	15	0-200 c	m	T (1
(year)	Α	В	С	А	В	С	Α	В	С	Α	В	С	Total
14	0.00	0.00	0.00	10.10	7.26	2.03	18.24	11.80	0.80	0.00	0.00	0.00	50.23
15	0.00	0.00	0.00	8.50	1.24	0.46	5.87	3.41	1.65	0.00	0.00	0.00	21.12
16	0.00	0.09	0.00	53.28	16.02	2.06	27.63	9.79	0.00	0.00	0.00	0.00	108.87
17	0.00	0.00	0.00	15.37	0.56	0.32	3.15	0.54	0.00	0.00	0.00	0.00	19.93
18	0.13	0.08	0.00	30.16	12.67	3.95	30.29	10.44	1.77	0.00	0.00	0.00	89.49
19	0.00	0.44	0.21	63.05	21.59	4.64	18.76	7.33	0.42	0.00	0.00	0.00	116.44
20	0.41	0.19	0.38	61.30	23.54	7.49	14.99	14.64	4.21	0.00	0.00	0.00	127.15
21	0.52	0.13	0.00	70.68	15.80	2.15	54.15	6.47	1.52	0.00	0.00	0.00	151.42
22	0.47	0.33	0.15	56.70	7.43	1.88	22.94	5.00	0.00	0.00	0.00	0.00	94.91
23	0.00	0.00	0.00	34.94	5.24	0.49	17.15	3.53	0.00	0.00	0.00	0.00	61.35
24	0.00	0.00	0.00	52.30	21.02	3.47	8.78	1.56	0.00	0.00	0.00	0.00	87.13
25	0.00	0.00	0.00	84.63	6.59	1.53	16.51	1.10	0.00	0.00	0.00	0.00	110.37
26	0.00	0.11	0.00	63.62	13.34	0.31	86.24	10.04	0.00	0.00	0.00	0.00	173.67
27	0.42	0.31	0.00	53.98	14.79	1.86	25.68	9.13	0.00	0.00	0.00	0.00	106.16
28	0.00	0.00	0.00	16.94	3.62	1.62	57.08	17.34	6.49	0.00	0.00	0.00	103.08
29	0.00	0.00	0.00	14.56	10.78	2.17	26.02	13.76	0.00	0.00	0.00	0.00	67.30
30	0.00	0.00	0.00	27.16	9.43	1.22	59.79	17.05	2.46	0.00	0.00	0.00	117.11
31	0.00	0.00	0.00	9.99	3.92	0.33	43.10	11.02	0.00	0.00	0.00	0.00	68.37
-32	0.00	0.00	0.00	28.17	15.11	4.25	74.03	24.33	8.58	0.00	0.00	0.00	154.47
33	0.00	0.00	0.00	24.00	7.84	1.09	109.76	49.20	0.00	8.72	0.00	0.00	200.62
34	0.00	0.00	0.00	22.82	3.72	0.57	56.70	1.55	0.00	2.40	3.51	0.00	91.26
		1	1,-	11				JP	R	5			

Table 2-8 Timber volumes of P. kesiya with different timber quality and stemgirth classes in 21 age-class plantations

		V	/olume	of timber	grade cl	lassifica	tion wit	h differe	ent stem	-girth cla	usses (m ³	ha ⁻¹)	
Age (vear)	3	80-50 cr	n	5	0-100 cm	1	10	00-150 c	m	1:	50-200 ci	m	Total
(year)	Α	В	С	А	В	С	Α	В	С	A	В	С	Total
14	1.35	2.20	1.18	1.49	5.78	4.07	1.40	2.04	4.72	0.00	1.25	0.00	25.56
15	1.31	1.37	0.56	1.52	6.10	1.96	2.16	3.31	3.17	0.70	0.92	2.82	25.91
16	0.16	0.57	0.22	2.64	1.45	0.81	0.00	0.00	0.00	0.00	0.00	0.00	5.84
17	2.06	3.43	1.44	4.25	6.58	3.08	1.61	3.99	0.83	0.44	5.41	4.86	37.97
18	1.14	5.21	2.20	4.48	8.46	3.62	1.79	2.86	1.17	0.00	0.00	0.00	30.95
19	0.60	3.03	2.11	3.86	3.91	4.84	1.24	0.89	0.38	0.00	2.84	1.21	24.95
20	0.13	0.65	0.45	0.53	0.91	2.06	0.00	0.00	0.45	0.00	0.00	0.00	5.17
21	2.15	3.26	1.37	7.82	7.78	2.41	2.10	3.08	1.39	5.84	0.00	3.15	40.38
22	2.99	7.55	1.59	2.89	4.52	2.77	0.00	1.32	2.78	0.00	0.00	0.00	26.40
23	1.14	3.62	1.98	3.88	5.35	3.52	0.00	3.61	3.75	0.00	1.79	0.00	28.66
24	0.20	1.24	1.38	2.80	6.52	5.08	0.00	2.30	2.02	19.44	6.39	1.77	49.18
25	2.01	2.09	0.72	5.08	4.23	1.10	2.48	1.04	0.00	7.23	0.00	2.72	28.70
26	0.87	1.83	0.55	6.40	3.64	1.43	2.58	3.90	1.38	8.16	11.08	12.99	54.81
27	1.40	3.77	1.42	10.88	14.34	4.39	3.15	3.70	0.56	0.00	0.00	0.00	43.60
28	0.33	0.48	0.26	5.79	2.54	1.73	3.62	1.36	0.47	0.00	0.00	0.00	16.57
29	0.32	0.85	0.58	1.59	1.75	2.55	1.42	3.01	0.00	0.00	0.00	2.20	14.29
30	0.38	2.21	1.79	6.73	8.54	4.57	0.77	0.35	1.70	0.00	12.18	0.00	39.22
31	1.75	3.76	3.14	12.10	8.95	2.09	6.39	5.00	4.48	7.16	10.05	2.39	67.30
32	0.12	0.41	0.55	3.18	5.25	4.82	3.53	11.40	1.19	9.50	2.35	2.51	44.82
33	0.07	0.04	0.00	0.70	0.83	0.00	2.05	0.00	0.47	0.00	0.00	0.00	4.16
34	0.79	1.61	2.21	1.72	8.81	7.40	7.49	3.83	5.18	10.70	3.02	3.03	55.79

 Table 2-9
 Timber volumes of succession trees with different timber quality and stem-girth classes in 21 age-class plantations

2.4.2.2 Adjacent Fragmented Forests

Stem volumes of the broad-leaved trees were estimated of fifteen adjacent fragmented forest by using equation of Sungpalee, *et al.* (2009). Their total volumes in a fifteen natural forest were in range of $36.19-78.42 \text{ m}^3\text{ha}^{-1}$, and the timber log volumes were $22.31-49.01 \text{ m}^3\text{ha}^{-1}$ (Table 2-10). Most of broad-leaved trees were large trees which had stem gbh in range of >150 cm and timber A grade was higher, following in range of 100-150 cm.

2.4.2.3 Climax Montane Forest

Stem volumes of the broad-leaved trees were estimated of the climax montane forest by using equation of Sungpalee, *et al.* (2009). The average total volumes in a climax montane forest was 94.81 m³ha⁻¹, and the timber log volume was 48.69 m³ha⁻¹ (Table 2-11). Most of broad-leaved trees were large trees which had stem gbh in range of >150 cm and timber A grade was higher.

	Total		91	Volum	e of tim	ber grade	classifi	cation wit	th differe	nt stem-	girth clas	sses (m ³ h	a ⁻¹)	
Plot	Volume	() ()	30-50 cr	n	5	50-100 ci	n	10)0-150 cr	n		>150 cm		T-4-1
	(m^3ha^{-1})	Α	В	С	А	В	С	Α	В	С	A	В	С	Total
1	78.42	0.16	0.78	1.03	1.65	5.37	1.98	14.52	14.87	1.61	5.38	1.66	0.00	49.01
2	52.38	0.21	1.93	1.60	3.44	5.44	2.28	12.75	2.50	0.51	0.00	0.00	0.00	30.66
3	73.78	0.84	2.71	0.77	4.59	9.52	2.04	9.09	6.11	0.64	3.57	2.39	0.00	42.25
4	70.84	0.00	0.39	0.29	2.67	4.42	1.50	4.70	3.35	3.80	19.72	1.69	1.56	44.08
5	63.27	0.12	2.28	0.62	1.25	9.45	2.31	2.04	5.79	0.48	4.30	4.96	0.00	33.59
6	61.31	0.00	0.78	0.40	1.21	5.68	0.93	3.94	4.27	0.00	15.40	2.32	0.00	34.93
7	50.69	0.48	1.16	0.58	0.36	3.87	1.79	3.91	3.00	0.67	5.92	5.30	0.00	27.05
8	55.15	0.06	1.10	0.46	0.25	4.44	0.47	4.24	6.01	0.00	10.62	1.12	0.00	28.77
9	59.46	0.24	1.51	0.47	1.52	4.83	0.41	3.20	2.86	0.32	6.04	7.81	1.32	30.53
10	36.19	0.13	1.41	0.20	1.37	2.84	0.85	2.92	2.97	0.00	6.80	0.82	0.00	20.31
11	63.59	0.22	2.73	0.92	1.25	7.81	4.11	0.00	5.03	1.10	1.36	0.00	1.56	26.09
12	74.81	0.40	1.97	0.83	3.78	3.85	3.23	0.94	2.95	2.32	1.08	13.14	0.00	34.50
13	73.30	0.45	1.13	0.40	1.23	4.04	2.55	0.00	2.58	1.03	0.00	12.52	11.22	37.14
14	60.97	0.47	2.26	0.21	3.69	3.74	1.02	0.00	4.79	3.57	0.00	4.93	2.38	27.08
15	58.02	0.51	0.62	0.23	3.84	4.43	2.97	0.55	3.71	0.92	0.00	2.07	3.11	22.95
Average	62.15	0.29	1.52	0.60	2.14	5.34	1.90	4.19	4.72	1.13	5.35	4.05	1.41	32.596

Table 2-10 Stem and timber volumes of the fifteen adjacent fragmented forests with different timber quality and stem-girth classes

Table 2-11 Stem and timber volumes of climax montane forest with different timber quality and stem-girth classes

	Total			Volume	of timbe	er grade o	classifica	tion with	differer	it stem-g	girth class	ses (m ³ ha	n ⁻¹)	
Plot	Volume		30-50 cn	n	5	50-100 cr	n	10	00-150 ci	m		>150 cm		T-+-1
	(m ³ ha ⁻¹)	Α	В	С	А	В	C	Α	В	С	А	В	С	Total
1	124.74	1.46	0.27	0.02	5.98	1.06	0.07	12.51	0.00	0.00	44.38	0.00	1.02	66.75
2	96.82	0.66	0.50	0.14	3.83	1.34	0.04	5.27	1.90	0.00	35.19	0.00	0.00	48.88
3	94.68	1.78	0.60	0.07	7.83	4.93	0.24	7.68	2.39	0.00	19.10	3.03	0.00	47.66
4	68.98	1.83	1.29	0.09	9.19	2.28	0.14	6.40	1.99	0.00	12.79	0.00	0.00	36.00
5	88.83	1.89	0.67	0.03	7.70	0.80	0.10	9.32	1.94	0.00	20.27	1.45	0.00	44.17
Average	94.81	1.53	0.67	0.07	6.91	2.08	0.12	8.24	1.64	0.00	26.35	0.90	0.20	48.69

2.4.3 Tree Biomass

2.4.3.1 Pinus kesiya Plantations

The biomass amounts of pine trees were calculated using the allometric equations of Nongnuang, (2010). The root biomass of pine trees was based on allometric equations of Tsutsumi *et al.* (1983). The results shown that the pine biomass in different age plantations did not increase continueously with stand ages. The values were 23.6 to 212.7 Mg.ha⁻¹. The lowest amount was found in the 15-year-old stand, whereas the largest amount was occurred in the 33-year-old stand. The majority of pine biomass was allocated in the stem component, followed by root, branch and leaf (Table 2-12). The high fluctuation of pine biomass was observed among the pine plantations caused by many factors such as spacing of planting, tree densities, competition with succession trees, site conditions, etc.

The number of succession tree species in different age pine plantations was different, varying 16-69 species. The biomass amounts of these trees were calculated using the allometric equations of Tsutsumi *et al.* (1983). The results shown that the biomass in these pine plantations were different from 8.1 to 94.1 Mg.ha⁻¹. Their biomass did not increase with plantation ages. It was the lowest in 20-year-old stand, 8.1 Mg.ha⁻¹, and the highest amount was occurred in 31-year-old stand, 94.1 Mg.ha⁻¹. The larger biomass of succession trees was dued to existing bigger trees with high density. These succession tree species played the important role on plantation biomass stocks. The majority of their biomass was allocated in stem component, followed by root, branch and leaf (Table 2-12).

The total forest biomass in a series of 21 age-class pine plantations involved biomass of pine and succession broad-leaved trees. The amounts were varied between 70.5-248.2 Mg.ha⁻¹ (Table 2-12 and Figure 2-5). They did not increase with stand ages. It was the lowest in 15-year-old stand, and the highest amount was observed in 26-year-old stand. The low amounts were found in plantaions with altitude above 500 m msl., and those in areas between 1,314-1,453 m msl. had the high total biomass.

Age		P. kesiy	ya (Mg.	ha ⁻¹)		S	Succession	trees (I	Mg.ha ⁻¹)		Total
(year)	Stem	Branch	Leaf	Root	Total	Stem	Branch	Leaf	Root	Total	(Mg.ha ⁻¹)
14	37.9	8.1	1.6	11.9	59.5	28.8	5.0	1.2	9.8	44.8	104.3
15	15.1	3.1	0.6	4.8	23.6	29.9	5.9	1.2	9.9	46.9	70.5
16	79.2	16.8	3.3	25.0	124.2	7.1	1.1	0.3	2.5	11.1	135.3
17	15.5	3.0	0.6	5.0	24.2	39.1	7.2	1.6	13.4	61.3	85.5
18	59.0	12.2	2.4	18.7	92.4	34.6	5.4	1.4	12.3	53.8	146.2
19	74.5	14.7	3.1	24.0	116.3	24.1	4.1	1.0	8.3	37.6	153.9
20	83.5	16.6	3.5	26.9	130.5	5.2	0.8	0.2	1.8	8.1	138.6
21	86.3	17.6	3.6	27.6	135.1	41.0	7.8	1.7	13.7	64.3	199.4
22	56.9	11.1	2.4	18.5	88.8	37.8	5.0	1.6	14.1	58.6	147.4
23	44.7	8.9	1.9	14.5	70.0	31.9	5.2	1.3	11.3	49.7	119.7
24	55.1	10.6	2.3	18.0	86.0	41.5	10.8	1.7	12.5	66.6	152.6
25	71.8	14.0	3.0	23.3	112.2	26.1	5.1	1.1	8.7	41.0	153.2
26	115.5	25.5	4.8	36.0	181.8	41.6	10.3	1.7	12.7	66.4	248.2
27	70.8	15.0	2.9	22.3	111.0	43.4	7.6	1.8	14.7	67.5	178.5
28	80.7	18.7	3.3	24.7	127.4	15.1	2.8	0.6	5.0	23.5	150.9
29	45.1	9.1	1.9	14.5	70.5	19.3	3.6	0.8	6.4	30.1	100.6
30	79.9	18.2	3.3	24.6	126.0	33.5	7.4	1.4	10.8	53.1	179.1
31	46.2	10.8	1.9	14.1	73.0	59.8	12.5	2.5	19.3	94.1	167.1
32	90.7	20.2	3.7	28.1	142.7	39.4	9.7	1.6	12.0	62.7	205.4
33	134.4	31.8	5.5	40.9	212.7	5.9	0.9	0.2	2.2	9.2	221.9
34	61.7	14.0	2.5	19.1	97.3	50.8	10.5	2.1	16.4	79.9	177.2

 Table 2-12
 Biomass of pine trees and succession trees in a series of pine plantations

Copyright[©] by Chiang Mai University All rights reserved

Figure 2-5 Total forest biomass in a series of pine plantations

2.4.3.2 Adjacent Fragmented Forests

The biomass amounts of these trees were calculated using the allometric equations of Tsutsumi *et al.* (1983). Biomass of tree species in fifteen adjacent fragmented forests were different, 117.3 to 253.3 Mg.ha⁻¹, the average total was 201.1 Mg.ha⁻¹. It was the highest in FF1 and the lowest in FF10. The average amounts allocated in stem, branch, leaf and root components were 130.0 Mg.ha⁻¹ (64.65%), 40.5 Mg.ha⁻¹ (20.14%), 3.3 Mg.ha⁻¹ (1.64%) and 27.3 Mg.ha⁻¹ (13.57%), respectively (Table 2-13 and Figure 2-6). The majority of biomass was stored in tree species of Fagaceae (34.23%), Pinaceae (32.90%) and Theaceae families (11.48%).

Among 103 species in fifteen adjacent fragmented forests, *P. kesiya* had the highest amount of biomass was 66.16 Mg.ha⁻¹ (32.90%), followed by *C. acuminatissima* (12.76%), *S. wallichii* (7.17%), *C. diversifolia* (5.93%), *Q. brandisiana* (4.62%), *T. rufescens* (3.25%), *C.purpurea* (3.12%), *L.elegans* (2.76%), *E.spicata* (2.75%), *T.gymnanthera* (2.38%) etc. (Table 2-14).

Copyright[©] by Chiang Mai University All rights reserved

				1	
Site			ree biomass (Mg	g.ha ⁻¹)	
Site	Stem	Branch	Leaf	Root	Total
FF1	164.2	51.7	3.9	33.5	253.3
FF2	109.2	32.5	3.4	25.0	170.0
FF3	154.1	46.9	4.3	33.7	239.0
FF4	148.5	47.4	3.3	29.5	228.7
FF5	132.3	40.9	3.5	28.2	204.8
FF6	128.6	41.3	2.8	25.3	198.0
FF7	106.0	32.9	2.8	22.4	164.1
FF8	115.5	36.4	2.8	23.7	178.4
FF9	124.6	39.6	3.0	25.3	192.4
FF10	75.6	23.3	2.1	16.3	117.3
FF11	132.6	39.7	3.9	30.0	206.3
FF12	156.4	48.3	4.1	33.3	242.1
FF13	153.7	49.3	3.5	30.5	236.9
FF14	127.4	39.0	3.4	27.5	197.4
FF15	121.4	37.7	3.0	25.4	187.5
Average	130.0	40.5	3.3	27.3	201.1
Percentage	64.65	20.14	1.64	13.57	100.00

Table 2-13 Tree biomass in adjacent fragmented forests

Figure 2-6 Total forest biomass in fifteen adjacent fragmented forests

2.4.3.3 Climax Montane Forest

The biomass of living tree was estimated by using allometric equation proposed by Sungpalee *et.al.* (2009). The root biomass was base on allometric equations of Tsutsumi *et al.* (1983) Table 2-15 shows the summarized data of total biomass. Total biomass of Doi Inthanon forest was calculated as 376.33 Mg.ha⁻¹ separated to stem, branch, leaf and root as 261.21 Mg.ha⁻¹ (69.41%), 49.76 Mg.ha⁻¹ (13.22%), 5.18 Mg.ha⁻¹ (1.38%) and 60.19 Mg.ha⁻¹ (15.99%), respectively. At the family level, nearly 21% of the total biomass were belonged to Fagaceae (77.68 Mg.ha⁻¹) followed by Lauraceae (14.89%), Cornaceae (12.44%), Guttiferae (8.07%), Magnoliaceae (7.74%), Nyssaceae (5.64%), Rubiaceae (8%).

They were 122 species in Doi Inthanon forest. The top five species of total aboveground biomass were *Q. eumorpha* (50.47 Mg.ha⁻¹), *M. euonymoides* (46.98 Mg.ha⁻¹), *C. polyanthum* (30.48 Mg.ha⁻¹), *M. garretii* (29.24 Mg.ha⁻¹), *N. javanica* (21.29 Mg.ha⁻¹), *Persea* sp. (12.59 Mg.ha⁻¹), *L. metcalfiana* (9.97 Mg.ha⁻¹), *C. densiflora* (8.69 Mg.ha⁻¹), *T. disperma* (7.86 Mg.ha⁻¹) and *Q. brevicalyx* (7.82 Mg. ha⁻¹), respectively.

The total biomass of Doi Inthanon forest (376.33 Mg.ha⁻¹) was considerable nearly the same to those of some lowland rain forests, such as Yasuni in Ecuador (282.4 Mg.ha⁻¹) and Palanan in Philippiness (290.1 Mg.ha⁻¹) and smaller than lowland rain forest in Lambir in Sarawak Malasia (497.2 Mg.ha⁻¹). The Doi Inthanon forest had the larger total biomass than a tropical dry evergreen forest, Huai Kha Khang in Thailand (211.2 Mg.ha⁻¹) (Chave *et al.*, 2008).

Table 2-14 Biomass of tree species in the adjacent fragmented forests

N	San 1			Biomass	(Mg.ha ⁻¹)			
INO	Species	Stem	Branch	Leaf	Root	Total	%	
1	Pinus kesiya	43.1441	14.2060	0.8112	8.0011	66.1624	32.9031	
2	Castanopsis acuminatissima	16.6169	5.1611	0.4057	3.4651	25.6488	12.7554	
3	Schima wallichii	9.3059	2.8451	0.2476	2.0107	14.4092	7.1658	
4	Castanopsis diversifolia	7.7512	2.4929	0.1660	1.5166	11.9268	5.9313	
5	Quercus brandisiana	6.0231	1.8660	0.1492	1.2626	9.3008	4.6254	
6	Tristania rufescens	4.1532	1.1775	0.1562	1.0451	6.5320	3.2484	
7	Castanopsis purpurea	4.0658	1.2553	0.1024	0.8589	6.2824	3.1243	
8	Lithocarpus elegans	3.5680	1.0686	0.1043	0.8040	5.5449	2.7575	
9	Engelhardtia spicata	3.5670	1.0838	0.0964	0.7776	5.5248	2.7475	
10	Ternstroemia gymnanthera	3.0688	0.8965	0.0987	0.7240	4,7880	2.3811	
11	Helicia terminalis	2.6324	0.7854	0.0793	0.5996	4.0968	2.0374	
12	Anneslea fragrans	2.0797	0.6030	0.0683	0.4962	3.2472	1.6148	
13	Dalbergia cultrata	1.9973	0.5970	0.0587	0.4509	3,1038	1.5436	
14	Wendlandia tinctoria	1.9267	0.5072	0.0954	0.5554	3.0847	1,5340	
15	<i>Ouercus vestita</i>	1.6615	0.4842	0.0551	0.3957	2.5965	1.2912	
16	Quercus semiserrata	1.5808	0.4978	0.0367	0.3213	2.4365	1.2117	
17	Castanopsis armata	1.1264	0 3927	0.0161	0.1854	1.7205	0.8556	
18	Vaccinium sprengelii	1 1091	0.2865	0.0611	0.3339	1.7906	0.8905	
19	Elaeocarpus stipularis	1.0406	0.3455	0.0187	0.1893	1.5941	0.7928	
20	Lithocarpus fenestratus	1.0113	0 2940	0.0326	0.2398	1 5777	0.7846	
21	Glochidion acuminatum	0.9230	0.2779	0.0269	0.2063	1.4340	0.7131	
22	Lithocarpus polystachyus	0.7257	0.2101	0.0205	0.1739	1 1 3 3 8	0.5639	
23	Phoebe paniculata	0.6865	0.1963	0.0241	0.1687	1.0757	0.5349	
24	Styrax henzoides	0.6190	0.1903	0.0242	0.1496	0.9703	0.4826	
25	Phoebe cathia	0.5986	0.1801	0.0210	0.1490	0.9703	0.4820	
26	Callicarpa arborea	0.5925	0.1688	0.0206	0.1457	0.9200	0.4513	
7	Craibiodendron stellatum	0.5595	0.1487	0.0200	0.1590	0.9270	0.4013	
28	Syzyajum aratum	0.5539	0.1487	0.0272	0.1390	0.8944	0.4448	
20	Helicia nilagirica	0.3338	0.1022	0.0172	0.1292	0.8024	0.4289	
2) 30	Buchanania lanzan	0.4729	0.1377	0.0133	0.1120	0.7378	0.3009	
31	Engelhardtig serrata	0.4080	0.1303	0.0100	0.0914	0.7190	0.3379	
32	Clochidion sphaerownum	0.4489	0.1387	0.0111	0.0942	0.6929	0.3440	
22	Furva nitida	0.3534	0.0970	0.0155	0.0949	0.3607	0.2786	
3.0	Diospyros alandulosa	0.3329	0.0903	0.0133	0.0933	0.3601	0.2780	
27 35	Phyllanthus amblica	0.3301	0.0990	0.0127	0.08/1	0.5494	0.2752	
36	Friolagna candolloi	0.3042	0.0795	0.0105	0.0904	0.4906	0.2440	
30 37	Lithogarnus sostenensis	0.2810	0.0815	0.0093	0.0674	0.4398	0.218/	
38	Dillopia auroa	0.2585	0.0684	0.0124	0.0734	0.4125	0.2051	
30	Syzyajum albiflorum	0.2491	0.069/	0.0096	0.0638	0.3922	0.1950	
39 40	Aporosa villosa	0.2307	0.06//	0.0072	0.0538	0.3394	0.1719	
40 41	Albizia odoraticsima	0.2149	0.0562	0.0113	0.0631	0.3433	0.1/18	
41 42	Albizia chinansis	0.2136	0.0613	0.00/2	0.0518	0.3339	0.1660	
+2 12	Autzia chinensis	0.2111	0.0613	0.0068	0.0500	0.3292	0.1637	
45	Pombar anoma	0.2088	0.0611	0.0066	0.0489	0.3254	0.1618	
44	Bananoa norteriaria	0.206/	0.0611	0.0061	0.0472	0.3211	0.1597	
43 16	Lindora motoa ¹⁶ au a	0.1860	0.0510	0.0076	0.0493	0.2939	0.1461	
40	Linuera melcaljana	0.1700	0.0482	0.0063	0.0426	0.26/0	0.1328	
47	Lusea semecarpijolia	0.1533	0.0444	0.0049	0.0365	0.2390	0.1189	
48	Symplocos racemosa	0.1348	0.0367	0.0057	0.0363	0.2135	0.1062	
49 50	Embella subcorlacea	0.1325	0.0400	0.0037	0.0292	0.2053	0.1021	
50 51	Lanocarpus unaleyanus	0.1184	0.0358	0.0031	0.0258	0.1831	0.0910	
51	Stereospermum neuranthum	0.1130	0.0292	0.0061	0.0338	0.1822	0.0906	
52 52	Giuta usitata	0.1089	0.0328	0.0029	0.0239	0.1685	0.0838	
53	Archidendron clypearia	0.1071	0.0305	0.0039	0.0266	0.1681	0.0836	

Table 2-14 (Continued)

No	Species			Biomass	(Mg.ha ⁻¹)		
110	species	Stem	Branch	Leaf	Root	Total	%
54	Litsea glutinosa	0.1065	0.0315	0.0032	0.0244	0.1656	0.0823
55	Betula alnoides	0.0885	0.0252	0.0030	0.0216	0.1384	0.0688
56	Olea salicifolia	0.0708	0.0200	0.0026	0.0178	0.1112	0.0553
57	Erythrina subumbrans	0.0697	0.0197	0.0025	0.0175	0.1094	0.0544
58	Ampelocissus martinii	0.0688	0.0185	0.0030	0.0188	0.1091	0.0543
59	Sarcosperma arboreum	0.0626	0.0181	0.0021	0.0150	0.0978	0.0486
60	Vitex pinnata	0.0595	0.0172	0.0019	0.0141	0.0927	0.0461
61	Magnolia henryi	0.0546	0.0150	0.0022	0.0143	0.0861	0.0428
62	Ilex umbellulata	0.0485	0.0126	0.0025	0.0143	0.0779	0.0387
63	Gardenia sootepensis	0.0465	0.0124	0.0021	0.0129	0.0739	0.0368
64	Kydia calycina	0.0455	0.0129	0.0016	0.0111	0.0711	0.0353
65	Turpinia cochinchinenssis	0.0445	0.0114	0.0026	0.0137	0.0720	0.0358
66	Viburnum sambucinum	0.0427	0.0100	0.0036	0.0156	0.0719	0.0358
67	Pyrenaria diospyricarpa	0.0427	0.0102	0.0032	0.0149	0.0709	0.0353
68	Quercus kingiana	0.0356	0.0091	0.0020	0.0108	0.0575	0.0286
69	Colona flagrocarpa	0.0312	0.0083	0.0014	0.0087	0.0497	0.0247
70	Milletia pachycarpa	0.0291	0.0077	0.0014	0.0082	0.0463	0.0230
71	Dalbergia velutina	0.0244	0.0066	0.0010	0.0065	0.0385	0.0192
72	Trichilla connaroides	0.0233	0.0060	0.0013	0.0070	0.0375	0.0186
73	Dolichandrone serrulata	0.0225	0.0058	0.0013	0.0069	0.0367	0.0182
74	Radermachera ignea	0.0225	0.0050	0.0013	0.0000	0.0356	0.0177
75	Gordonia dalglieshiana	0.0225	0.0001	0.0003	0.0000	0.0300	0.0177
76	Combretum punctatum	0.0166	0.0044	0.0012	0.0006	0.0302	0.0131
77	Svzvgium cumini	0.0158	0.0044	0.0007	0.0040	0.0203	0.0131
78	Garuga pinnata	0.0158	0.0040	0.0009	0.0048	0.0255	0.0127
79	Shorea roxburghii	0.0157	0.0039	0.0010	0.0030	0.0257	0.0128
80	Cinnamomum iners	0.0151	0.0042	0.0007	0.0044	0.0230	0.0123
81	Vernonia volkameriifolia	0.0131	0.0040	0.0007	0.0042	0.0240	0.0119
82	Reilschmiedia gammieana	0.0140	0.0030	0.0009	0.0047	0.0238	0.0119
82	Saurania rozburokii	0.0130	0.0033	0.0010	0.0040	0.0224	0.0111
03 Q1	Clochidion hirsutum	0.0134	0.0032	0.0010	0.0047	0.0223	0.0111
04 85	Artocarpus aprezianus	0.0132	0.0031	0.0010	0.0047	0.0220	0.0109
0J 02	Artocarpus gomezianus	0.0108	0.0028	0.0005	0.0032	0.0172	0.0086
00 07	Someogramus allege are	0.0088	0.0021	0.0007	0.0031	0.0147	0.0073
0/	Semecurpus aidescens	0.0080	0.0017	0.0011	0.0036	0.0143	0.0071
66 90	Eniada rneedii	0.0063	0.0016	0.0004	0.0020	0.0103	0.0051
09 00	Schejjiera bengalensis	0.0063	0.0016	0.0004	0.0020	0.0102	0.0050
90	Catunaregam tomentosa	0.0042	0.0009	0.0005	0.0018	0.0074	0.0037
91	Annaesma gnaesembilla	0.0040	0.0009	0.0004	0.0015	0.0068	0.0034
92	Mussaenaa sanderiana	0.0035	0.0008	0.0004	0.0014	0.0061	0.0030
93	Knus javanica	0.0026	0.0005	0.0003	0.0012	0.0046	0.0023
94	Ficus sp.	0.0023	0.0005	0.0002	0.0008	0.0039	0.0019
95	Canarium subulatum	0.0016	0.0004	0.0001	0.0006	0.0027	0.0013
96	Horsfieldia tomentosa	0.0016	0.0004	0.0001	0.0006	0.0026	0.0013
97	Protium serratum	0.0010	0.0002	0.0001	0.0004	0.0017	0.0008
98	Pavetta tomentosa	0.0009	0.0002	0.0001	0.0004	0.0015	0.0008
99	Celastrus paniculata	0.0008	0.0002	0.0001	0.0003	0.0014	0.0007
100	Melastoma malabathricum	0.0007	0.0002	0.0001	0.0003	0.0013	0.0006
101	Gmelina philippensis	0.0005	0.0001	0.0001	0.0003	0.0009	0.0005
102	Cinnamomum porrectum	0.0004	0.0001	0.0001	0.0002	0.0008	0.0004
103	Eurya acuminata	0.0003	0.0001	0.0000	0.0001	0.0005	0.0003
	Total	129.99	40.46	3.31	27.32	201.08	100.00

No	Species			Biomass (Mg.ha ⁻¹)		
110.	opecies	Stem	Branch	Leaf	Root	Total	%
1	Quercus eumorpha	36.2987	7.0563	0.5459	6.5655	50.4664	13.4101
2	Mastixia euonymoides	32.8762	6.5933	0.4049	7.1077	46.9822	12.4843
3	Calophyllum polyanthum	21.7078	4.2603	0.3212	4.1936	30.4829	8.1000
4	Manglietia garretii	19.8107	3.8402	0.3103	5.2834	29.2446	7.7710
5	Nyssa javanica	15.0200	2.9572	0.2087	3.1134	21.2993	5.6597
6	Persea sp.	8.9701	1.7106	0.1651	1.7504	12.5962	3.3471
7	Lindera metcalfiana	6.7144	1.2330	0.1633	1.8657	9.9765	2.6510
8	Cryptocarya densiflora	5.8889	1.0654	0.1615	1.5761	8.6918	2.3096
9	Tarenna disperma	5.4655	0.9983	0.1333	1.2584	7.8555	2.0874
10	Quercus brevicalyx	5.6594	1.0946	0.0919	0.9704	7.8163	2.0770
- 11	Chionanthus ramiflorus	4.9538	0.9478	0.0880	0.9740	6.9635	1.8504
12	Syzygium tetragonu	4.1900	0.7908	0.0902	0.8617	5.9328	1.5765
13	Drypetes sp.	3.9851	0.7676	0.0654	0.8278	5.6459	1.5002
14	Mallotus khasianus	3.6545	0.6246	0.1636	1.0801	5.5227	1.4675
15	Daphniphyllum	3.5502	0.6471	0.0900	1.0728	5.3602	1.4243
16	Lauraceae sp.	3.7542	0.7506	0.0464	0.7385	5.2897	1.4056
17	Syzygium angkae	3.4441	0.6079	0.1122	0.8614	5.0256	1.3354
18	Heynea trijuga	3.3426	0.6053	0.1016	0.8466	4.8961	1.3010
19	Symplocos macrophylla	3.0991	0.5381	0.1156	1.0663	4.8191	1.2806
20	Elaeocarpus lanceifolius	3.1016	0.5801	0.0652	0.8467	4.5935	1.2206
21	Aidia yunnanensis	3.1140	0.5569	0.0908	0.7362	4.4979	1.1952
22	Polyosma integrifolia	2.8527	0.5137	0.0829	0.8520	4.3013	1.1430
23	Acer laurinum	2.9370	0.5469	0.0629	0.7242	4.2711	1.1349
24	Cinnamomum bejolghota	2.7750	0.5100	0.0681	0.7528	4.1059	1.0910
25	Lithocarpus vestitus	2.8626	0.5314	0.0682	0.5945	4.0567	1.0780
26	Podocarpus neriifolius	2.7561	0.5330	0.0429	0.6947	4.0267	1.0700
27	Castanopsis calathiformis	2.4112	0.4189	0.0966	0.9211	3.8478	1.0225
28	Lithocarpus echinops	2.6792	0.5022	0.0554	0.5696	3.8065	1.0115
29	Cryptocarya cf. calcicola	2.6248	0.4999	0.0538	0.5193	3.6977	0.9826
30	Castanopsis purpurea	2.5817	0.4912	0.0532	0.5704	3.6965	0.9822
31	Litsea subcoriacea	2.1104	0.3959	0.0454	0.4984	3.0500	0.8105
32	Toona ciliata	2.0715	0.3942	0.0383	0.5301	3.0342	0.8063
33	Sarcosperma arboreum	2.0156	0.3771	0.0405	0.5979	3.0311	0.8054
34	Phoebe macrocarpa	2.1132	0.4035	0.0358	0.4637	3.0162	0.8015
35	Cordia cf. cochinchinensis	2.0061	0.3932	0.0285	0.4693	2.8972	0.7698
36	Castanopsis acuminatissima	1.7835	0.3392	0.0322	0.3790	2.5338	0.6733
37	Betula alnoides	1.6874	0.3298	0.0237	0.3210	2.3619	0.6276
38	Rapanea yunnaensis	1.4821	0.2639	0.0471	0.3450	2.1380	0.5681
39	Carallia brachiata	1.4212	0.2696	0.0258	0.2830	1.9995	0.5313
40	Camellia oleifera	1.1884	0.2064	0.0472	0.3233	1.7653	0.4691
41	Ostodes paniculata	1.0652	0.1856	0.0399	0.4439	1.7346	0.4609
42	Eurya nitida	1.0827	0.1796	0.0583	0.3623	1.6829	0.4472
43	Capparis cf. assamica	1.1720	0.2214	0.0233	0.2512	1.6679	0.4432
44	Diospyros glandulosa	1.1309	0.2179	0.0177	0.2502	1.6167	0.4296
45	Litsea yunnanensis	0.9477	0.1680	0.0310	0.3393	1.4860	0.3949
46	Lithocarpus aggregatus	1.0051	0.1835	0.0255	0.2373	1.4514	0.3857
47	Unknown	0.9804	0.1813	0.0242	0.2525	1.4384	0.3822
48	Drypetes indica	0.9014	0.1577	0.0317	0.2508	1.3415	0.3565
49	Symplocos henschelii	0.9127	0.1729	0.0170	0.2377	1.3403	0.3562
50	Artocarpus cf. lacucha	0.8294	0.1532	0.0199	0.2603	1.2629	0.3356
51	Neolitsea zeylanica	0.8124	0.1512	0.0193	0.1852	1.1681	0.3104
52	Engelhardia spicata	0.7688	0.1456	0.0140	0.2344	1.1628	0.3090
53	Platea latifolia	0.7422	0.1337	0.0216	0.2573	1.1547	0.3068
54	Elaeocarpus petiolaris	0.7968	0.1475	0.0179	0.1911	1.1532	0.3064
55	Litsea pedunculata	0.6673	0.1181	0.0224	0.2174	1.0252	0.2724
56	Ficus hirta	0.6567	0.1206	0.0157	0.2228	1.0158	0.2699
57	Pyrenaria garrettiana	0.6118	0.1119	0.0153	0.1763	0.9152	0.2432
58	Horsfieldia sp.	0.5452	0.0978	0.0160	0.1693	0.8283	0.2201
59	Actinodaphne sp.	0.4030	0.0712	0.0137	0.1026	0.5905	0.1569
60	Ilex longecaudata	0.3551	0.0606	0.0154	0.1369	0.5680	0.1509
61	Macaranga denticulata	0.3123	0.0536	0.0126	0.1610	0.5394	0.1433
62	Cinnamomum cf. soegengii	0.3334	0.0584	0.0120	0.1227	0.5265	0.1399

 Table 2-15
 Biomass of tree species in the climax montane forest

sity

Table 2-15 (Continued)

NT.	5	Biomass (Mg.ha ⁻¹)												
No.	Species	Stem	Branch	Leaf	Root	Total	%							
63	Elaeocarpus braceanus	0.3275	0.0599	0.0079	0.0948	0.4901	0.1302							
64	Euodia triphylla	0.3127	0.0475	0.0336	0.0766	0.4704	0.1250							
65	Prunus wallichii	0.2985	0.0510	0.0123	0.0871	0.4490	0.1193							
66	Litsea cubeba	0.2734	0.0467	0.0113	0.0921	0.4235	0.1125							
67	Euonymus colonoides	0.2686	0.0452	0.0121	0.0956	0.4216	0.1120							
68	Pterospermum grandiflorum	0.2563	0.0468	0.0061	0.0680	0.3772	0.1002							
69	Prunus phaeosticta	0.2505	0.0434	0.0100	0.0633	0.3671	0.0975							
70	Sterculia sp.	0.2144	0.0387	0.0057	0.0594	0.3182	0.0846							
71	Gomphandra tetrandra	0.1996	0.0341	0.0085	0.0663	0.3086	0.0820							
72	Nothapodytes cf. obscura	0.1935	0.0333	0.0078	0.0624	0.2970	0.0789							
73	Psychotria symplocifolia	0.1504	0.0226	0.0165	0.0497	0.2392	0.0636							
74	Ardisia rubro-glandulosa	0.1521	0.0260	0.0062	0.0507	0.2350	0.0625							
75	Litsea beusekomii	0.1352	0.0208	0.0122	0.0578	0.2260	0.0601							
76	Schoepfia fragrans	0.1210	0.0208	0.0047	0.0430	0.1896	0.0504							
77	Litsea lancifolia	0.0986	0.0156	0.0072	0.0504	0.1718	0.0456							
78	Beilschmiedia glauca	0.0956	0.0160	0.0048	0.0362	0.1526	0.0406							
79	Camellia taliensis	0.0933	0.0155	0.0051	0.0339	0.1479	0.0393							
80	Turpinia nepalensis	0.0925	0.0158	0.0036	0.0307	0.1427	0.0379							
81	Euonymus sp.1	0.0863	0.0145	0.0038	0.0300	0.1346	0.0358							
82	Dysoxylum sp.1	0.0602	0.0099	0.0035	0.0232	0.0969	0.0257							
83	Lasianthus hookerii	0.0518	0.0076	0.0065	0.0188	0.0847	0.0225							
84	Olea cf. salicifolia	0.0535	0.0093	0.0019	0.0171	0.0818	0.0217							
85	Ixora cf. kerrii	0.0479	0.0072	0.0055	0.0185	0.0791	0.0210							
86	Ardisia attenuata	0.0459	0.0072	0.0055	0.0103	0.0756	0.0201							
87	Ficus sp 1	0.0442	0.0075	0.0018	0.0170	0.0685	0.0182							
88	Lasianthus indorus	0.0366	0.0054	0.0048	0.0130	0.0599	0.0159							
89	Psychotria densa	0.0344	0.0034	0.0040	0.0131	0.0559	0.0132							
90	Symplocos hookeri	0.0271	0.0042	0.0023	0.0112	0.0359	0.0142							
91	Capparis sabiaefolia	0.0229	0.0035	0.0023	0.0121	0.0390	0.010							
92	Litsea of membranifolia	0.0212	0.0035	0.0022	0.0103	0.0339	0.010							
03	Archidendron chypearia	0.0212	0.0030	0.0012	0.0001	0.0304	0.0090							
9/	Ardisia corymbifera	0.0186	0.0030	0.0011	0.0075	0.0304	0.0080							
05	Ardisia virans	0.0100	0.0020	0.0030	0.0055	0.0249	0.0066							
95	Dysorylum sp 2	0.0143	0.0021	0.0020	0.0005	0.0249	0.0000							
90	Dysoxytum sp.2 Boileahmiadia pumurasaans	0.0138	0.0021	0.0013	0.0070	0.0248	0.0000							
08	Antidasma sootanansa	0.0088	0.0013	0.0007	0.0047	0.0137	0.0030							
90	Zanthornlum rhosta	0.0088	0.0013	0.0013	0.0044	0.0137	0.0042							
100	Muriag angulanta	0.0004	0.0010	0.0003	0.0023	0.0108	0.0025							
100	Myrica escuenta Melioane en	0.0033	0.0008	0.0004	0.0024	0.0089	0.0024							
101	Bruchotria calocarma	0.0040	0.0000	0.0003	0.0019	0.0009	0.0016							
102	Psycholina calocarpa	0.0034	0.0005	0.0000	0.0013	0.0000	0.0010							
103	Strobilanthas off mucronato	0.0034	0.0003	0.0003	0.0017	0.0059	0.0010							
104	Diospyros frutascens	0.0028	0.0004	0.0003	0.0013	0.0031	0.0013							
103	Annonacaga sp	0.0024	0.0004	0.0002	0.0012	0.0042	0.0011							
100	Complostering arbusculum	0.0022	0.0003	0.0003	0.0011	0.0039	0.0010							
10/	Daphya compasita	0.0019	0.0003	0.0003	0.0009	0.0034	0.0005							
108	Mantenue an	0.0015	0.0002	0.0002	0.0009	0.0029	0.0008							
109	Lasianthus silling air	0.0010	0.0002	0.0001	0.0008	0.0027	0.000							
110	Lastaninus sikkimensis	0.0010	0.0001	0.0002	0.0006	0.0020	0.000							
111	Droussonena kazinoki Dolugala arillata	0.0011	0.0002	0.0001	0.0005	0.0019	0.000							
112	roiygala ariilata Vikumum musi data	0.0009	0.0001	0.0001	0.0006	0.0018	0.0005							
113	viburnum punctatum	0.0009	0.0001	0.0001	0.0005	0.0017	0.0005							
114	Prunus sp.2	0.0009	0.0001	0.0001	0.0005	0.0017	0.0004							
115	Pittosporum chatterjeeanum	0.0008	0.0001	0.0001	0.0005	0.0015	0.0004							
116	Baliospermum micrantum	0.0006	0.0001	0.0001	0.0004	0.0012	0.0003							
117	Miliusa sp.	0.0002	0.0000	0.0000	0.0001	0.0004	0.0001							
118	Desmodium multiflorum	0.0002	0.0000	0.0000	0.0001	0.0004	0.0001							
119	Lasianthus saxorum	0.0002	0.0000	0.0000	0.0001	0.0004	0.0001							
120	Lycianthes neesiana	0.0001	0.0000	0.0000	0.0001	0.0002	0.0001							
121	Mycetia rivicola	0.0001	0.0000	0.0000	0.0001	0.0002	0.0000							
122	Strobilanthes sp.1	0.0001	0.0000	0.0000	0.0001	0.0002	0.0000							
	Total	261.21	49.75	5.17	60.18	376.33	100.00							

bity.

2.4.4 Carbon and Nutrients

2.4.4.1 Carbon and Nutrients in Pine Plantations

Total amounts of carbon and other nutrients as well as their allocation in different tree organs in 21 age-class pine plantations, at the Boakaew Watershed Management Station were shown in Table 2-16 to 2-18 and Appendix Table 2-1.

Carbon:

Carbon storages in biomass of P. kesiya did not increase with plantation age (Table 2-16). The amounts were highly fluctuated among 21 plantations, 12-106 MgC.ha⁻¹. It was the lowest in 17-year-old stand, and the highest amount was occurred in 33-year-old stand. As same as biomass many factors such as spacing of planting, tree densities, competition with succession trees and site conditions are considered as the main effects. The carbon amounts accumulated in biomass of other succession broad-leaved tree species in pine plantations were different among 21 plantations. The amounts varied from 6 to 69 MgC.ha⁻¹. It was the lowest in 20-yearold stand and the highest amount was observed in 31-year-old stand. The number of succession tree species in these pine plantations varied between 16-69 species. In 20-year-old stand, the number of succession tree species was low as 16 species. For 31-year old stand, the number of succession tree species was 38 species. However, the biomass carbon of succession trees was depended on their growths. The succession trees in 20-year-old stand were still small, and thus had the low biomass. In contrast, those succession trees in the 31-year-old stand were abundant and consisted of many big trees. (Table 2-17).

Same as biomass carbon in a series of 21 age-class pine plantations included stored carbon in pine trees and succession broad-leaved trees. The amounts did not increase with stand ages, and varied from 46 to 140 MgC.ha⁻¹. It was the lowest in 15-year-old stand, and the highest amount was observed in 26-year-old stand. The low amounts were found in plantations with altitude above 500 m msl., and those in areas between 1,314-1,453 m msl. had the high total biomass carbon. The large proportion was allocated in stem component, followed by root, branch and leaf.

Nitrogen:

The amounts of nitrogen accumulation in biomass of pine plantations varied between 370-965 kg.ha⁻¹. It was the highest in 26-year-old stand, and the lowest in 20-year-old stand. The fluctuations were similar for nutrients accumulated in the pine biomass and other succession broad-leaved trees were 55-490 kg.ha⁻¹ and 65-765 kg.ha⁻¹, respectively.

Phosphorus:

The amounts of phosphorus accumulation in biomass of pine plantations varied between 44-127 kg.ha⁻¹. It was the highest in 31-year-old stand, and the lowest in 20-year-old stand. The fluctuations were similar for nutrients accumulated in the pine biomass and other succession broad-leaved trees were 6-58 kg.ha⁻¹ and 9-107 kg.ha⁻¹, respectively.

Potassium:

The amounts of potassium in accumulation in the forest biomass varied between 263-680 kg.ha⁻¹. It was the highest in 26-year-old stand, and the lowest in 20-year-old stand. The fluctuations were similar for nutrients accumulated in the pine biomass and other succession broad-leaved trees were 40-362 kg.ha⁻¹ and 44-523 kg.ha⁻¹, respectively.

Calcium:

The amounts of stored calcium accumulation in the forest biomass varied between 480-1,329 kg.ha⁻¹. It was the highest in 26-year-old stand, and the lowest in 20-year-old stand. The fluctuations were similar for nutrients accumulated in the pine biomass and other succession broad-leaved trees were 70-627 kg.ha⁻¹ and 94-1,113 kg.ha⁻¹, respectively.

Magnesium:

The amounts of magnesium accumulation in the forest biomass varied between 75-279 kg.ha⁻¹. It was the highest in 31-year-old stand, and the lowest in 20-year-old stand. The fluctuations were similar for nutrients accumulated in the pine biomass and other succession broad-leaved trees were 10-86 kg.ha⁻¹ and 21-249 kg.ha⁻¹, respectively. The most nutrients were accumulated in the stem followed by the root, branch then leaf.

The accumulated nutrients were also varied in the same trend as carbon, nitrogen, phosphorus, potassium, calcium, and magnesium. The nutrient allocations in various organs of tree species were accumulated in the stem followed by the root, branch then leaf. Among 12-72 species of succession broad-leaved in 21 age-class pine plantation were varied. At the family level, nutrients accumulated in biomass outstandingly appeared in the families of Fagaceae, Theaceae, Myrtaceae, Leguminosae, Euphorbiaceae, Rubiaceae and Lauraceae. The major species of nutrients accumulation were observed in *C. acuminatissima, S. wallichii, C. diversifolia, Q. brandisiana, C. purpurea, L. elegans* and *E. spicata, G. sphaerogynum, W. tinctoria, S. albiflorum*, ect.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 2-7 Stored biomass nutrients in a series of pine plantations

2/22 Age (year) Nutrient 1 Carbon (Mg.ha⁻¹) C_S C_B $C_{\rm L}$ C_R 2 Nitrogen (kg.ha⁻¹) N_S N_B N_L N_R 3 Phosphorus (kg.ha⁻¹) P_S P_B P_L P_R 4 Potassium (kg.ha⁻¹) K_S K_B K_L K_R 5 Calcium (kg.ha⁻¹) Cas Сав Ca_L Ca_R 6 Magnesium (kg.ha⁻¹) Mgs Mg_B Mg_L Mg_R

Table 2-16 Stored biomass nutrients of pine trees in a series of pine plantations

Note: S = Stem, B = Branch, L = Leaf, R = Root

20

Nutrient										Â.	Age (y	ear)									
nutrent	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
1 Carbon (Mg.ha ⁻¹)	32	34	8	44	38	27	6	47	41	36	50	30	49	49	17	22	39	69	47	7	59
Cs	21	22	5	29	25	17	4	30	26	23	32	19	32	32	11	14	25	45	31	4	38
C _B	6	7	1	8	7	5	1	9	7	6	10	6	10	9	3	4	8	14	10	1	11
C _L	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0	0	1	1	1	0	1
C_R	5	5	1	6	6	4	1	7	7	5	6	4	6	7	2	3	5	9	6	1	8
2 Nitrogen (kg.ha ⁻¹)	361	380	89	494	430	302	65	520	465	399	546	332	544	544	191	244	431	765	513	74	649
Ns	223	236	54	304	262	186	40	321	277	243	345	205	343	336	118	151	269	477	324	44	405
N _B	65	71	15	90	75	54	11	96	76	70	112	62	110	99	36	45	84	147	104	13	125
N_L	21	20	6	30	29	18	4	29	37	26	22	18	23	32	10	13	21	38	21	6	32
N_R	52	52	13	71	65	44	10	73	75	60	66	46	68	78	26	34	57	102	64	11	87
3 Phosphorus (kg.ha ⁻¹)	50	53	12	68	58	41	9	72	62	54	78	46	77	75	26	34	60	107	73	10	91
Ps	34	36	8	46	40	28	6	49	42	37	52	31	52	51	18	23	41	72	49	7	61
P_B	12	13	3	17	14	10	2	18	14	13	21	12	21	19	7	9	16	28	20	2	23
P_L	2	2	0	2	2	1	0	2	3	2	2	2	2	3	1	1	2	3	2	0	3
P _R	2	2	1	3	2	2	0	3	3	2	3	2	3	3	1		2	4	2	0	3
4 Potassium (kg.ha ⁻¹)	246	260	60	337	292	206	44	354	314	271	375	226	373	371	130	166	295	523	352	50	444
Ks	155	165	38	212	183	130	28	224	194	170	241	143	240	234	83	105	188	333	226	31	283
K _B	49	54	12	68	56	41	9	73	57	53	85	47	83	75	27	34	63	111	79	10	94
K_L	15	14	4	21	20	13	3	20	25	18	15	13	16	22	7	9	15	26	15	4	22
K _R	27	27	7	36	33	22	5	37	38	30	34	24	34	40	13	17	29	52	32	6	44
5 Calcium (kg.ha ⁻¹)	525	553	129	717	624	439	94	755	671	578	795	482	792	790	277	354	627	1,113	748	107	944
Cas	319	338	77	436	375	266	57	461	398	348	495	294	492	481	170	216	386	685	465	64	581
Ca _B	99	108	23	136	113	82	17	146	115	106	170	94	167	149	54	68	127	222	157	19	188
Ca _L	20	19	6	28	27	17	4	27	35	25	21	17	21	30	10	13	20	36	20	5	30
Ca _R	87	87	22	118	108	73	16	121	125	99	110	77	112	130	44	57	95	170	106	19	145
6 Magnesium (kg.ha ⁻¹)	118	124	29	162	141	99	21	170	152	130	178	108	177	178	62	79	141	249	167	24	212
Mgs	71	76	17	97	84	60	13	103	89	78	111	66	110	108	38	48	86	153	104	14	130
Mg _B	25	27	6	34	28	20	4	36	29	26	42	23	42	37	13	17	32	56	39	5	47
MgL	12	12	3	17	16	10	2	16	21	15	12	10	13	18	6	8	12	22	12	3	18
Mg _R	10	10	3	13	12	8	2	14	14	11	13	9	13	15	5	6	11	19	12	2	16

Table 2-17 Stored biomass nutrients of succession trees in a series of pine plantations

Note: S = Stem, B = Branch, L = Leaf, R = Root

Nutrient												Age	(year)				21					
		14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
1	Carbon (Mg.ha ⁻¹)	62	46	70	56	85	85	71	114	86	71	93	86	140	104	81	57	102	105	118	113	107
	Cs	41	30	47	37	56	57	48	76	56	46	61	57	93	69	54	38	67	69	78	75	71
	C _B	9	8	9	10	12	11	8	16	12	10	15	12	21	15	11	8	15	18	18	15	17
	C_L	1	1	2	1	2	2	2	2	2	2	2	2	3	2	2	1	2	2	2	3	2
	C_R	10	7	13	9	15	16	-14	20	16	12	15	15	23	18	14	10	17	16	19	21	17
2	Nitrogen (kg.ha ⁻¹)	500	435	378	551	646	574	370	835	673	562	747	595	965	803	485	408	722	933	844	564	875
	Ns	261	251	133	319	321	260	123	408	334	288	400	277	459	407	199	196	349	524	415	179	467
	N_{B}	85	79	56	97	104	90	51	139	102	91	138	96	172	135	80	67	128	173	153	89	158
	N_L	39	28	43	37	56	53	43 🤇	69	63	47	48	52	76	65	48	35	58	59	63	68	61
	N _R	115	78	146	98	165	171	152	219	173	136	162	170	258	197	157	111	188	177	213	228	188
3	Phosphorus (kg.ha ⁻¹)	66	59	46	74	83	72	44	108	86	73	100	76	126	105	61	53	95	127	111	68	117
	Ps	41	39	24	49	51	43	23	66	53	46	63	45	75	65	34	32	57	81	67	34	74
	P_{B}	16	15	11	19	20	18	10	27	20	18	26	19	34	26	16	13	25	33	30	18	30
	P_L	4	2	5	3	6	6	5	7	6	5	5	5	8	6	5	4	6	6	7	8	6
	P _R	4	3	6	4	6	6	6	8	7	5	6	6	10	7	6	4	7	7	8	9	7
4	Potassium (kg.ha-1)	346	299	270	377	448	401	263	582	463	388	519	414	680	558	346	285	508	647	594	412	609
	Ks	190	178	109	226	236	197	103	302	245	210	290	208	344	298	155	146	260	375	308	152	339
	K _B	74	63	64	77	94	87	60	127	92	80	118	90	162	121	85	62	120	144	141	108	137
	K _L	24	18	23	24	34	30	22	40	39	29	28	30	43	39	26	20	33	37	36	35	37
	K _R	59	40	74	50	84	87	77	112	88	69	82	87	131	100	80	56	96	90	108	116	96
5	Calcium (kg.ha ⁻¹)	700	622	496	789	897	783	480	1154	934	785	1050	814	1329	1118	653	562	999	1328	1169	734	1232
	Cas	342	347	125	445	411	311	107	513	432	375	528	337	562	524	218	243	434	712	519	144	618
	Ca _B	142	124	114	152	179	161	107	241	174	154	227	169	304	230	155	117	225	280	266	191	264
	Ca _L	24	21	14	30	34	26	13	37	41	30	27	25	34	38	19	18	29	41	30	20	37
	Ca _R	192	130	242	162	273	285	252	364	287	226	269	282	429	326	261	184	311	294	353	379	313
6	Magnesium (kg.ha ⁻¹)	142	134	80	172	179	147	75	225	189	159	214	155	251	223	114	108	192	279	225	110	251
	Mgs	79	79	33	101	96	74	29	120	100	87	122	80	133	122	54	57	102	162	122	41	142
	Mg _B	28	28	13	35	33	26	11	43	33	30	47	29	52	43	21	21	39	60	47	18	53
	Mg _L	14	12	7	17	19	13	6	20	23	17	15	13	18	21	9	9	15	23	16	9	21
	Mg _R	22	15	28	18	31	32	29	41	33	26	31	32	49	37	30	21	35	33	40	43	36

Table 2-18 Total biomass nutrients of pine and succession trees in a series of pine plantations

Note: S = Stem, B = Branch, L = Leaf, R = Root

Copyright[©] by Chiang Mai University A I I rights reserved 55

2.4.4.2 Stored Carbon and Nutrients in Adjacent Fragmented Forests

Total amounts of carbon and other nutrients as well as their allocation in different tree organs in fifteen adjacent fragmented forests at the Boakaew Watershed Management Station were shown in Table 2-19 and Appendix Table 2-2.

Carbon:

Total carbon storages in biomass of tree species in fifteen adjacent fragmented forests varied between 58-125 Mg.ha⁻¹. Same as biomass, the lowest amount was found in FF10, and it was the highest in FF1. The average amount of adjacent fragmented forests was 99.34 Mg.ha⁻¹. The carbon stored in pine trees was 32.69 Mg.ha⁻¹, and the remaining 66.65 Mg.ha⁻¹ stored in broad-leaved trees species. Among 102 species of broad-leaved species, *C. acuminatissima* had the highest storage, 12.67 Mg.ha⁻¹, and followed by *S. wallichii, C. diversifolia, Q. brandisiana, T. rufencens, C. purpurea, L. elegans* and *E. spicata*. The amounts in these seven tree species were 2.73-7.12 Mg.ha⁻¹. About 1-2 Mg.ha⁻¹ was allocated in leaf component, and this will be recycling to forest floor through leaf litterfall. The stored carbon in forest biomass carbon than the deteriorated forest.

Nitrogen:

The amounts of nitrogen accumulation in biomass of tree species in the fifteen adjacent fragmented forests varied between 643-1,384 kg.ha⁻¹. The average amount of adjacent fragmented forests was 1,100.83 kg.ha⁻¹. The nitrogen accumulated in pine trees was 359.26 kg.ha⁻¹, and the remaining 741.57 kg.ha⁻¹ stored in broad-leaved trees species. Among broad-leaved species, *C. acuminatissima* had the highest storage, 140.24 kg.ha⁻¹, and followed by *S. wallichii, C. diversifolia, Q. brandisiana, T. rufencens, C. purpurea, L. elegans* and *E. spicata.* The amounts in these seven tree species were 30.3-78.99 kg.ha⁻¹. The nitrogen amounts in leaf compartment, 33-68 kg.ha⁻¹ will be recycling to forest floor.

Phosphorus:

The phosphorus amounts in biomass of tree species in the fifteen adjacent fragmented forests varied between 90-195 kg.ha⁻¹. The average amount of adjacent fragmented forests was 154.22 kg.ha⁻¹. The phosphorus storage in pine trees was the highest, 51.38 kg.ha⁻¹, and the remaining 102.84 kg.ha⁻¹ were accumulated in broad-leaved species. Among the broad-leaved species, *C. acuminatissima* had the highest amount of 19.68 kg.ha⁻¹. The lower amounts of biomass phosphorus (4.22-19.68 kg.ha⁻¹) were observed for *S. wallichii*, *C. diversifolia*, *Q. brandisiana*, *T. rufencens*, *C. purpurea*, *L. elegans* and *E. spicata*. The recycling amounts of phosphorus through leaf litterfall were 3-6 kg.ha⁻¹.

Potassium:

The biomass potassium of tree species in the fifteen adjacent fragmented forests varied between 440-948 kg.ha⁻¹. The average amount of adjacent fragmented

forests was 752.99 kg.ha⁻¹. The potassium stored in pine trees was the highest, 246.98 kg.ha⁻¹. The remaining amount of 506.01 kg.ha⁻¹ was accumulated in broad-leaved species. Among these broad-leaved species, *C. acuminatissima* could store the highest amount, 95.95 kg.ha⁻¹. The trees having the lower amounts (20.69-53.96 kg.ha⁻¹) were *S. wallichii*, *C. diversifolia*, *Q. brandisiana*, *T. rufencens*, *C. purpurea*, *L. elegans* and *E. spicata*. The potassium amounts in leaf compartment (30-47 kg.ha⁻¹) will be recycling to forest floor

Calcium:

The biomass calcium amounts of tree species in the fifteen adjacent fragmented forests varied between 935-2,015 kg.ha⁻¹. The average amount of adjacent fragmented forests was 1,601.69 kg.ha⁻¹. The calcium accumulated in pine trees was the highest, 524.12 kg.ha⁻¹. The remaining amount of 1,077.57 kg.ha⁻¹ was accumulated in broad-leaved species, and *C. acuminatissima* could accumulate the highest amount, 402.16 kg.ha⁻¹. The trees having the lower amounts (44.07-114.89 kg.ha⁻¹) were *S. wallichii*, *C. diversifolia*, *Q. brandisiana*, *T. rufencens*, *C. purpurea*, *L. elegans* and *E. spicata*. The calcium amounts of 31-64 kg.ha⁻¹ in leaf compartment will be recycling to the forest floor

Magnesium:

The magnesium amounts in biomass of tree species in the fifteen adjacent fragmented forests varied between 210-451 kg.ha⁻¹. The average amount of adjacent fragmented forests was 359.02 kg.ha⁻¹. The magnesium storage in pine trees was the highest, 117.06 kg.ha⁻¹. The remaining 241.96 kg.ha⁻¹ was stored in broad-leaved species, and *C. acuminatissima* had the highest amount, 45.69 kg.ha⁻¹. The trees having the lower amounts (9.88-25.75 kg.ha⁻¹) were *S. wallichii*, *C. diversifolia*, *Q. brandisiana*, *T. rufencens*, *C. purpurea*, *L. elegans* and *E. spicata*. The magnesium amounts of 18-38 kg.ha⁻¹ in leaf component will be recycling to the soil.

Some amounts of carbon and other nutrients in stem and branch compartments of tree species might be recycling to the forest floor and soil as aboveground litterfall. Some amounts of dead root of tree species were contributed to their recycling into soil as below-ground litterfall.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 2-8 Stored biomass nutrients in fifteen adjacent fragmented forest and the climax montane forest

Copyright[©] by Chiang Mai University All rights reserved

58

งามยนติ

Table 2-19 Variations of stored carbon and nutrients in biomass of tree species in fifteen adjacent fragmented forests and the climax montane forest

	Nutriant				97			Ad	jacent fra	gmented	forests					7		Climax montane
	Nutrient	FF1	FF2	FF3	FF4	FF5	FF6	FF7	FF8	FF9	FF10	FF11	FF12	FF13	FF14	FF15	Average	forest
1	Carbon (Mg.ha ⁻¹)	125	84	118	113	101	98	81	88	95	58	102	120	117	98	93	99.34	186.80
	Cs	82	54	77	74	66	64	53	58	62	38	66	78	77	64	61	64.87	130.83
	C _B	25	16	23	23	20	20	16	18	19	11	19	24	24	19	18	19.70	24.32
	C_L	2	2	2	2	2	1	1	1	111	1	2	2	2	2	1	1.60	2.51
	C_R	16	12	16	14	14	12	11	11	12	8	14	16	15	13	12	13.17	29.13
2	Nitrogen (kg.ha ⁻¹)	1,384	937	1,312	1,247	1,122	1,079	899	975	1,051	643	1,135	1,326	1,293	1,083	1,026	1,100.83	2,057.32
	Ns	870	579	817	787	701	681	562	612 <	660	401	703	829	815	675	643	688.97	1,389.59
	N_B	274	172	248	251	217	219	174	193	210	124	210	256	261	207	200	214.44	264.68
	N_L	62	53	68	53	55	45	44	45	47	33	63	65	55	55	48	52.63	82.72
	N _R	178	133	179	157	149	134	119	126	134	86	159	177	162	146	135	144.79	320.33
3	Phosphorus (kg.ha ⁻¹)	195	129	182	176	157	153	126	137	148	90	157	185	183	151	144	154.22	278.54
	Ps	131	87	123	119	106	103	85	92	100	61	106	125	123	102	97	103.99	209.75
	P_{B}	52	33	47	47	41	41	33	36	40	23	40	48	49	39	38	40.46	49.94
	P_L	5	4	6	4	4	4	4	4	4	3	5	5	5	4	4	4.30	6.76
	P_R	7	5	7	6	6	5	4	5	5	3	6	7	6	6	5	5.46	12.09
4	Potassium (kg.ha-1)	948	638	896	855	767	740	615	668	720	440	774	907	886	740	702	752.99	1,390.26
	Ks	608	404	570	549	489	476	392	427	461	280	491	579	569	471	449	480.98	970.09
	K _B	207	130	188	190	164	165	132	145	158	93	159	193	197	156	151	161.84	199.76
	K _L	43	37	47	37	38	31	30	31	33	23	43	45	38	38	33	36.41	57.23
	K _R	91	68	91	80	76	68	61	64	68	44	81	90	82	74	69	73.76	163.18
5	Calcium (kg.ha-1)	2,015	1,360	1,907	1,817	1,632	1,573	1,308	1,419	1,531	935	1,649	1,930	1,883	1,574	1,493	1,601.69	3,002.04
	Cas	1,248	830	1,171	1,128	1,005	977	806	878	947	575	1,008	1,189	1,168	968	922	987.95	1,992.62
	Ca _B	414	260	375	379	327	331	263	291	317	187	318	387	394	312	301	323.68	399.52
	Ca _L	58	50	64	50	52	42	41	42	45	31	59	61	52	52	45	49.65	78.04
	Ca _R	295	220	297	260	248	223	197	209	223	143	264	293	269	242	224	240.41	531.86
6	Magnesium (kg.ha ⁻¹)	451	306	428	407	366	352	293	318	343	210	370	433	422	353	334	359.02	652.86
	Mg_S	279	186	262	252	225	219	180	196	212	129	225	266	261	217	206	220.99	445.72
	Mg_B	103	65	94	95	82	83	66	73	79	47	79	97	99	78	75	80.92	99.88
	Mg_L	35	30	38	30	- 31	25	25	25	27	18	36	37	31	31	27	29.79	46.82
	Mg_R	34	25	34	30	28	25	22	24	25	16	30	33	31	28	25	27.32	60.44

Note: S = Stem, B = Branch, L = Leaf, R = Root

Copyright[©] by Chiang Mai University All rights reserved 59

2.4.4.3 Stored Carbon and Nutrients in Climax Montane Forest

Total amounts of carbon and other nutrients in the forest at Doi Inthanon natural park were shown in Table 2-19 and Appendix Table 2-3.

Carbon:

Carbon stock in biomass of tree species in the forest was 186.80 Mg.ha⁻¹. apportion to stem, branch, leaf and root as 130.83, 24.32, 2.51 and 29.13 Mg.ha⁻¹, respectively.At the family level, carbon stock in biomass outstandingly appeared in the family of Fagaceae followed by Lauraceae, Cornaceae, Guttiferae, Magnoliaceae, Nyssaceae, and Rubiaceae 38.43, 27.81, 23.24, 15.08, 14.45, 10.54 and 7.80 Mg.ha⁻¹, respectively. They were of 122 species in Doi Inthanon forest The top five species in carbon stock in biomass were *Q. eumorpha* (24.98 Mg.ha⁻¹), *M. euonymoides* (23.24 Mg.ha⁻¹), *C. polyanthum* (15.08 Mg.ha⁻¹), *M. garretii* (14.45 Mg.ha⁻¹), *N. javanica* (10.54 Mg.ha⁻¹), respectively.

The different forest types have variable potentials of carbon storages in biomass. (Ogawa *et al.*, 1965; Negi *et.al.*, 2003). Aboveground biomass carbon stocks at Kaeng Krachan National Park, Pectchaburi province in evergreen, mixed deciduous and dry evergreen forests were in the order of 129, 93.2 and 37.1 Mg.ha⁻¹. The carbon storages in aboveground biomass of lower montane forest (125.2 Mg.ha⁻¹) (Nongnuang *et al.*, 2010), and the same forest at Mt. Doi Inthanon, Chiang Mai (246.0 Mg.ha⁻¹) (Khamyong *et al.*, 2008).

Nitrogen:

The amounts of nitrogen accumulation in biomass of tree species in the forest was 2,057.32 kg.ha⁻¹. *Q. eumorpha* had the highest storage, 273.26 kg.ha⁻¹, followed by *M. euonymoides* (253.30 kg.ha⁻¹), *C. polyanthum* (164.96 kg.ha⁻¹), *M. garretii* (158.29 kg.ha⁻¹), and *N. javanica* (115.10 kg.ha⁻¹).

Phosphorus:

The phosphorus amounts in biomass of tree species in the forest was 278.54 kg.ha⁻¹. *Q. eumorpha* had the highest storage, 38.12 kg.ha⁻¹, followed by *M. euonymoides* (34.84 kg.ha⁻¹), *C. polyanthum* (22.88 kg.ha⁻¹), *M. garretii* (21.15 kg.ha⁻¹), and *N. javanica* (15.87 kg.ha⁻¹)

Potassium:

The biomass potassium of tree species in the forest was 1,390.26 kg.ha⁻¹. *Q. eumorpha* had the highest storage, 186.26 kg.ha⁻¹, followed by *M. euonymoides* (171.66 kg.ha⁻¹), *C. polyanthum* (112.22 kg.ha⁻¹), *M. garretii* (106.34 kg.ha⁻¹), and *N. javanica* (78.10 kg.ha⁻¹)

Calcium:

The biomass calcium amounts of tree species in the forest was 3,002.04 kg.ha⁻¹. *Q. eumorpha* had the highest storage, 398.29 kg.ha⁻¹, followed by

M. euonymoides (371.23 kg.ha⁻¹), *C. polyanthum* (240.78 kg.ha⁻¹), *M. garretii* (232.43 kg.ha⁻¹), and *N. javanica* (168.34 kg.ha⁻¹)

Magnesium:

The magnesium amounts in biomass of tree species in the forest was 652.86 kg.ha⁻¹. *Q. eumorpha* had the highest storage, 87.30 kg.ha⁻¹, followed by *M. euonymoides* (79.83 kg.ha⁻¹), *C. polyanthum* (52.51 kg.ha⁻¹), *M. garretii* (49.43 kg.ha⁻¹), and *N. javanica* (36.44 kg.ha⁻¹)

The different forest types had variable potentials of nutrient storages in aboveground biomass. In the moist evergreen forest at Khao Khitchakut national park, amount of N, P, K, Ca and Mg were 1,618.09, 85.39, 679.80, 2,064.13, and 318.83 kg.ha⁻¹, respectively. Where as those in the dry evergreen forest at Khao Soi Dao Wildlife Sanctuary, Chanthaburi province were in the order of 1,500.40, 124.92, 690.29, 3,611.40, and 480.85 kg.ha⁻¹. (Glumphabutr *et al.*, 2007)

2.5 Discussion

The pine growths in a series of *P. kesiya* plantations were did not increase with stand age because of great variations of site factors and other causes. The plantation areas covered area of 2,285 ha with different altitude, 1,202-1,655 m msl. The growths were fast in 14-15 year-old stands and slow for 21 to 25 year-old. The 14-15 year-old plantations were located on mesic sites in lower areas whereas those stands of 21 to 25 year-old were xeric sites on the higher altitude. The site factor particularly soil fertility affected on tree growths in the plantation forest (Bowen and Nambiar, 1989). Soil moisture condition was one important limiting factor on pine growth. Dry season soil moisture supply was a relevant soil parameter for *P. kesiya* performance, as it sustains dry season diameter and height growth (Armitage and Burley, 1980) and forest fire was also important (Fisher and Binkley, 2000). These factors affected their growths and biomass allocation.

Annual volume increment of *P. kesiya* at Boakaew Watershed Management Station was 5.48 m³ha⁻¹yr⁻¹. It was higher than plantations in the area of pine-dry dipterocarp forest at Boa Luang Plantation $(3.44 \text{ m}^3\text{ha}^{-1}\text{yr}^{-1})$ (Khamyong, 2001). The pine plantations in this area was located in area of pine-montane forest which has more cool weather and site moisture which were favorable for pine growth. Pine plantation in highland watershed areas of pine-dry dipterocarp and pine-montane forests might result in different pine growths. The pine-dry dipterocarp forest normally has very poor soil, lower moisture condition and annual forest fire whereas more fertile soil, higher moisture condition and occasionally fire is characteristics of pine-montane forest. Yield increment of general *P. kesiya* plantations were in range of 3-4 m³ha⁻¹yr⁻¹ (Pousujja, 1984).

The natural regeneration was occured in every age-class of plantations. The pioneer species show their highest levels of germination in large gaps and seedlings may grow very rapidly in full light (Raich and Gong, 1990; Kennedy and Swaine, 1992) whereas the climax species did not germinate or establish well in the large gaps (Howe *et al.*, 1985; Turner, 1990), and were poorly dispersed (Burgess, 1970). As the

succession begins, the pioneer colonization of annual plant species which had short life spans (one growing season) occurred in the gaps. The plants which had the high densities included Curcuma sessilis, Ageratina adenophora and Amorphophallus sp., whereas those of woody species were Vaccinium sprengelii, Q. brandisiana and Glochidion hirsutum. The tree species which had light seed and produced a lot of seeds could establish well in full sunlight such as V. sprengelii, Tristania rufescens, Craibiodendron stellatum, Leea guineensis, Wendlandia tinctoria, Rhus javanica, P. kesiya, etc. The oak species, Q. brandisiana had the good succession in some the adjacent fragmented forests of dry site whereas the other oaks (Fagaceae) had the poor succession. The succession tree species were mainly in the families of Fagaceae, Euphorbiaceae, Juglandaceae, Lauraceae, and Myrtaceae which are almost the climax species in pine-montane forest. Therefore, the recovery process of forest plantations to be the climax montane forest may needs a long period of times, many decades or hundred years. The fact that plantations of fast-growing species could help to jump start the regeneration of natural species had been exploited in the tropics in programs to restore natural forests (Fisher, 1995).

The biomass of pine in 14- to 34-year-old plantations did not increase with stand age. The data were different from Miller (1989) who reports that biomass in stem, branch and foliages of *Pinus nigra* was increased with stand ages during 20 years after planting. However, the succession tree species had the important role on biomass stocks in pine plantations. These tree species were in the families of Fagaceae, Theaceae, Myrtaceae, Leguminosae, Euphorbiaceae, Rubiaceae and Lauraceae.

The storages of carbon and nutrients in tree biomass in a series of pine plantations depended on biomass allocation in pine trees and succession tree species. The stored carbon and nutrients in pine biomass of 14- to 34-year-old plantations did not increase with stand ages. As same to the biomass, many factors including densities of pine and succession trees, site factors and forest fire were influenced on pine growths in this study. These factors affected tree growths, and allocation of carbon and nutrients. The rate of nutrient accumulations by the plantation is a function of the rate of growth, development stage and the availability of soil nutrients and water. The nutrient cycling involving recycling through litterfall, storage and litter decomposition in forest floor, nutrient availability and storage in soil, plant uptake and accumulation in tree biomass will be altered during stand development (Miller, 1989). The succession tree species in different age pine plantations had the variable contribution to plantation carbon and nutrient storages. The carbon amount was in range of 6-69 Mg.ha⁻¹, whereas those of nitrogen, phosphorus, potassium, calcium and magnesium were in the order of 65-765, 9-107, 44-523, 94-1,113 and 21-249 kg.ha⁻¹. Therefore, the natural succession in Pinus kesiya plantations is very important for increasing biomass carbon and nutrient stocks.

Comparisons of nutrient availability in the adjacent fragmented forest and the climax montain forests that carbon and nutrients storages in biomass of tree species at Doi Inthanon was most abundant compared to the adjacent fragmented forest. The tropical montane forests were often sufficiently supplied with N and P relative to lowland forests (Vitousek and Sanford 1986 and Tanner *et al.*, 1998).