

CONTENTS

	Page
ACKNOWLEDGEMENT	iv
บทคัดย่อ	v
ABSTRACT	viii
CONTENTS	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxi
LIST OF SYMBOLS	xxii
STATEMENT OF ORIGINALITY IN ENGLISH	xxiii
STATEMENT OF ORIGINALITY IN THAI	xxiv
CHAPTER 1 INTRODUCTION	1
Research Objectives	3
CHAPTER 2 LITERATURE REVIEW	4
2.1 Dielectric heating	5
2.2 Radio frequency heat treatment	6
2.2.1 Mechanisms of radio frequency heat treatment	6
2.2.2 Radio frequency systems	7
2.2.3 Application of radio frequency heat	9
2.3 Radio frequency heating application for controlling insect	12
2.4 Rice bran: An overview	15

2.4.1 General characteristic of rice bran	15
2.4.2 Purple rice and their nutrients	18
2.4.3 Anthocyanin	18
2.4.4 Chemical change of lipid	20
2.4.5 Rice bran stabilization	22
2.5 Mango qualities	23
2.5.1 Fruit fly life cycle	24
2.5.2 Mango fruit fly disinfestations during postharvest	24
 CHAPTER 3 APPLICATION OF RADIO FREQUENCY HEAT TREATMENT FOR VALUE-ADDED IN PURPLE RICE BRAN	29
Abstract	29
3.1 Introduction	30
3.2 Materials and methods	30
3.2.1 Rice bran sample preparation	30
3.2.2 Radiofrequency heat treatment	31
3.2.3 Package and storage of treated rice bran	31
3.2.4 Determination of bran sample	31
3.2.5 Data analysis	32
3.3 Result and Discussion	32
3.3.1 Quality of rice bran after radio frequency heat treatments	32
3.3.2 Effect of radio frequency on control pathogen in rice bran and	33
3.3.3 Effect of storage time on radio frequency treated rice bran qualities	41
3.4 Conclusion	46
 CHAPTER 4 RICE BRAN STABILIZATION BY USING RADIO FREQUENCY HEAT TREATMENTS	47
Abstract	47
4.1 Introduction	48
4.2 Materials and methods	49
4.2.1 Rice bran preparation	49
4.2.2 Experiment	49

4.2.3 Sample Determination	49
4.2.4 Data analysis	50
4.3 Results and Discussion	50
4.3.1 Effect of radio frequency on quality of rice bran	50
4.3.2 Effect of radio frequency on the proximate composition of rice bran	52
4.3.3 Effect of radio frequency heat treatment on quality of rice bran	60
4.4 Conclusion	61
 CHAPTER 5 MATURITY DEPENDENT DIELECTRIC PROPERTIES	
OF MANGO FRUIT ASSOCIATED <u>DIELECTRIC HEATING</u>	62
Abstract	62
5.1 Introduction	62
5.1.1 Principle of dielectric property measurement	64
5.2. Materials and methods	67
5.2.1 Material and sample preparation	67
5.2.2 Dielectric properties measurement apparatus	67
5.3 Results and Discussion	68
5.3.2 Effect of temperature and soaking period on moisture content of mango	68
5.3.2 Effect of temperature and soaking period on mango density	70
5.3.3 Dielectric property as influence by frequency and heating period	72
5.4 Conclusion	85
 CHAPTER 6 IMPROVING OF THERMAL UNIFORMITY OF MANGO DURING	
RADIO FREQUENCYHEAT TREATMENT FOR INSECT CONTROL	86
Abstract	86
6.1 Introduction	87
6.2 Materials and methods	88
6.2.1 Design of rotating container combined with RF applicator	88
6.2.2 Improving of thermal uniformity of mango during radio frequency heat treatment for insect control	89

6.2.3 Comparison of heating method between radio frequency, hot water and hot air on mango fruit	90
6.3 Results	91
6.3.1 System of RF generator combined with rotating container and procedure	91
6.3.3 Evaluation the uniformity of heat in treated mango fruit	93
6.3.4 Comparison of heating method between radio frequency, hot water and hot air in mango fruit	94
6.4 Discussion	96
6.5 Conclusion	97
CHAPTER 7 MANGO QUALITY AFTER RADIO FREQUENCY DIELECTRIC HEAT ON CONTROLLINGFRUIT FLY INFESTED IN THAI MANGO	98
Abstract	98
7.1 Introduction	99
7.2 Materials and methods	99
7.2.1 Mass rearing of fruit fly	99
7.2.2 Mango sample preparation	100
7.2.3 Experiment	100
7.2.4 Data collection of insect mortality	101
7.2.5 Determination of physical property of mango	101
7.2.6 Determination of chemical quality	102
7.3. Results and Discussions	103
7.3.1 Mortality of egg and larvae artificial infested in mango fruit	103
7.3.2 Thermal image of mango fruit treated with RF heating energy	104
7.3.3 Physical qualities change in mango after heat treatment	106
7.3.4 Change of chemical quality of mango	107
7.4. Conclusion	110
REFERENCES	111
LIST OF PUBLICATIONS	126

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

LIST OF TABLES

	Page
Table 2.1 Proximate chemical composition of rough rice and its milling fraction at moisture content of 14%	18
Table 3.1 Quality of rice bran 4 cultivars before and after treating with various RF treatments	33
Table 3.2 Total viable plate count of RF treated rice bran after storage for 6 months	36
Table 3.3 Analysis of variance for four rice bran cultivars after treated with various temperatures and stored for 6 months	41
Table 3.4 Anthocyanin content in form of Cyanidin 3-glucoside of RF treated purple rice bran 2 cultivars after storage for 6 months	45
Table 3.5 Anthocyanin content in form of Peonidin 3-glucoside of RF treated purple rice bran 2 cultivars after storage for 6 months	46
Table 4.1 Moisture content and chemical compositions of rice bran after radio frequency heat treatment	51
Table 4.2 Rancidity and lipase activity of rice bran after radio frequency heat treatment	52
Table 4.3 Moisture content of RF treated rice bran 2 cultivars packed in different vacuum packs and stored for 3 month	54
Table 4.4 Lipid content of RF treated rice bran 2 cultivars packed in different vacuum packs and stored for 3 month	55
Table 4.5 Protein content of RF treated rice bran 2 cultivars packed in different vacuum packs and stored for 3 month	56
Table 4.6 Fiber content of RF treated rice bran 2 cultivars packed in different vacuum packs and stored for 3 month	57

Table 4.7 Rancidity of RF treated rice bran 2 cultivars packed in different vacuum packs and stored for 3 month	58
Table 4.8 Lipase activity of RF treated rice bran 2 cultivars packed in different vacuum packs and stored for 3 month	59
Table 5.1 Effect of temperature and soaking period on moisture content of fresh mango	69
Table 5.2 Effect of temperature and soaking period on moisture content of mango peel	70
Table 5.3 Effect of temperature and soaking period on moisture content of mango density	71
Table 6.1 Velocity of different mango weight in rotating chamber filled with water	92
Table 7.1 Mortality of fruit fly at egg and larva stage infested in mango after heat treatments	104
Table 7.2 Physical qualities change in mango after several heat treatments	107
Table 7.3 Moisture in flesh and peel of mango after several heat treatments	108
Table 7.4 Chemical quality in mango after heat treatment	109

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

LIST OF FIGURES

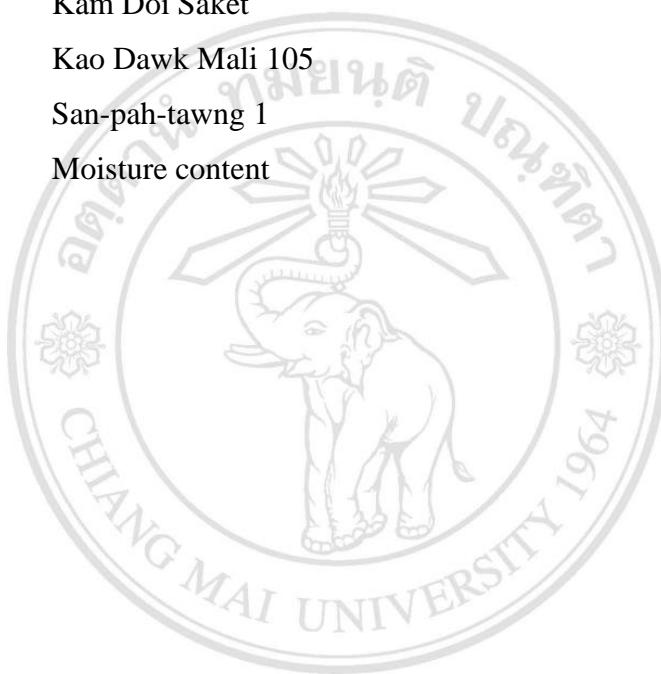

	Page
Figure 2.1 Electromagnetic radiations	4
Figure 2.2 Molecules in the material continually arrange in a line and reorient themselves to changed electric field	5
Figure 2.3 Change of dielectric properties of rice weevil (<i>Sitophilus oryzae</i> L.) in different spectrum of radio frequency	10
Figure 2.4 Composition of rice grain or paddy rice and brown rice	16
Figure 2.5 General structure of anthocyanidin	19
Figure 2.6 The egg (A) and 2nd star larvae (4-6 days old) stages (B) of oriental fruit fly	24
Figure 3.1 Schematic chart of radio frequency instrument	31
Figure 3.2 Effect of storage time on average of total viable plate count of each 4 treated rice bran cultivars	35
Figure 3.3 Contamination of pathogens by total viable plate count (conc. 10^{-4}) of rice bran cv. San Pah Tawng 1 before and after radio frequency at various temperatures	37
Figure 3.4 Contamination of pathogens by total viable plate count (conc. 10^{-4}) of rice bran cv. Kaw Dok Mali 105 before and after radio frequency at various temperatures	38
Figure 3.5 Contamination of pathogens by total viable plate count (conc. 10^{-4}) of rice bran cv. Kam Doi Saket before and after radio frequency at various temperatures	39
Figure 3.6 Contamination of pathogens by viable total plate count (conc. 10^{-4}) of rice bran cv. Kam Nan before and after radio frequency at various temperatures	40
Figure 3.7 Moisture content of RF treated rice bran after storage for 6 months	42

Figure 3.8 Oil content of RF treated rice bran 4 varieties after storage for 6 months	42
Figure 3.9 TBA acid number of RF treated rice bran 4 varieties after storage for 6 months	42
Figure 5.1 Capacitor in form of parallel plate with DC type	64
Figure 5.2 Capacitor in form of parallel plate with AC type	65
Figure 5.3 Vector of loss factor	66
Figure 5.4 Schematic of impedance analyzer as dielectric properties measurement apparatus	68
Figure 5.5 Dielectric properties measurement apparatus with high frequency electromagnetic field	68
Figure 5.6 Frequency dependence of the dielectric properties of mango peel cv. Nam Dok Mai at physiological maturation after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	73
Figure 5.7 Frequency dependence of the dielectric properties of mango peel cv. Chok Anan at physiological maturation after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	71
Figure 5.8 Frequency dependence of the dielectric properties of mango peel cv. Fa Lun at physiological maturation after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	75
Figure 5.9 Frequency dependence of the dielectric properties of mango peel cv. Nam Dok Mai at ripening after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	76
Figure 5.10 Frequency dependence of the dielectric properties of mango peel cv. Chok Anan at ripening after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	74
Figure 5.11 Frequency dependence of the dielectric properties of mango peel cv. Fa Lun at ripening after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	78

Figure 5.12 Frequency dependence of the dielectric properties of mango flesh cv. Nam Dok Mai at physiological maturation after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	79
Figure 5.13 Frequency dependence of the dielectric properties of mango flesh cv. Chok Anan at physiological maturation after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	80
Figure 5.14 Frequency dependence of the dielectric properties of mango flesh cv. Fa Lun at physiological maturation after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	81
Figure 5.15 Frequency dependence of the dielectric properties of mango flesh cv. Nam Dok Mai at ripening after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	82
Figure 5.16 Frequency dependence of the dielectric properties of mango flesh cv. Chok Anan at ripening after dipping in water at temperature of 30, 45 and 50°C for 30, 60 and 90 minutes	80
Figure 5.17 Frequency dependence of the dielectric properties of mango flesh cv. Fa Lun at ripening after dipping in water at temperature of 50°C for 30, 60 and 90 minutes	81
Figure 6.1 Mango sample cut in half lengthwise	90
Figure 6.2 Schematic diagram of fruit chamber	92
Figure 6.3 Thermal image with temperature legend showing heat distributions in untreated mangoes	94
Figure 6.4 Thermal image with temperature legend showing heat distributions in treated mango with hot air	95
Figure 6.5 Thermal image with temperature legend showing heat distributions in treated mango with hot water	92
Figure 7.1 Preparation of mango fruit fly with artificial infestation eggs stage	100
Figure 7.2 The egg (A) and 2nd star larvae (4-6 days old) stages (B) of oriental fruit fly	103
Figure 7.3 Thermal distribution and temperature legend in mango	106

LIST OF ABBREVIATIONS

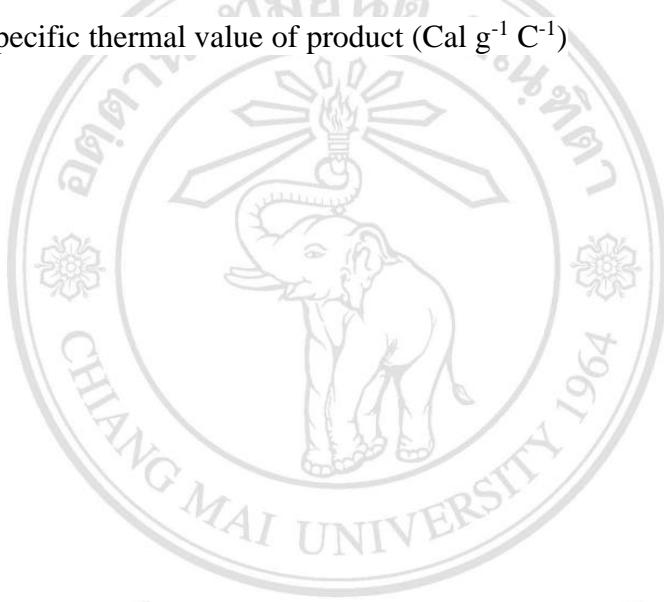
RF	Radio Frequency
CRD	Completely Randomized Design
LSD	Least Significant Different
KN	Kam Nan
KSDK	Kam Doi Saket
KDML 105	Kao Dawk Mali 105
SPT1	San-pah-tawng 1
Mc	Moisture content

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

LIST OF SYMBOLS

P Thermal power generated (W/cm³)

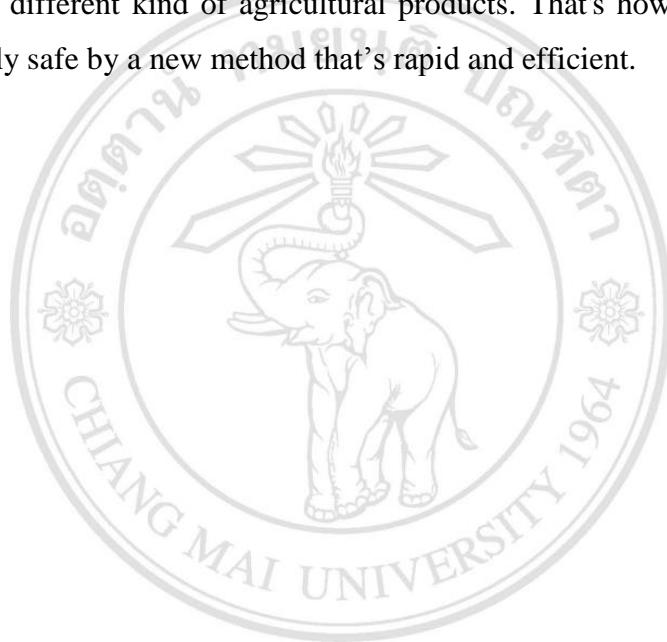
E Radio frequency in (Hz)


ε Dielectric loss factor of the material (intrinsic property)

Q Absorbed power per hour (kWh⁻¹)

dθ Temperature increase during exposure (°C)

M Mass of material (kg)


c Specific thermal value of product (Cal g⁻¹ C⁻¹)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

STATEMENT OF ORIGINALITY

1. The research representative the potential of Radio Frequency. It not only can be utilized directly, but also can be used with any other installed components for various purposes, especially, diseases and insects control in agricultural products
2. The development and improving efficiency of utilization of the Radio Frequency for value added in different kind of agricultural products. That's how Food Safety and Environmentally safe by a new method that's rapid and efficient.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

ข้อความแห่งการริเริ่ม

- 1) การวิจัยในวิทยานิพนธ์นี้ เป็นการแสดงให้เห็นถึงศักยภาพของคลื่นความถี่วิทยุ ซึ่งไม่เพียงแต่สามารถใช้ประโยชน์โดยตรง แต่ยังรวมถึงสามารถประยุกต์ใช้ร่วมกับเครื่องมืออื่นที่ติดตั้งประกอบ เพื่อวัดถุประสงค์ต่าง ๆ โดยเฉพาะอย่างยิ่ง การควบคุมโหมดและแมลง ในผลิตผลทางการเกษตร
- 2) การพัฒนาและปรับปรุงประสิทธิภาพของการใช้ประโยชน์จากคลื่นความถี่วิทยุ เพื่อเพิ่มมูลค่าของผลิตผลทางการเกษตร ให้เป็นวิธีที่ ปลอดภัยต่อสิ่งแวดล้อม และเป็นวิธีการใหม่ที่รวดเร็วและมีประสิทธิภาพ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved