#### LIST OF PUBLICATIONS

 Pukumpuang, W. and Tragoolpua, Y. Inhibition of pathogenic bacteria causing skin disease by some medicinal plant extracts. Proceeding, the 22<sup>nd</sup> Annual meeting of the Thai society for biotechnology (TSB 2010 international conferences on biotechnology for health living), Trang, Thailand, October 20-22, 2010, 1263-1268.

 Pukumpuang, Y., Thongwai, N. and Tragoolpua, Y. 2012. Total phenolic contents, antibacterial and antioxidant activities of some Thai medicinal plant extracts. Journal of Medicinal Plants Research. 6(35); 4953-4960.

 Pukumpuang, W., Chansakaow, S. and Tragoolpua, Y. 2014. Antioxidant activity, phenolic compound content and phytochemical constituents of *Eclipta prostrata* (Linn.) Linn. Chiang Mai Journal of Science. 41: 1-9. (Accepted September 6, 2013).

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX** A

#### Culture Media

#### Brain heart infusion (BHI) agar

| Beef heart         | 250   | g  |
|--------------------|-------|----|
| Calf brains        | 200   | g  |
| Dextrose           | 5     | g  |
| Disodium phosphate | 2.5   | g  |
| Proteose peptone   | 10    | g  |
| Sodium chloride    | 2 5   | g  |
| Agar               | 15    | g  |
| Distilled water    | 1,000 | ml |

Dispensed into containers and autoclaved at 121°C for 15 minutes

#### Mueller Hinton agar (MHA)

| Acid digest of casein | 17.5  | g  |
|-----------------------|-------|----|
| Beef extract          | 2     | g  |
| Soluble starch        | 1.5   | g  |
| Agar                  | 15    | g  |
| Distilled water       | 1,000 | ml |

Dispensed into containers and autoclaved at 121°C for 15 minutes

 A I I r i g h t s r e s e r v e d

#### Nutrient Agar (NA)

| Beef extract    | 3     | g  |  |
|-----------------|-------|----|--|
| Peptone         | 05    | g  |  |
| Agar            | 15    | g  |  |
| Distilled water | 1,000 | ml |  |

Dispensed into containers and autoclaved at 121°C for 15 minutes

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX B**

### Chemical Reagents for DNA Extraction and Agarose Gel Electrophoresis

#### EDTA (0.5 M)

| EDTA            | 18.6 | g  |
|-----------------|------|----|
| Distilled water | 80   | ml |

The disodium salt of EDTA will not go into solution until the pH of the solution is adjusted to  $\approx 8.0$ . Adjust the volume to 100 ml and autoclaved at 121°C for 15 minutes.

#### Tris-HCl (1M)

| Tris base       | 121 | g  |
|-----------------|-----|----|
| Distilled water | 800 | ml |

Adjusted the pH to 7.4 by adding conc. HCl and adjust the volume to 1000 ml and autoclaved at 121°C for 15 minutes.

#### TE buffer (10 mM Tris-Cl, pH 7.4, 1 mM EDTA)

| 1M Tris-Cl pH 7.4 | 10 | ml |
|-------------------|----|----|
| 0.5M EDTA pH 8.0  | 2  | ml |

Adjusted the volume to 1000 ml and autoclaved at 121°C for 15 minutes.

#### Proteinase K (20 mg/ml)

| Proteinase K    |  | 20 | mg |
|-----------------|--|----|----|
| Distilled water |  | 1  | ml |

#### Sodium dodecyl sulfate (SDS), 10% (w/v)

|     |                                   | 10          |                               |
|-----|-----------------------------------|-------------|-------------------------------|
|     | SDS                               | 10          | g                             |
|     | Distilled water                   | 80          | ml                            |
|     | Adjusted the volume to 100 ml     |             |                               |
|     | Nacl (5M)                         |             |                               |
|     | NaCl                              | 292         | g                             |
|     | Distilled water                   | 80          | ml                            |
|     | Adjusted the volume to 100 ml     | and autocla | aved at 121°C for 15 minutes. |
|     | Chloroform/isoamyl alcohol (24:1) |             |                               |
|     | Chloroform                        | 24          | ml                            |
|     | Isoamyl alcohol                   | 1           | ml                            |
|     | Phenol/chloroform/ isoamyl alcoho | l (25:24:1) |                               |
|     | Phenol                            | 25          | ml                            |
|     | Chloroform                        | 24          | ml                            |
|     | Isoamyl alcohol                   | 1           | ml                            |
|     | TAE buffer (50X)                  |             |                               |
|     | Tris base                         | 242         | g                             |
|     | Glacial acetic acid               | 57.1        | ml                            |
|     | 0.5 M EDTA pH8                    | 100         | ml                            |
|     | Added distilled water to 1000 n   | nl          |                               |
| Jai | Ethydium bromide                  |             |                               |
|     | 5mM EtBr<br>1xTAE buffer          | 60<br>250   | ng Mai Universit              |
|     | Mixed and kept in the dark        |             |                               |
|     |                                   |             |                               |

#### Loading dye (6X)

| Bromophenol blue | 0.25 | mg |  |
|------------------|------|----|--|
| Glycerol         | 3    | ml |  |
| 5x TAE buffer    | 1    | ml |  |

Adjusted to volume 10 ml using distilled water, keep at -20°C

Agarose (0.8%)

| Agarose         | 0.8 | g  |
|-----------------|-----|----|
| Distilled water | 100 | ml |

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX C**

#### **Real Time PCR**



Figure C.1 Fluorescence curve from SYBR Green I detection of *hla* gene in *S. aureus* (A) and MRSA (B) after treatment with *C. fenestratum* and *S. venosa* extracts

А Amplification Chart 1100 Control fabD 
 Base Line Subtracted Curve Fit RFU

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 CF fabD SV fabD Control mecR CF mecR 200 SV mecR 岱 100-50.00 NTC Cycle В Amplification Chart 2200 -Control fabD D 2000 1800 CF fabD 1600 1600 0 1600 SV fabD Base Line Subtracted S Control mecI CF mecI SV mecI РСЯ 200 50.00 NTC 20 25 зΰ зģ Cycle Amplification Chart Control fabD DCK Base Line Subtracted Curve Fit RFU 1400-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-1000-100 CF fabD SV fabD Control mecA CF mecA SV mecA NTC 50.00 Cycle





А

Figure C.3 Fluorescence curve from SYBR Green I detection of *nucA* gene in *S. aureus* (A) and MRSA (B) after treatment with *C. fenestratum* and *S. venosa* extracts

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX D**

#### **Chemical Reagents for Western Blotting**

#### Tris-HCl, pH 8.8 (1.5 M)

| Tris | 18.17 | g |
|------|-------|---|
| SDS  | 0.40  | g |

Adjusted pH to 8.8 with Conc. HCl and then adjusted volume to 100 ml with demonized water

#### Tris-HCl, pH 6.8 (0.5 M)

| Tris | 6.06 | g |
|------|------|---|
| SDS  | 0.40 | g |

Adjusted pH to 8.8 with Conc. HCl and then adjusted volume to 100 ml with deionized water

#### **Running buffer (1X)**

| Tris base | 3.02  | g |
|-----------|-------|---|
| Glycein   | 14.40 | g |
| SDS       |       | g |

Adjusted volume to 1000 ml

#### APS (10%)

| Ammonium persulfate | 1 g   |  |
|---------------------|-------|--|
| Deionized water     | 10 ml |  |

#### Separating gel, pH 8.8 (10%)

1

| 40       | % acrylamide                    | 2.50     | ml                  |
|----------|---------------------------------|----------|---------------------|
| 1.5      | 5 M Tris Cl                     | 2.50     | ml                  |
| Di       | stilled water                   | 4.90     | ml                  |
| 10       | % APS                           | 50       | μl                  |
| TE       | EMED                            | 10       | μΙ                  |
| Stacking | n = 1 + 8 + 8 + 8 = 10          |          |                     |
| Stacking | g gei, phi 0.0 (570)            |          |                     |
| 40       | % acrylamide                    | 0.375    | ml                  |
| 1.5      | 5 M Tris Cl                     | 1.25     | ml                  |
| Di       | stilled water                   | 3.35     | ml                  |
| 10       | % APS                           | 50       | μl                  |
| TE       | EMED                            | 5        | μl                  |
| Protein  | staining solution               |          |                     |
| Totem    | stanning solution               |          |                     |
| Co       | oomassie brilliant blue R-250   | 1        | g                   |
| M        | ethanol                         | 500      | ml                  |
| Gl       | acial acetic acid               | 74       | ml                  |
| Adjust   | volume to 1000 ml               |          |                     |
| - reguer |                                 |          |                     |
| Destain  | solution                        |          |                     |
| M        | ethanol                         | 100      | ml                  |
| Gl       | acial acetic acid               | 100      | ml                  |
| ٨        | l'ante dans la marte 1000 mil   |          |                     |
| А        | ajusted volume to 1000 ml       |          |                     |
| Fris buf | ffer saline, TBS (10X)          |          |                     |
| Tr       | is base                         | 24.2     |                     |
| Na       | nCl                             | 80       | g                   |
| ah       | t <sup>©</sup> hv Ch            | ian      |                     |
| Ac       | ljusted the pH to 7.6 by adding | conc. Ho | Cl and adjusted the |

Adjusted the pH to 7.6 by adding conc. HCl and adjusted the volume to 1000 ml and autoclaved at 121°C for 15 minutes.

| 1xTBS                              | 100      | ml                                  |
|------------------------------------|----------|-------------------------------------|
| Tween20                            | 0.1      | ml                                  |
| Skim milk (5%)                     |          |                                     |
|                                    |          |                                     |
| TBS-T                              | 100      | ml                                  |
| Skim milk                          | 5        | g                                   |
| Skim milk (1%)                     |          |                                     |
| TBS-T                              | 100      | ml                                  |
| Skim milk                          | 1        | g                                   |
| Transfer buffer (Towbin buffer)    |          |                                     |
| Tris base                          | 3.03     | g                                   |
| Glycein                            | 14.4     | g                                   |
| SDS                                | 0.5      | g                                   |
| Methanol                           | 20       | ml                                  |
| Adjusted volume to 100 ml          |          |                                     |
| Phosphate buffer saline, PBS (10X) |          |                                     |
| NaCl                               | 80       | 9                                   |
| KCl                                | 2        | g                                   |
| Na <sub>2</sub> HPO <sub>4</sub>   | 11.07    | g                                   |
| KH <sub>2</sub> PO <sub>4</sub>    | 2.40     | g                                   |
| Dissolved and adjusted volume      | e to 1 L | with deionized water. Autoclaved at |
| 121 °C for 15 minutes              |          |                                     |
|                                    |          |                                     |
|                                    |          |                                     |

#### **Bradford reagent**

| Comasie brilliant blue G-250 | 10                       | mg |  |
|------------------------------|--------------------------|----|--|
| 95% ethanol                  | <b>C1 9</b> <sup>5</sup> | ml |  |
| 85% phosphoric acid          | 10                       | ml |  |
| Adjusted volume to 100 ml    |                          |    |  |
|                              |                          |    |  |
|                              |                          |    |  |
|                              |                          |    |  |
|                              |                          |    |  |
|                              |                          |    |  |
|                              |                          |    |  |

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **APPENDIX E**

#### **Chemical Reagents for Antioxidant Activity Test**

#### 1. Chemical reagents for ABTS decolorization assay

#### ABTS (7mM)

ABTS [2.2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)]0.0384g95% ethanol10ml

#### K2S2O8 (140 mM)

| Potassium persulfate | 0.3784 | g  |
|----------------------|--------|----|
| Deionized water      | 10     | ml |

#### Working solution (ABTS radical cation solution)

| 7 mM ABTS                                           | 10  | ml |
|-----------------------------------------------------|-----|----|
| 140 mM K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> | 176 | ml |

Stored in dark at room temperature

#### 2. Chemical reagents for DPPH radical scavenging assay

#### **DPPH** solution (0.1 mM)

| DPPH     | 0.0039 | g  |
|----------|--------|----|
| Methanol | 100    | ml |
|          |        |    |

## Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### 3. Chemical reagents for FRAP assay

#### Acetate buffer, pH 3.6 (300 mM) Sodium acetate 3.1Glacial acetic acid 16 ml Demonized water 900 ml Check pH 3.6, adjusted volume to 1000 ml with deionized water and stored at 4 °C HCl (40mM) Conc. HCl 1.46 ml Adjusted volume to 1000ml with deionized water and stored at room temperature **TPTZ** solution

| TPTZ     | 0.031 | g  |
|----------|-------|----|
| 40mM HCl | 10    | ml |

Dissolved at 50 °C and made fresh day of assay in new corning tube

#### Ferric chloride solution

| FeCl <sub>3</sub> .6H <sub>2</sub> O | 0.054 | g  |
|--------------------------------------|-------|----|
| Distilled water                      | 10    | ml |

#### **FRAP** reagent

| Acetate buffer           | 100 | ml |
|--------------------------|-----|----|
| <b>FPTZ</b> solution     | 10  | ml |
| Ferric chloride solution | 10  | ml |
| Distilled water          | 12  | ml |

Mixed and kept at 37 °C

#### 4. Chemical reagents for total phenolic content assay

5. Chemical reagents for SDS-PAGE in inhibition of oxidative protein damage by medicinal plant extracts

#### Stacking gel buffer (0.5 M Tris-HCl, pH 6.8)

| Tris            | 3 | 0.275 | g  |
|-----------------|---|-------|----|
| SDS             |   | 2     | g  |
| Deionized water |   | 400   | ml |

Adjusted pH to 6.8 with Conc. HCl and adjusted volume to 500 ml with deionized water

#### Separating gel buffer (1.5M Tris-HCl, pH 8.8)

| Tris            | 90.825 g |
|-----------------|----------|
| SDS             | 2 g      |
| Deionized water | 400 ml   |

Adjusted pH to 8.8 with Conc. HCl and adjusted volume to 500 ml with deionized

water

Electrophoresis buffer or tank buffer (0.025 M Tris, 0.192 M Glycine, 0.1% SDS, pH8.3)

| Tris                          | 3.02            | g  |
|-------------------------------|-----------------|----|
| Glycine                       | 14.4            | g  |
| SDS                           | 1               | g  |
| Deionized water               | 1000            | ml |
| 10% Ammonium persulfate (APS) |                 |    |
| APS                           | 0.1             | g  |
| Deionized water               | $\mathcal{Y}_1$ | ml |

Protein Staining Solution (0.025% Coomassie Brilliant Blue R250, 40% (v/v) Methanol, 7% (v/v) Glacial Acetic acid)

| Coomassie Brilliant Blue | 0.125 | g  |
|--------------------------|-------|----|
| Methanol                 | 200   | ml |
| Glacial Acetic acid      | 35    | ml |
| Deionized water          | 500   | ml |
|                          |       |    |

Filtered with Whatman No. 1 and kept in dark

#### Destain Solution (40% (v/v) Methanol, 7% (v/v) Glacial Acetic acid)

| Methanol            | 200 | ml |
|---------------------|-----|----|
| Glacial acetic acid | 35  | ml |
| Deionized water     | 500 | ml |

Adjusted volume to 500 ml with deionized water and kept at room temperature.

# Sorrenson's phosphate buffer Solution A Na2HPO4.2H2O 11.876 g Deionized water 1000 ml

| Solution B                                        |               |         |
|---------------------------------------------------|---------------|---------|
| KH <sub>2</sub> PO <sub>4</sub>                   | 9.08          | g       |
| Deionized water                                   | 1000          | ml      |
| Sorrenson's phosphate buffer, pH 7.3              | (1 <b>M</b> ) |         |
| Solution A                                        | 77.7          | ml      |
| Solution B                                        | 22.3          | ml      |
| Adjusted pH to 7.3                                |               |         |
| Sorrenson's phosphate buffer (150 M )             | PBS)          |         |
| 1M Sorrenson's phosphate buffer                   | 7.5           | ml      |
| Adjusted volume to 50 ml with dei                 | onized v      | water   |
| Bovine serum albumin (BSA) solution               | (5 mg/r       | nl)     |
| BSA                                               | 0.05          | g       |
| Deionized water                                   | 10            | ml      |
| CuSO4 (1mM)                                       |               |         |
| CuSO <sub>4</sub>                                 | 0.16          | g       |
| Adjusted volume to 100 ml with de                 | eionized      | water a |
| H2O2 (25M)                                        |               |         |
| 30% H <sub>2</sub> O <sub>2</sub>                 | 285           | μl      |
| Adjusted volume to 100 ml with de                 | eionized      | water a |
| Glutathione, 98%, Reduced form, C <sub>10</sub> l | H17N3O        | 6S (5 m |
| GSH                                               | 0.025         | g       |
|                                                   |               |         |

| Glutathione, 98% | 6, Reduced      | form, C <sub>10</sub> H <sub>17</sub> | N3O6S (5 m | ng/ml) |  |  |
|------------------|-----------------|---------------------------------------|------------|--------|--|--|
| GSH              |                 | 0.0                                   | 025 g      |        |  |  |
| 150 mM PB        | <sup>s</sup> by |                                       | 10 ml      |        |  |  |
|                  |                 |                                       |            |        |  |  |

#### **APPENDIX F**

#### **Standard Curves of Antioxidant Activity Test**

1. Standard curve of ABTS radical scavenging activity using trolox as a standard compound



Figure F.1 The dose response curve of percentage of inhibition of radical generated from ABTS by trolox solution after measuring absorbance at 734 nm

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved 2. Standard curve of DPPH radical scavenging activity using gallic acid as a standard compound



Figure F.2 The dose response curve of percentage of inhibition of radical generated from DPPH by gallic acid solution after measuring absorbance at 517 nm

**3.** Standard curve of ferric reducing antioxidant power (FRAP) assay using FeSO<sub>4</sub> as a standard compound



Figure F.3 Calibration curve for the absorbance at 593 nm of FRAP method as a function of concentration of ferric sulfate standard solution

4. Standard curve of total phenolic compound content test using gallic acid as a standard compound



Figure F.4 Calibration curve for the absorbance at 725 nm of Folin-Ciocalteau method as a function of concentration of gallic acid standad solution

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **CURRICURUM VITAE**

| Author's Name        | Miss Wipawan Pukumpuang                                                                                                                                                                                                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date/Year of Birth   | 7 <sup>st</sup> September 1986                                                                                                                                                                                                                                       |
| Place of Birth       | Lamphun                                                                                                                                                                                                                                                              |
| Education            | 2004 High school at Theerakarn Banhong school,<br>Lamphun, Thailand                                                                                                                                                                                                  |
|                      | <ul> <li>2008 Bachelor of Science (Biology), 1<sup>st</sup> honours, gold medal, Chiang Mai University, Chiang Mai, Thailand</li> <li>2009-2014 Ph.D. student Applied Microbiology, Department of</li> </ul>                                                         |
|                      | Biology Chiang Mai University, Chiang Mai,<br>Thailand                                                                                                                                                                                                               |
| Scholarship          | The research professional development project as under the Science achievement scholarship of Thailand (SAST)                                                                                                                                                        |
| Oral presentation    | Inhibition of some pathogenic bacteria by some medicinal plant<br>extracts. The 38 <sup>th</sup> Congress on Science and Technology of<br>Thailand (STT38). Chiang Mai, Thailand, October 17-19, 2012.                                                               |
| Poster presentations | Determination of steroidal saponins in some local medicinal plants. The 4 <sup>th</sup> conference on science and technology for youths. Bangkok, Thailand, March 20-21, 2008.                                                                                       |
|                      | Inhibition of pathogenic bacteria causing skin disease by some medicinal plant extracts. The 22 <sup>nd</sup> Annual meeting of the Thai society for biotechnology (TSB 2010 international conferences on biotechnology for health living). Trang, Thailand, October |

Growth inhibition of pathogenic bacteria by some medicinal plant extracts. The 6<sup>th</sup> conference on science and technology for youths. Bangkok, Thailand, March 18-19, 2011.

Study and development of inhibitory gel against bacterial skin diseases from local highland medicinal plants. Annual meeting of highland research and development Institute. **The Empress Convention Centre,** Chiang Mai, Thailand, November 30, 2011.

Study of drug resistant gene in methicillin resistant *S. aureus*. Seminar in nanotechnology for health science. Faculty of Science and Nanoscience and Nanotechnology center, Chiang Mai University, February 27-29, 2012.

Inhibitory effects of Thai herbal extracts on methicillin resistant *S. aureus* (MRSA). RGJ seminar series LXXXIX, Molecular Mechanisms and Technology Developments in Biomedical Researches. August 31, 2012 (**Best poster presentation**)

Inhibitory of Pathogenic Enteric Bacteria and Anti-free radicals of vegetable extracts. The 38<sup>th</sup> Congress on Science and Technology of Thailand (STT38). Chiang Mai, Thailand, October 17-19, 2012.

Antioxidant activity and total phenolic content of Thai medicinal plants. The 4<sup>th</sup> International Conference or Natural Products for Health and Beauty (NATPRO4). Chiang Mai, Thailand, November 28-30, 2012.

Antibacterial activity and morphological alteration of pathogenic bacteria after treatment with *Coscinium fenestratum* (Gartn.) Colebr. extract. 5<sup>th</sup> congress of European Microbiologists (FEM2013). Leipzig, Germany, July 21-25, 2013.

ລິ**ປສິກສິ້ມ**າ Copyright<sup>©</sup> All rig

#### **Publications**

Pukumpuang, W. and Tragoolpua, Y. Inhibition of pathogenic bacteria causing skin disease by some medicinal plant extracts. Proceeding, the 22<sup>nd</sup> Annual meeting of the Thai society for biotechnology (TSB 2010 international conferences on biotechnology for health living), Trang, Thailand, October 20-22, 2010, 1263-1268.

Pukumpuang, Y., Thongwai, N. and Tragoolpua, Y. 2012. Total phenolic contents, antibacterial and antioxidant activities of some Thai medicinal plant extracts. Journal of Medicinal Plants Research. 6(35); 4953-4960.

Pukumpuang, W., Chansakaow, S. and Tragoolpua, Y. 2014. Antioxidant activity, phenolic compound content and phytochemical constituents of *Eclipta prostrata* (Linn.) Linn. Chiang Mai Journal of Science. 41: 1-9. (Accepted September 6, 2013).



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved