#### CONTENTS

| Acknowledgement                                                      | iii  |
|----------------------------------------------------------------------|------|
| Abstract in Thai                                                     | iv   |
| Abstract in English                                                  | vii  |
| List of Tables                                                       | XV   |
| List of Figures                                                      | XX   |
| Statement of Originality                                             | xxii |
| Chapter 1 Introduction                                               | 1    |
| 1.1 Historical background                                            | 1    |
| 1.2 Literature review                                                | 3    |
| 1.2.1 Grain structure and storage compounds                          | 3    |
| 1) Structure of rice grain                                           | 3    |
| 2) Storage compounds in rice grain                                   | 4    |
| 1.2.2 Rice grain characteristic definitions and standards            | 7    |
| 1) International markets standard                                    | 7    |
| 2) Specific markets: Case studies in Thailand                        | 10   |
| 3) Standard for Thai Hom Mali Rice                                   | 11   |
| 1.3 Nutritional quality of rice grain                                | 12   |
| 1.3.1 Energy                                                         | 12   |
| 1.3.2 Protein                                                        | 12   |
| 1.3.3 Lipids                                                         | 13   |
| 1.3.4 Vitamins                                                       | 14   |
| 1.3.5 Minerals                                                       | 14   |
| 1.4 Genotype x Environment interactions affecting rice grain quality | 14   |
| 1.4.1 Effect of genotype x environment on milling quality            | 15   |

|           | 1.4.2 Effect of genotype x environment on cooking quality         | 16 |
|-----------|-------------------------------------------------------------------|----|
|           | 1.4.3 Effect of genotype x environment on nutritional quality     | 18 |
| 1.5       | Nutrients transport into rice plant                               | 18 |
|           | 1.5.1 Nutrient uptake                                             | 18 |
|           | 1.5.2 Nutrients mobilization                                      | 20 |
|           | 1.5.3 Fe and Zn distribution in rice grain                        | 22 |
|           | 1.5.4 Increasing Fe and Zn in rice grain                          | 23 |
| 1.6       | Objectives                                                        | 24 |
| Chapter 2 | Effect of cropping season on rice grain quality                   | 26 |
| 2.1       | Introduction                                                      | 26 |
| 2.2       | Materials and methods                                             | 27 |
|           | 2.2.1 Rice varieties and culture                                  | 28 |
|           | 2.2.2 Data collection                                             | 28 |
| 2.3       | Results                                                           | 31 |
|           | 2.3.1 Meteorological environment                                  | 35 |
|           | 2.3.2 Yield and yield components                                  | 40 |
|           | 2.3.3 Milling quality                                             | 43 |
|           | 2.3.4 Nutritional quality                                         | 42 |
|           | 1) Nitrogen in rice grain                                         | 47 |
|           | 2) Phosphorus in rice grain                                       | 51 |
|           | 3) Zinc in rice grain                                             | 54 |
|           | 4) Iron in rice grain                                             | 58 |
| 2.4       | Discussion                                                        |    |
| Chapter 3 | Effects of iron and zinc foliar application on rice grain quality | 63 |
| 3.1       | Introduction                                                      | 63 |
| 3.2       | Materials and Methods                                             | 65 |
|           | 3.2.1 Rice varieties and culture                                  | 65 |
|           | 3.2.2 Data collection                                             | 66 |
| 3.3       | Results                                                           | 67 |
|           |                                                                   |    |

|        |      | 3.3.1 Grain and milling quality                                     | 67  |
|--------|------|---------------------------------------------------------------------|-----|
|        |      | 3.3.2 Nutritional quality                                           | 70  |
|        |      | 1) Zinc in rice grain                                               | 70  |
|        |      | 2) Iron in rice grain                                               | 75  |
|        |      | 3) Nitrogen in rice grain                                           | 80  |
|        |      | 4) Phosphorus in rice grain                                         | 85  |
|        | 3.4  | Discussion                                                          | 90  |
| Chapte | er 4 | Iron and zinc distribution along the grain length of different      | 93  |
|        |      | Thai rice varieties and implications on grain quality               |     |
| 2      | 4.1  | Introduction                                                        | 93  |
| 2      | 4.2  | Materials and methods                                               | 94  |
|        |      | 4.2.1 Samples and varieties examined                                | 94  |
|        |      | 4.2.2 Sample preparation                                            | 95  |
| 2      | 4.3  | Results                                                             | 96  |
|        |      | 4.3.1 Comparison of Fe and Zn concentrations between full and       | 96  |
|        |      | broken grain of commercial rice                                     |     |
|        |      | 4.3.2 The proportion of broken fractions                            | 98  |
|        |      | 4.3.3 Distribution of Fe and Zn between grain fractions             | 101 |
|        |      | 4.3.4 Partitioning of Fe in grain fractions of brown and white rice | 106 |
|        |      | 4.3.5 Partitioning of Zn in grain fractions of brown and white rice | 108 |
| 2      | 4.4  | Discussion Support Support                                          | 111 |
| Chapte | er 5 | General discussion                                                  | 114 |
| :      | 5.1  | Rice yield and cropping season                                      | 114 |
| :      | 5.2  | Milling quality and cropping season                                 | 115 |
| :      | 5.3  | Nutritional quality and cropping season                             | 116 |
| :      | 5.4  | Nutritional quality and foliar fertilizer                           | 119 |
| :      | 5.5  | Genotypic variation of rice grain yield and quality                 | 121 |
| :      | 5.6  | General conclusion                                                  | 124 |
|        | 5.7  | Future research                                                     | 125 |

| References           | 127 |
|----------------------|-----|
| List of Publications | 143 |
| Curriculum Vitae     | 144 |



### LIST OF TABLES

| Table 2.1  | Grain appearance, disintegration rate and numerical scale for                           | 30 |
|------------|-----------------------------------------------------------------------------------------|----|
|            | scoring gelatinization temperature                                                      |    |
| Table 2.2  | The data of rice cropping in 3 season, rainy season, cool season                        | 32 |
|            | and summer season from August 2009 to June 2010.                                        |    |
| Table 2.3  | Tiller number of 4 rice varieties grown in rainy, cool and                              | 37 |
|            | summer seasons.                                                                         |    |
| Table 2.4  | Panicle number per plant of 4 rice varieties grown in rainy, cool<br>and summer seasons | 37 |
| Table 2.5  | Filled grain weight of 4 rice varieties grown in rainy, cool and summer                 | 38 |
| Table 2.6  | Total grain weight (t/ha) of 4 rice varieties grown in rainy, cool and summer seasons.  | 38 |
| Table 2.7  | Thousand grain weight (g) of 4 rice varieties grown in rainy,                           | 39 |
|            | cool and summer seasons.                                                                |    |
| Table 2.8  | Percentage of head rice yield of 4 rice varieties when grown in                         | 41 |
| 0          | rainy, cool and summer seasons                                                          |    |
| Table 2.9  | Degree of milling of 4 rice varieties when grown in rainy, cool                         | 41 |
| С          | and summer seasons                                                                      |    |
| Table 2.10 | Percentage of grain chalkiness of 4 rice varieties grown in                             | 42 |
|            | rainy, cool and summer seasons                                                          |    |
| Table 2.11 | Alkali spread value of 4 rice varieties grown in rainy, cool and                        | 42 |
|            | summer seasons                                                                          |    |
| Table 2.12 | The N concentration in brown rice of 4 rice varieties when                              | 44 |
|            | grown in rainy, cool and summer seasons.                                                |    |
| Table 2.13 | The N concentration in white rice of 4 rice varieties when                              | 44 |

|            | grown in rainy, cool and summer seasons                         |    |
|------------|-----------------------------------------------------------------|----|
| Table 2.14 | The milling loss of N of 4 rice varieties when grown in rainy,  | 45 |
|            | cool and summer seasons.                                        |    |
| Table 2.15 | The N content in brown rice of 4 rice varieties when grown in   | 45 |
|            | rainy, cool and summer seasons                                  |    |
| Table 2.16 | The N content in white rice of 4 rice varieties when grown in   | 46 |
|            | rainy, cool and summer seasons                                  |    |
| Table 2.17 | The P concentration in brown rice of 4 rice varieties when      | 48 |
|            | grown in rainy, cool and summer seasons                         |    |
| Table 2.18 | The P concentration in white rice of 4 rice varieties when      | 49 |
|            | grown in rainy, cool and summer seasons                         |    |
| Table 2.19 | The milling loss of P of 4 rice varieties when grown in rainy,  | 49 |
|            | cool and summer seasons                                         |    |
| Table 2.20 | The P content in brown rice of 4 rice varieties when grown in   | 50 |
|            | rainy, cool and summer seasons                                  |    |
| Table 2.21 | The P content in white rice of 4 rice varieties when grown in   | 50 |
|            | rainy, cool and summer seasons                                  |    |
| Table 2.22 | The Zn concentration in brown rice of 4 rice varieties grown in | 52 |
|            | rainy, cool and summer seasons                                  |    |
| Table 2.23 | The Zn concentration in white rice of 4 rice varieties when     | 52 |
| ~          | grown in rainy, cool and summer season                          |    |
| Table 2.24 | The milling loss of Zn of 4 rice varieties when grown in rainy, | 53 |
| С          | cool and summer seasons                                         |    |
| Table 2.25 | The Zn content in brown rice of 4 rice varieties when grown in  | 53 |
| ~          | rainy, cool and summer season                                   |    |
| Table 2.26 | The Zn content in white rice of 4 rice varieties when grown in  | 54 |
|            | rainy, cool and summer season                                   |    |
| Table 2.27 | The Fe concentration in brown rice of 4 rice varieties grown in | 55 |
|            | rainy, cool and summer seasons                                  |    |

| Table 2.28 | The Fe concentration in white rice of 4 rice varieties grown in  | 56 |
|------------|------------------------------------------------------------------|----|
|            | rainy, cool and summer seasons                                   |    |
| Table 2.29 | The milling loss of Fe of 4 rice varieties when grown in rainy,  | 56 |
|            | cool and summer seasons.                                         |    |
| Table 2.30 | The Fe content in brown rice of 4 rice varieties when grown in   | 57 |
|            | rainy, cool and summer seasons                                   |    |
| Table 2.31 | The Fe content in brown rice of 4 rice varieties when grown in   | 57 |
|            | rainy, cool and summer seasons                                   |    |
| Table 3.1  | Weight of filled grain of 4 rice varieties sprayed with 6        | 68 |
|            | fertilizer treatments                                            |    |
| Table 3.2  | grain weight of 4 rice varieties sprayed with 6 fertilizer       | 68 |
|            | treatments                                                       |    |
| Table 3.3  | Thousand filled grain weight of 4 rice varieties sprayed with 6  | 69 |
|            | fertilizer treatments                                            |    |
| Table 3.4  | Percent head rice of 4 varieties after sprayed with 6 fertilizer | 69 |
|            | treatments                                                       |    |
| Table 3.5  | Zn concentration in brown rice of 4 varieties after sprayed with | 71 |
|            | 6 fertilizer treatments                                          |    |
| Table 3.6  | The Zn concentration in white rice of 4 varieties after sprayed  | 72 |
| 8          | with 6 fertilizer treatments                                     |    |
| Table 3.7  | Zn content in brown rice of 4 varieties after sprayed with 6     | 73 |
| C          | fertilizer treatments Chiang Mail University                     |    |
| Table 3.8  | The Zn content in white rice of 4 varieties after sprayed with 6 | 74 |
|            | fertilizer treatments                                            |    |
| Table 3.9  | The Fe concentration in brown rice of 4 varieties after sprayed  | 76 |
|            | with 6 fertilizer treatments                                     |    |
| Table 3.10 | The Fe concentration in white rice of 4 varieties after sprayed  | 77 |
|            | with 6 fertilizer treatments                                     |    |
| Table 3.11 | The Fe content in brown rice of 4 varieties after sprayed with 6 | 78 |

fertilizer treatments

| Table 3.12 | The Fe content in white rice of 4 varieties after sprayed with 6  | 79  |
|------------|-------------------------------------------------------------------|-----|
|            | fertilizer treatments                                             |     |
| Table 3.13 | The N concentration in brow rice of 4 varieties after sprayed     | 81  |
|            | with 6 fertilizer treatments                                      |     |
| Table 3.14 | The N concentration in white rice of 4 varieties after sprayed    | 82  |
|            | with 6 fertilizer treatments                                      |     |
| Table 3.15 | The N content in brown rice of 4 varieties after sprayed with 6   | 83  |
|            | fertilizer treatments                                             |     |
| Table 3.16 | The N content in white rice (mg/grain) of 4 varieties after       | 84  |
|            | sprayed with 6 fertilizer treatments                              |     |
| Table 3.17 | The P concentration in brown rice of 4 varieties after sprayed    | 86  |
|            | with 6 fertilizer treatments                                      |     |
| Table 3.18 | The P concentration in white rice of 4 varieties after sprayed    | 87  |
|            | with 6 fertilizer treatments                                      |     |
| Table 3.19 | The P content in brown rice of 4 varieties after sprayed with 6   | 88  |
|            | fertilizer treatments                                             |     |
| Table 3.20 | The P content in white rice of 4 varieties after sprayed with 6   | 89  |
|            | fertilizer treatments                                             |     |
| Table 4.1  | The concentration of Fe in full and broken grains of four         | 97  |
| ລິ         | commercial rice samples from two markets in Chiang Mai,           |     |
| e e        | Thailand                                                          |     |
| Table 4.2  | The concentration of Zn in full and broken grains of four         | 97  |
| A          | commercial rice samples from two markets in Chiang Mai,           |     |
|            | Thailand                                                          |     |
| Table 4.3  | Proportion by weight of the basal, middle and distal fractions of | 99  |
|            | 5 commercial and 4 laboratory broken rice samples                 |     |
| Table 4.4  | Proportion by number of the basal, middle and distal fractions    | 100 |
|            | of 5 commercial and 4 laboratory broken rice samples              |     |
| Table 4.5  | The Fe concentration in three fractions of brown rice of seven    | 102 |

varieties

| Table 4.6  | The Fe concentration in three fractions in white rice of seven | 103 |
|------------|----------------------------------------------------------------|-----|
|            | varieties                                                      |     |
| Table 4.7  | The Zn concentration in three fractions of brown rice of seven | 104 |
|            | varieties                                                      |     |
| Table 4.8  | The Zn concentration in three fractions of white rice of seven | 105 |
|            | varieties                                                      |     |
| Table 4.9  | Proportion of grain Fe in three grain fractions; basal, middle | 107 |
|            | and distal of brown rice of seven varieties.                   |     |
| Table 4.10 | Proportion of grain Fe in three grain fractions; basal, middle | 108 |
|            | and distal of white rice of seven varieties                    |     |
| Table 4.11 | Proportion of grain Zn in three grain fractions; basal, middle | 109 |
|            | and distal of brown rice of seven varieties                    |     |
| Table 4.12 | Proportion of grain Zn in three grain fractions; basal, middle | 110 |
|            | and distal of white rice of seven varieties                    |     |
|            | HAI UNIVERSIT                                                  |     |

### LIST OF FIGURES

| Figure 2.1 | Daily maximum and minimum air temperature (°C) throughout         | 33  |
|------------|-------------------------------------------------------------------|-----|
|            | the experimental period from August 2009 to June 2010             |     |
| Figure 2.2 | Daily relative humidity throughout the experimental period from   | 33  |
|            | August 2009 to June 2010                                          |     |
| Figure 2.3 | Daily rainfall (mm.) throughout the experimental period from      | 34  |
|            | August 2009 to June 2010                                          |     |
| Figure 2.2 | Daily sunshine duration (hrs.) throughout the experimental        | 34  |
|            | period from August 2009 to June 2010                              |     |
| Figure 2.5 | Daily evaporation (mm.) throughout the experimental period        | 35  |
|            | from August 2009 to June 2010                                     |     |
| Figure 2.6 | Individual grain weight (mg) of 4 rice varieties grown in rainy,  | 39  |
|            | cool and summer seasons                                           |     |
| Figure 3.1 | Relationships between Zn concentrations in brown and white rice   | 72  |
|            | among four rice varieties after sprayed with 6 fertilizer         |     |
|            | treatments                                                        |     |
| Figure 3.2 | Relationships between Fe concentrations in brown and white rice   | 77  |
| 9          | among 4 rice varieties after sprayed with 6 fertilizer treatments |     |
| Figure 5.1 | Relative value of (A) total grain yield and (B)1000 filled grain  | 118 |
| 1          | weight; of rice grown in three seasons (rainy, cool and summer)   |     |
| Figure 5.2 | Relative value of grain Fe of rice grown in the cool and summer   | 118 |
|            | seasons compared to the rainy season: (A) Fe concentration in     |     |
|            | brown rice, (B) Fe concentration in white rice, (C) Fe content in |     |
|            | brown rice and (D) Fe content in white rice                       |     |

Figure 5.3 Relative value of grain Zn of rice grown in the cool and summer 119 seasons compared to the rainy season: (A) Zn concentration in brown rice, (B) Zn concentration in white rice, (C) Zn content in brown rice and (D) Zn content in white rice



## ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอข้อมูลเกี่ยวกับอิทธิของสภาพแวดล้อมและพันธุกรรมที่มีต่อกุณภาพ ข้าวในด้านกุณภาพการขัดสี และคุณค่าทางโภชนาการ และแนวทางในการเพิ่มปริมาณธาตุ เหล็กและสังกะสีในเมล็ดข้าว โดยการเลือกฤดูเพาะปลูกที่เหมาะสม หรือการฉีดพ่นธาตุเหล็ก และสังกะสีแก่ข้าวในระยะหลังออกดอก
- 2) ธาตุเหล็กและสังกะสีตามมีการกระจายตัวไม่สม่ำเสมอตามด้านขาวของเมล็ดข้าว โดยความ เข้มข้นของธาตุเหล็กและสังกะสีในส่วนหัวเมล็ด (ด้านคัพภะ) และ/หรือบริเวณส่วนท้ายเมล็ด สูงกว่าส่วนกลางเมล็ด ขึ้นอยู่กับพันธุ์ข้าว ดังนั้นข้าวหัก จึงอาจมีมีความเข้มข้นของธาตุเหล็ก และสังกะสีสูงกว่าข้าวเต็มเมล็ด ในกรณีที่ข้าวหักประกอบด้วยส่วนหัวและท้ายเมล็ดสูง



#### STATEMENT OF ORIGINALITY

- This thesis represents the influences of environmental conditions and genotypic variation that affect on rice grain quality; milling quality and nutritional quality. This also represents the process to improve Fe and Zn concentration in rice grain with selecting growing season or nutrient foliar spray application to rice plant after rice flowering.
- 2) This study has also found the Fe and Zn are distributed unevenly along the rice grain length. Iron and Zn concentrations in broken rice can sometimes be higher than in whole grain rice but not always. The grain fractions that make up most of the broken rice as well as how the variety differ in the nutrient concentration in its different grain fractions would determine concentration of the nutrients in broken rice

