CONTENTS

Acknowledge	ement	o s iv
Abstract in T	hai	v
Abstract in E	nglish	viii
List of Table		xvii
List of Figure	es	xxi
List of Abbre	eviations	xxviii
Statement of	Originality in Thai	xxix
Statement of	originality in English	XXX
Chapter1 Gei	neral Introduction and Thesis Outline	
Chapter 2 Lit	erature Reviews	4
2.1	Skin Anatomy	4
	2.1.1 Epidermis	4
	2.1.2 Dermis	5
	2.1.3 Subcutaneous tissue	5
2.2	Normal microbial flora of the skin	6
2.3	Common bacterial skin infectious diseases	6
	2.3.1 Cellulitis	7
	2.3.2 Erysipelas	R CL A
	2.3.3 Impetigo	
	2.3.4 Folliculitis	8
	2.3.5 Furuncle and carbuncle	Unive
0	Made of action of antibiotic agents	0

	2.4.1 Inhibition of cell wall synthesis	9
	2.4.2 Inhibition of protein synthesis	9
	2.4.3 Interference with nucleic acid synthesis	10
	2.4.4 Inhibition of metabolic pathway	10
	2.4.5 Interference with cell membrane integrity	10
2.5	Mechanism of antibiotic resistance in bacteria	11
	2.5.1 Antibiotic inactivation	11
	2.5.2 Target modification	11
	2.5.3 Interference of protein synthesis	12
	2.5.4 Interference of DNA synthesis	12
	2.5.5 Interference of efflux pumps and outer membrane (OM)	12
	permeability	
2.6	Skin disease causing bacteria	15
	2.6.1 Escherichia coli	15
	2.6.2 Pseudomonas aeruginaosa	15
	2.6.3 Propionibacterium acnes	15
	2.6.4 Streptococcus pyogenes	16
	2.6.5 Staphylococcus epidermidis	16
	2.6.6 Staphylococcus aureus	16
2.7	Virulence factor of <i>Staphylococcus aureus</i>	17
	2.7.1 Adherence factors	17
	2.7.2 Secreted factors	18
2.8	Antibiotic resistance in <i>S. aureus</i>	19
2.9	Gene involved in methicillin resistance S. aureus (MRSA)	19
2.10	Free Radicals	21
	2.10.1 Reactive oxygen species (ROS)	22
	2.10.2 Reactive nitrogen species (RNS)	24
2.11	Reaction of free radicals with biomolecules	25
	2.11.1 Cellular components	25
	2.11.2 Nucleic acid oxidation	26
	2.11.3 Carbohydrates	26
	2.11.4 Protein oxidation	26

2.12	Antioxidants	28
	2.12.1 Type of antioxidant	28
2.13	Phenolic compounds	32
2.14	Measurement of Total antioxidant activity	34
	2.14.1 Hydrogen atom transfer (HAT) reaction base assay	34
	2.14.2 Single electron transfer (SET) reaction base assay	34
2.15	Method for antioxidant activity testing	35
	2.15.1 DPPH method	35
	2.15.2 ABTS method	36
	2.15.3 FRAP assay	37
	2.15.4 Total phenolic content by Folin-Ciocalteau method	38
2.16	Plant extraction	38
	2.16.1 Water	39
	2.16.2 Acetone	39
	2.16.3 Alcohol	39
	2.16.4 Chloroform	39
2.17	Medicinal plants used in this study	40
	2.17.1 Andrographis paniculata Nees	40
	2.17.2 Cissus quadrangularis L.	41
	2.17.3 Coscinium fenestratum (Gaertn.) Colebr.	42
	2.17.4 Derris scandens (Roxb.) Benth.	43
	2.17.5 Eclipta prostrata (L.) L.	44
	2.17.6 Glycyrrhiza glabra L.	45
	2.17.7 Gynostemma pentaphyllum (Thunb.) Makino	46
	2.17.8 Hiptage cf. benghalensis ssp. benghalensis	47
	2.17.9 Houttuynia cordata Thunb.	48
	2.17.10 Momordica charantia L.	49
	2.17.11 Phyllanthus amarus Schumach.	50
	2.17.12 Pluchea indica (L.) Less.	51
	2.17.13 Pseuderanthemum palatiferum (Nees) Radlk. ex Lindau	52
	2.17.14 Rhinacanthus nasutus Kuntze	53
	2.17.15 Schefflera leucantha R.Vig.	54

	2.17.16 Senna alata (L.) Roxb.	55
	2.17.17 Stemona sp.	56
	2.17.18 Stephania venosa (Blume) Spreng.	57
	2.17.19 Thunbergia laurifolia Lindl.	58
	2.17.20 Tinospora crispa (L.) Hook.f. & Thomson	59
	2.17.21 Vernonia cinerea (L.) Less.	60
	2.17.22 Zingiber montanum Link ex A. Dietr.	61
2.18	Antimicrobial and antioxidant properties of medicinal plants	62

Chapter 3 Antibacterial Activity from Thai Medicinal Plants

3.1	Introduction	66		
3.2	Materials and methods	68		
	3.2.1 Detection of methicillin resistance of <i>Staphylococcus aureus</i>	68		
	3.2.2 Detection of <i>mecA</i> gene by PCR	69		
	3.2.3 Medicinal plants and extraction procedure	70		
	3.2.4 Investigation of antibacterial activity	70		
	3.2.5 Effect of plant extracts on bacterial cell morphology	72		
	using scanning electron microscopy (SEM)			
	3.2.6 Effect of ethanolic extracts of C. fenestratum and S. venosa	73		
	on gene expression in <i>S. aureus</i> and MRSA			
	3.2.7 Effect of plant extracts on PBP2a protein in MRSA	76		
	3.2.8 Preparation of plant extracts	78		
	3.2.9 Identification of <i>C. fenestratum</i> extract by GC/MS	82		
3.3	Results and Discussion	83		
	3.3.1 Characterization of methicillin resistant S. aureus	83		
	3.3.2 mecA gene mutation analysis by DNA sequencing technique	87		
	3.3.3 Plant extraction	96		
	3.3.4 Antibacterial activity	100		
	3.3.5 Determination of plant extracts on bacterial cell morphology	137		
	using scanning electron microscope (SEM)			
	3.3.6 Effect of C. fenestratum and S. venosa extracts on gene	143		
	expression in S. aureus and MRSA			

expression in MRSA 3.3.8 Plant Isolation and their antibacterial activity 154 Chapter 4 Antioxidant Activity of Medicinal Plant Extracts 171 4.1 Introduction 171 4.2 Materials and Methods 172 4.2.1 Antioxidant activity 172 4.2.2 Inhibition of oxidative protein damage by medicinal plant 174 extracts 175 4.3 Results and Discussion 177 4.3.1 Antioxidant activity 177 4.3.2 Protection of oxidative protein damage 190 4.3.2 Protection of oxidative protein damage 190 4.3.3 Plant isolation and their antioxidant activity 203 Chapter 5 Conclusion 221	4 1 2 2 4 5 7
3.3.8 Plant Isolation and their antibacterial activity 154 Chapter 4 Antioxidant Activity of Medicinal Plant Extracts 171 4.1 Introduction 171 4.2 Materials and Methods 172 4.2.1 Antioxidant activity 172 4.2.2 Inhibition of oxidative protein damage by medicinal plant 174 extracts 174 4.3 Results and Discussion 177 4.3.1 Antioxidant activity 177 4.3.2 Protection of oxidative protein damage 190 4.3.3 Plant isolation and their antioxidant activity 203 Chapter 5 Conclusion 221	4 1 2 2 4 5 7
Chapter 4 Antioxidant Activity of Medicinal Plant Extracts174.1Introduction174.2Materials and Methods174.2.1Antioxidant activity174.2.2Inhibition of oxidative protein damage by medicinal plant17extracts4.2.3Preparation of crude plant extracts174.3Results and Discussion174.3.1Antioxidant activity174.3.2Protection of oxidative protein damage1904.3.3Plant isolation and their antioxidant activity203Chapter 5Conclusion221Divition of the plant extracts221	1 2 2 4 5 7
4.1Introduction17.4.2Materials and Methods17.4.2.1Antioxidant activity17.4.2.2Inhibition of oxidative protein damage by medicinal plant17.4.2.2Inhibition of oxidative protein damage by medicinal plant17.extracts4.2.3Preparation of crude plant extracts17.4.3Results and Discussion17.4.3.1Antioxidant activity17.4.3.2Protection of oxidative protein damage1904.3.3Plant isolation and their antioxidant activity203Chapter 5Conclusion221	1 2 2 4 5 7
4.2Materials and Methods17.4.2.1Antioxidant activity17.4.2.2Inhibition of oxidative protein damage by medicinal plant17.4.2.2Inhibition of crude plant extracts17.4.2.3Preparation of crude plant extracts17.4.3Results and Discussion17.4.3.1Antioxidant activity17.4.3.2Protection of oxidative protein damage190.4.3.3Plant isolation and their antioxidant activity203.Chapter 5Conclusion221.	2 2 4 5 7
4.2.1 Antioxidant activity17.4.2.2 Inhibition of oxidative protein damage by medicinal plant17.extracts4.2.3 Preparation of crude plant extracts17.4.3 Results and Discussion17.4.3.1 Antioxidant activity17.4.3.2 Protection of oxidative protein damage1904.3.3 Plant isolation and their antioxidant activity203Chapter 5 Conclusion221	2 4 5 7
4.2.2 Inhibition of oxidative protein damage by medicinal plant174extracts4.2.3 Preparation of crude plant extracts1754.3 Results and Discussion1774.3.1 Antioxidant activity1774.3.2 Protection of oxidative protein damage1904.3.3 Plant isolation and their antioxidant activity203Chapter 5 Conclusion221	4 5 7
4.2.3 Preparation of crude plant extracts1754.3 Results and Discussion1774.3.1 Antioxidant activity1774.3.2 Protection of oxidative protein damage1904.3.3 Plant isolation and their antioxidant activity203Chapter 5 Conclusion221Difficiency100	5 7
4.3Results and Discussion1774.3.1Antioxidant activity1774.3.2Protection of oxidative protein damage1904.3.3Plant isolation and their antioxidant activity203Chapter 5Conclusion221	7
4.3.1 Antioxidant activity174.3.2 Protection of oxidative protein damage1904.3.3 Plant isolation and their antioxidant activity203Chapter 5 Conclusion221	
4.3.2 Protection of oxidative protein damage1904.3.3 Plant isolation and their antioxidant activity203Chapter 5 Conclusion221	7
4.3.3 Plant isolation and their antioxidant activity 203 Chapter 5 Conclusion 221	3
Chapter 5 Conclusion 221	3
	1
Bibliography 225	5
List of Publication 256	5
Appendix	
Appendix A Culture media 257	7
Appendix B Chemical reagents for DNA extraction and agarose gel 259	9
electrophoresis	
Appendix C Real time PCR 262	2
Appendix DChemical reagents for Western blotting265	5
Appendix E Chemical reagents for antioxidant activity 269	9
Appendix FStandard Curves of Antioxidant Activity Test274	4
Copy Curriculum Vitae Chiang Mai Uni 277	rsit

LIST OF TABLES

Page

Table 2.1	Description of six common bacterial skin diseases	6	
Table 2.2	Mechanisms of bacterial resistance to antibiotics	14	
Table 2.3	Examples of biological oxidants formed	22	
Table 2.4	Protein oxidative modification and disease	27	
Table 2.5	Mechanism of action of various antioxidants against deferent disease	30	
Table 2.6	The important classes of phenolic compounds in plants	33	
Table 2.7	Solvents used for active component extraction	38	
Table 2.8	Main groups of plant compounds with antimicrobial activity	63	
Table 3.1	Interpretive standards breakpoint values for <i>Staphylococcus</i> spp. <i>mecA</i> -mediated resistance	69	
Table 3.2	Amount of the samples in test tubes for determination of MIC and MBC	72	
Table 3.3	Chemical component for reverse transcription reaction	74	
Table 3.4	Gene and their protein of S. aureus and MRSA analyzed in this study	75	
Table 3.5	Oligonucleotide primers for real-time quantitative PCR	75	
Table 3.6	Chemical components for quantitative polymerase chain reaction (qPCR) reaction	76	
Table 3.7	Amount of the samples in test tubes for tannin detection	82	
Table 3.8	Biochemical test of ten isolates of S. aureus	85	
Table 3.9	Antibiotic susceptibility testing of clinical isolates MRSA using	85	
	oxacillin and cefoxition disc		
Table 3.10	Plant materials used in this study	97	
Table 3.11	Percentage yield of plant extracts	98	
Table 3.12	Inhibitory effect of plant extracts on pathogenic bacteria using	103	
	agar disc diffusion method		

Table 3.13	Inhibitory effect of plant extracts on methicillin resistant S. aureus	108
	(MRSA) using agar disc diffusion method	
Table 3.14	Minimal inhibitory concentration (MIC) and minimal bactericidal	113
	concentration (MBC) values of crude plant extracts against	
	pathogenic bacteria using broth dilution method	
Table 3.15	Minimal inhibitory concentration (MIC) and minimal bactericidal	116
	concentration (MBC) values of crude plant extracts against methicillin	
	resistant S. aureus (MRSA) using broth dilution method	
Table 3.16	Antibacterial activity of C. fenestratum in four different solvent	122
	extractions	
Table 3.17	Antibacterial activity of S. venosa in four different solvent extractions	123
Table 3.18	Minimal inhibitory concentration (MIC) and minimal bactericidal	124
	concentration (MBC) of methanolic and dichloromethane extracts of	
	C. fenestratum	
Table 3.19	Minimal inhibitory concentration (MIC) and minimal bactericidal	125
	concentration (MBC) of methanolic and dichloromethane extracts of	
	S. venosa	
Table 3.20	Time killing of plant extract on pathogenic bacteria	129
Table 3.21	Effect of <i>C. fenestratum</i> fractions on growth of pathogenic bacteria	156
	by agar disc diffusion method	
Table 3.22	Minimal inhibitory concentration (MIC) and minimal bactericidal	157
	concentration (MBC) of C. fenestratum fractions against	
	pathogenic bacteria using broth dilution method	
Table 3.23	Effect of C. fenestratum fractions on growth of pathogenic bacteria	161
	by agar disc diffusion method	
Table 3.24	Effect of C. fenestratum fractions on growth of MRSA by agar disc	161
	diffusion method	
Table 3.25	Primary chemical screening test of CF01 fraction of C. fenestratum	163
Table 3.26	Effect of S. venosa fractions on growth of pathogenic bacteria by	165
	agar disc diffusion method	

Table 3.27	Minimal inhibitory concentration (MIC) and minimal bactericidal	166	
	concentration (MBC) of S. venosa fractions against pathogenic		
	bacteria by broth dilution method		
Table 3.28	R _f values of the partial purified fraction of S. venosa extract	168	
Table 3.29	Primary chemical screening test of chloroform fraction of S. venosa	170	
Table 4.1	Amount of sample used in oxidative protein damage model	174	
Table 4.2	IC ₅₀ values of plant extracts after determination of free radical	179	
	inhibition by ABTS decolorization assay		
Table 4.3	Antioxidant activity of plant extracts assessed by ABTS decolorization assay	180	
Table 4.4	IC ₅₀ values of plant extracts after determination of free radical	183	
	inhibition by DPPH radical scavenging assay		
Table 4.5	Antioxidant activity of plant extracts assessed by DPPH radical	184	
	scavenging assay		
Table 4.6	Antioxidant activity of extracts assessed by FRAP assay	186	
Table 4.7	Total phenolic content of extracts assessed by Folin-Ciocalteau assay	188	
Table 4.8	Pearson's correlation coefficients of antioxidant activities by	190	
	ABTS, DPPH, FRAP and total phenolic content		
Table 4.9	Antioxidant activity of <i>E. prostrata</i> fractions by ABTS and	204	
	DPPH method		
Table 4.10	Total phenolic compound content of <i>E. prostrata</i> fractions	204	
Table 4.11	Percentage yield of each fraction from E. prostrata after separating	206	
	by column chromatography using celite as a stationary phase		
Table 4.12	Antioxidant activity of E. prostrata fractions by ABTS, DPPH	207	
	method and total phenolic compound content		
Table 4.13	Total phenolic compound content of E. prostrata fractions	208	
Table 4.14	Percentage yield of 16 subfraction by column chromatography	209	
	using silica gel as stationary phase		
Table 4.15	Antioxidant activity of <i>E. prostrata</i> fractions by DPPH radical	211	
	scavenging assay and total phenolic compound content		
Table 4.16	Primary chemical screening test of crude ethanolic extract of	212	
	E. prostrata		

Table 4.17	Antioxidant activity and total phenolic content of crude and	214
	fractions of <i>Hiptage</i> sp.	
Table 4.18	Total phenolic content of crude and fractions of <i>Hiptage</i> sp.	214
Table 4.19	Percentage yield of each fraction from Hiptage sp.	215
Table 4.20	Antioxidant activity of <i>Hiptage</i> sp. fractions by ABTS	217
	decolorization assay	
Table 4.21	Total phenolic compound content of <i>Hiptagesp.</i> fractions	217
Table 4.22	Percentage yield of each fraction from SP05 fraction	218
Table 4.23	Antioxidant activity of SP05 fractions by ABTS decolorization assay	219
Table 4.24	Total phenolic compound content of SP05 fractions	219
Table 4.25	Primary chemical screening test of SP05 fraction	220

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Page

Figure 2.1	Skin structure	4	
Figure 2.2	Modes of action of some major antimicrobial chemotherapeutic agents	9	
Figure 2.3	Virulence factors of S. aureus	17	
Figure 2.4	The induction of PBP2a and penicillinase control by regulatory system	21	
	of mecA and BlaZ, respectively		
Figure 2.5	The process of formation of reactive oxygen species (ROS)	23	
Figure 2.6	Basic structure of phenolic	32	
Figure 2.7	Plant phenolic compounds	33	
Figure 2.8	DPPH structure	35	
Figure 2.9	Structure of 2, 2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid)	36	
	cation (ABTS •+)		
Figure 2.10	Reaction of the ABTS radical in the presence of the antioxidant	37	
	compound during the ABTS assay		
Figure 2.11	Reaction for FRAP assay	37	
Figure 2.12	2 Andrographis paniculata Nees	40	
Figure 2.13	Cissus quadrangularis L.	41	
Figure 2.14	Coscinium fenestratum (Gaertn.) Colebr.	42	
Figure 2.15	Derris scandens (Roxb.) Benth.	43	
Figure 2.16	Eclipta prostrata (L.) L.	44	
Figure 2.17	Glycyrrhiza glabra L.	45	
Figure 2.18	Gynostemma pentaphyllum (Thunb.) Makino	46	
Figure 2.19	Hiptage cf. benghalensis ssp. benghalensis	47	
Figure 2.20	Houttuynia cordata Thunb	48	
Figure 2.21	Momordica charantia L.	49	
Figure 2.22	Phyllanthus amarus Schumach.	50	

Figure 2.23 Pluchea indica (L.) Less.	51	
Figure 2.24 Pseuderanthemum palatiferum (Nees) Radlk. ex Lindau 52	
Figure 2.25 Rhinacanthus nasutus Kuntze	53	
Figure 2.26 Schefflera leucantha R.Vig.	54	
Figure 2.27 Senna alata (L.) Roxb.	55	
Figure 2.28 Stemona sp.	56	
Figure 2.29 Stephania venosa (Blume) Sprer	ng. 57	
Figure 2.30 Thunbergia laurifolia Lindl.	58	
Figure 2.31 Tinospora crispa (L.) Hook.f. &	Thomson 59	
Figure 2.32 Vernonia cinerea (Linn.) Less.	60	
Figure 2.33 Zingiber montanum Link ex A. I	Dietr. 61	
Eisen 2.1 Western blattin	70	
Figure 3.1 western blotting	78	
Figure 5.2 Antibiotic susceptionity testing (SI S 52 and S 72 using 80	
$\frac{1}{1000}$ oxacillin (1µg) and ceroxitin (30	μg) antibiotic disc	
Figure 3.3 PCR product of methicillin resist	tant gene (<i>mecA</i>) of ten methicillin 86	
resistant <i>S. aureus</i> (MRSA) isola	ites	
Figure 3.4 Specific primers MR1 and MR2	on <i>mecA</i> gene in <i>S. aureus</i> 89	
subsp. <i>aureus</i> USA300_TCH151	16	
Figure 3.5 The 843 bp DNA sequence of M	RSA 50 90	
Figure 3.6 The 844 bp DNA sequence of M	IRSA 64 91	
Figure 3.7 The 844 bp DNA sequence of M	IRSA 66 92	
Figure 3.8 The 843 bp DNA sequence of M	IRSA 67 93	
Figure 3.9 The 843 bp DNA sequence of M	IRSA 72 94	
Figure 3.10 The 838 bp DNA sequence of M	IRSA 80 95	
Figure 3.11 Aqueous and ethanolic extract of	f 22 medicinal plants 99	
Figure 3.12 Inhibitory effect of ethanolic ext	tract of V. cinerea, E. prostrata, 102	
C. fenestratum, S. leucantha and	gentamycin (40 mg/ml) on growth	
of S. aureus, S. epidermidis, MR	SA 64, MRSA 65, MRSA 66 and	
MRSA 67 by agar disc diffusion	method	
Figure 3.13 Inhibitory effect of ethanolic extra	ract of V. cinerea, E. prostrata, 102	
C. fenestratum, S. leucantha on g	growth of <i>P. acnes</i> by agar disc	
diffusion method		

Figure 3.14	Antibacterial effect of methanolic and dichloromethane extracts	126
	of C. fenestratum and S. venosa on S. aureus, S. epidermidis,	
	St. pyogenes, MRSA 64, MRSA 65, MRSA 66, MRSA67, E. coli	
	O157: H7 and Ps. aeruginosa by agar disc diffusion method	
Figure 3.15	Antibacterial effect of methanolic and dichloromethane extracts of	126
	C. fenestratum and S. venosa on P. acnes by agar disc diffusion method	
Figure 3.16	Time-killing curves of the bacterial growth of the <i>E. coli</i> O157: H7	133
	after incubating with ethanolic extracts of plant extracts and gentamycin	
	was used as a positive control	
Figure 3.17	Time-killing curves of the bacterial growth of the Ps. aeruginosa	133
	after incubating with ethanolic extracts of plant extracts and gentamycin	
	was used as a positive control	
Figure 3.18	Time-killing curves of the bacterial growth of the S. aureus after	134
	incubating with ethanolic extracts of five plant extracts and	
	gentamycin was used as a positive control	
Figure 3.19	Time-killing curves of the bacterial growth of the S. epidermidis	134
	after incubating with ethanolic extracts of five plant extracts and	
	gentamycin was used as a positive control	
Figure 3.20	Time-killing curves of the bacterial growth of the MRSA 64	135
J.	after incubating with ethanolic extracts of five plant extracts and	
	gentamycin was used as a positive control	
Figure 3.21	Time-killing curves of the bacterial growth of the MRSA 72	135
	after incubating with ethanolic extracts of five plant extracts and	
	gentamycin was used as a positive control	
Figure 3.22	Time-killing curves of the bacterial growth of the MRSA 80	136
0	after incubating with ethanolic extracts of five plant extracts and	
	gentamycin was used as a positive control	
Figure 3.23	Time-killing curves of the bacterial growth of the <i>St. pyogenes</i>	136
ĨŨ	after incubating with ethanolic extracts of five plant extracts and	
	gentamycin was used as a positive control	
	by Chiang Mai Univ	

Figure 3.24 Time-killing curves of the bacterial growth of the P. acnes	137
after incubating with ethanolic extracts of five plant extracts and	
gentamycin was used as a positive control	
Figure 3.25 Scanning electron micrograph of S. aureus treated with ethanolic	139
extract of C. fenestratum and S. venosa at 37 °C for 24 hours from	1
different concentration	
Figure 3.26 Scanning electron micrograph of S. epidermidis treated with ethan	olic 140
extract of <i>C. fenestratum</i> and <i>S. venosa</i> at 37 °C for 24 hours from	n
different concentration	
Figure 3.27 Scanning electron micrograph of MRSA 64 treated with ethanolic	141
extract of <i>C. fenestratum</i> and <i>S. venosa</i> at 37 °C for 24 hours from	1
different concentration	
Figure 3.28 Scanning electron micrograph of MRSA 80 treated with ethanolic	142
extract of <i>C. fenestratum</i> and <i>S. venosa</i> at 37 °C for 24 hours from	
different concentration	
Figure 3.29 Scanning electron micrograph of E. coli O157: H7 treated with	143
ethanolic extract of S. venosa at 37 °C for 24 hours from different	
concentration	
Figure 3.30 Effect of ethanolic extracts of C. fenestratum and S. venosa on the	e 145
transcription of α - toxin gene (<i>hla</i>) in <i>S. aureus</i> and MRSA 80	
Figure 3.31 Schematic diagram of mecA expression regulation controlled by	146
regulatory gene mecR1 (transducer gene) and mecI (repressor gene	e)
Figure 3.32 Effect of ethanolic extracts of C. fenestratum and S. venosa on the	e 148
transcription of mecI, mecR1 and mecA of MRSA 80	
Figure 3.33 Effect of ethanolic extracts of C. fenestratum and S. venosa on the	e 149
transcription of nucleaseA gene (nucA) in S. aureus and MRSA 8	0
Figure 3.34 Effect of <i>S. venosa</i> extract on PBP2a expression in MRSA 80	152
detected by Western blotting analysis	
Figure 3.35 Effect of S. venosa extract on PBP2a expression in MRSA 80 dete	ected 153
by Western blotting analysis	
Figure 3.36 Percentage of PBP2a protein inhibition after treatment with	154
C. fenestratum and S. venosa extracts	

Figure	e 3.37 Schematic diagram shows the isolation procedure of <i>C. fenestratum</i>	155
	by partition technique	
Figure	e 3.38 The effect of four fractions of C. fenestratum on the growth of	158
	S. aureus, S. epidermidis, St. pyogenes, MRSA 64, MRSA 65,	
	MRSA 66 and MRSA, E. coli O157: H7 and Ps. aeruginosa	
	using agar disc diffusion method	
Figure	e 3.39 The effect of partial purified fraction of C. <i>fenestratum</i>	158
	fraction on the growth of <i>P. acnes</i> by agar disc diffusion method	
Figure	e 3.40 Schematic diagram shows the isolation procedure of <i>C. fenestratum</i> by column chromatography	159
Figure	e 3.41 The effect of four fractions of <i>C. fenestratum</i> on the growth of	160
6	S. aureus, S. epidermidis, St. pyogenes, MRSA 64, MRSA 65,	
	MRSA 66 and MRSA, E. coli O157: H7 and Ps. aeruginosa	
	using agar disc diffusion method	
Figure	e 3.42 GC chromatograms of ethanolic extracts of <i>C. fenestratum</i>	164
Figure	e 3.43 Schematic diagram shows the isolation procedure of	164
	S. venosa by partition technique	
Figure	e 3.44 The effect of four fractions of <i>S. venosa</i> on the growth of	167
	S. aureus, S. epidermidis, St. pyogenes, MRSA 64, MRSA 65,	
	MRSA 66 and MRSA, E. coli O157: H7 and	
	Ps. aeruginosa using agar disc diffusion method	
Figure	e 3.45 The effect of partial purified fraction of <i>S. venosa</i>	167
	on the growth of <i>P. acnes</i> by agar disc diffusion method	
Figure	e 3.46 TLC chromatograms of partial purified fractions of <i>S. venosa</i> fractions	168
Figure	e 4.1 PAGE profile of BSA protein and percent of BSA protein	193
	protection after treatment with aqueous extract of <i>D. scandens</i>	
Figure	e 4.2 PAGE profile of BSA protein and percent of BSA protein protection after treatment with aqueous extract of <i>P. amarus</i>	194
Figure	e 4.3 PAGE profile of BSA protein and percent of BSA protein	195
	protection after treatment with aqueous extract of R. nasatus	

Figure 4.4	PAGE profile of BSA protein and percent of BSA protein	196
	protection after treatment with aqueous extract of S. alata	
Figure 4.5	PAGE profile of BSA protein and percent of BSA protein	197
	protection after treatment with aqueous extract of Shenodesme sp	
Figure 4.6	PAGE profile of BSA protein and percent of BSA protein	198
	protection after treatment with ethanolic extract of <i>E. prostrata</i>	
Figure 4.7	PAGE profile of BSA protein and percent of BSA protein	199
	protection after treatment with ethanolic extract of <i>H. cordata</i>	
Figure 4.8	PAGE profile of BSA protein and percent of BSA protein	200
	protection after treatment with ethanolic extract of P. amarus	
Figure 4.9	PAGE profile of BSA protein and percent of BSA protein	201
	protection after treatment with ethanolic extract of P. platiferum	
Figure 4.10	PAGE profile of BSA protein and percent of BSA protein	202
	protection after treatment with ethanolic extract of Hiptage sp	
Figure 4.11	Schematic diagram shows the isolation procedure of E. prostrata	203
	by partition technique	
Figure 4.12	2 Schematic diagram shows the isolation procedure of E. prostrata	205
	by column chromatography	
Figure 4.13	TLC Chromatograms of isolated fractions of 12 subfraction	206
	of E. prostrate	
Figure 4.14	Schematic diagram shows the isolation procedure	213
	of <i>Hiptage sp.</i> by partition technique	
Figure 4.1	5 Schematic diagram shows the isolation procedure	215
	of <i>Hiptage sp.</i> by column chromatography	
Figure C.1	Fluorescence curve from SYBR Green I detection of hla gene in	262
	S. aureus and MRSA after treatment with C. fenestratum and	
	S. venosa extracts	
Figure C.2	Fluorescence curve from SYBR Green I detection of mecR, mecI	263
	and mecA gene in MRSA after treatment with C. fenestratum and	
	S. venosa extracts	

- Figure C.3 Fluorescence curve from SYBR Green I detection of *nucA* gene
 264

 in S. aureus and MRSA after treatment with C. fenestratum and
 S. venosa extracts
- Figure F.1 The dose response curve of percentage of inhibition of radical 274 generated from ABTS by trolox solution after measuring absorbance at 734 nm
- Figure F.2 The dose response curve of percentage of inhibition of radical 275 generated from DPPH by gallic acid solution after measuring absorbance at 517 nm
- Figure F.3 Calibration curve for the absorbance at 593 nm of FRAP method275as a function of concentration of ferric sulfate standard solution
- Figure F.4Calibration curve for the absorbance at 725 nm of Folin-Ciocalteau276method as a function of concentration of gallic acid standad solution

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

APS	Ammonium Persulfate
BSA	Bovin Serum Albumin
CFU/ml	Colony Forming Unit per Milliliter
DMSO	Dimethyl Sulfoxide
DNA	Deoxyribonucleic Acid
GSH	Glutathione
H_2O_2	Hydrogen Peroxide
IgG	Immunoglobulin G
М	Molar
mg	Milligram
mm	Millimeter
mM	Millimolar
μl	Microliter
OD	Optical Density
O2*-	Superoxide Anion
•ОН	Hydroxyl Radical
PCR	Polymerase Chain Reaction
PBS	Phosphate Buffered Saline
рН	Power of Hydrogen Ion
RNA	Ribonucleic Acid
RNS	Reactive Nitrogen Species
ROS	Reactive Oxygen Species
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
SOD	Superoxide Dismutase
TLC	Thin Layer Chromatography
UV	Ultra Violet Radiation
w/v	Weight by Volume

ข้อความแห่งการริเริ่ม

วิทยานิพนธ์นี้ได้นำเสนอการค้นหาพืชสมุนไพรที่มีประสิทธิภาพดีที่สุดในการยับยั้งการเจริญ ของแบคทีเรียก่อโรคผิวหนังบางชนิด และมีประสิทธิภาพสูงในการต้านอนุมูลอิสระเพื่อพัฒนาเป็นยา หรือผลิตภัณฑ์อาหารเสริมชนิดใหม่ ต่อไปในอนาคต โดยได้ทำการวิจัยที่ สาขาจุลชีววิทยา ภาควิชา ชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่และบางส่วนของงานได้ทำการวิจัยที่คณะเภสัช ศาสตร์ มหาวิทยาลัยเชียงใหม่

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

This thesis was conducted to find the efficacy of medicinal plants in Thailand which had the highest antibacterial activity against some bacteria causing skin disease and antioxidant activity in order to improve new pharmacology or food supplement products in the future. This work conducted at Division of Microbiology, Faculty of Science, Chiang Mai University and some part was performed at Faculty of Pharmacy, Chiang Mai University.

ີລິບສີກສົ້ນກາວົກຍາລັຍເຮີຍວໃหນ Copyright[©] by Chiang Mai University All rights reserved