CONTENTS

	Page	
90 00		
Acknowledgement	d	
Abstract in Thai	e	
Abstract in English	g	
List of Tables	k	
List of Figures	1	
List of Abbreviations	p	
List of Symbols	q	
Statement of Originality in Thai	r	
Statement of Originality in English	s	
Chapter 1 Introduction	1	
Chapter 2 Literature review	4	
2.1 Anaerobic digestion	4	
2.2 Microbial consortium and microbiological process	5	
2.3 Factors affecting anaerobic digestion	13	
2.4 Co-digestion	16	
2.5 Process design	19	
2.6 Denaturing gradient gel electrophoresis (DGGE)	20	
2.7 Application of DGGE techniques for microbial community study	23	
in biogas reactors		
Chapter 3 Materials and methods	25	
Chapter 3 Materials and methods 3.1 Sludge sampling	25	
3.2 Microbial community analysis	27	
3.2 Wherobial community analysis		

	Page
Chapter 4 Microbial community in anaerobic co-digestion of pig manure	34
with Napier grass in channel digester-upflow anaerobic sludge blanket	
(CD-UASB) and completely stirred tank reactor (CSTR)	
4.1 Introduction	34
4.2 Materials and methods	35
4.3 Results and discussion	37
Chapter 5 Microbial community in anaerobic co-digestion of pig manure	71
with food waste in channel digester-upflow anaerobic sludge blanket	
(CD-UASB) and completely stirred tank reactor (CSTR)	
5.1 Introduction	71
5.2 Materials and methods	73
5.3 Results and discussion	75
Chapter 6 General discussion	100
Chapter 7 Conclusion	106
References	107
Appendix	121
Appendix A	122
Appendix B	128
Appendix C	130
Appendix D	132
Appendix E	133
Curriculum Vitae	141

LIST OF TABLES

		Page
Table	2.1 Examples of hydrolytic bacteria in anaerobic reactors	7
Table	2.2 Examples of methanogenic bacteria	11
Table	2.3 Chemical compositions (in % of TS) of animal slurries	17
Table	3.1 Sampling time	25
Table	3.2 Sequence of the primers used	29
Table	3.3 Reaction mixtures for amplification of bacterial 16S rDNA	30
Table	3.4 Reaction mixtures for amplification of archaeal 16S rDNA	30
Table	3.5 Preparation of DGGE gel solution for a polyacrylamide gel	31
	with a denaturant gradient between 20-45% and 30-55%	
Table	3.6 Reaction mixtures for colony PCR amplification	33
Table	4.1 Phylogenetic affiliation of the bacterial 16S rDNA sequences	51
	from DGGE bands using BLAST search in GenBank and	
	EzTaxon database from sludge in CD-UASB and CSTR	
	co-digested with Napier grass under HRT 30 days	
Table	4.2 Phylogenetic affiliation of the archaeal 16S rDNA sequences	68
	from DGGE bands using BLAST search in GenBank and	
	EzTaxon database from sludge in CD-UASB and CSTR	
	co-digested with Napier grass at HRT 30 days	
Table	5.1 Phylogenetic affiliation of the bacterial 16S rDNA sequences	86
	from DGGE bands using BLAST search in GenBank and	
	EzTaxon database from sludge in CD-UASB and CSTR	
	co-digested with food waste under HRT 20 days	
Table	6.1 Species richness, methane yield and COD removal efficiency in	103
	all the reactors studied	

LIST OF FIGURES

		Page
Figure 2.1	Electron micrographs of microbial communities in anaerobic methanogenic granules	5
Figure 2.2	Schematic overview of four main steps in the anaerobic	6
	digestion process	
Figure 2.3	Phylogenetic classification of methanogenic bacteria	12
Figure 2.4	Schematic sketches of the batch and continuous reactor	19
Figure 2.5	Migration of DNA bands by DGGE technique	21
Figure 2.6	Diagram of steps in microbial community analysis by DGGE	23
	technique	
Figure 3.1	Sampling point of the lab scale CD-UASB reactor	26
Figure 3.2	Sampling point of the lab scale CSTR	26
Figure 4.1	DGGE profiles and dendrograms (UPGMA clustering) of	41/
	bacterial 16S rDNA fragments amplified from sludge in	
	CD-UASB reactor co-digested with Napier grass under	
	different HRT	
Figure 4.2	DGGE profiles and dendrograms (UPGMA clustering) of	42
	bacterial 16S rDNA fragments amplified from sludge in	
	CSTR co-digested with Napier grass under different HRT	
Figure 4.3	Cluster analysis of bacterial banding patterns at steady state	44
	from reactors co-digested with Napier grass under different HRT	
Figure 4.4	DGGE profile of bacterial 16S rDNA fragments amplified	49
	from sludge in CD-UASB reactor co-digested with Napier	
	grass at HRT 30 days	
Figure 4.5	DGGE profile of bacterial 16S rDNA fragments amplified	50
	from sludge in CSTR co-digested with Napier grass at	
	HRT 30 days	

		Page
Figure 4.6	Phylogopatic tree of 165 rDNA heaterial sequences from	58
Figure 4.6	Phylogenetic tree of 16S rDNA bacterial sequences from	36
	sludge DNA in CD-UASB reactor co-digested with Napier	
	grass at HRT 30 days as determined by the neighbor-joining method	
Picymo 4.7		50
Figure 4.7	Phylogenetic tree of 16S rDNA bacterial sequences from	59
	sludge DNA in CSTR co-digested with Napier grass at	
- F: 4.0	HRT 30 days as determined by the neighbor-joining method	95
Figure 4.8	DGGE profiles of archaeal 16S rDNA fragments amplified	62
	from sludge in CD-UASB reactor co-digested with Napier	
	grass and under different HRT	
Figure 4.9	DGGE profiles of archaeal 16S rDNA fragments amplified	63
	from sludge in CSTR co-digested with Napier grass under	
	different HRT	
Figure 4.10	DGGE profile of archaeal 16S rDNA fragments amplified	64
	from seed and sludge samples in CD-UASB and CSTR	
	co-digested with Napier grass	
Figure 4.11	DGGE profile of archaeal 16S rDNA fragments amplified	66
	from sludge in CD-UASB reactor co-digested with Napier	
	grass and at HRT 30 days	
Figure 4.12	DGGE profile of archaeal 16S rDNA fragments amplified	67
	from sludge in CSTR co-digested with Napier grass at	
	HRT 30 days	
Figure 4.13	Relative abundance of methanogenic archaea in the clone	70
	library	
Figure 5.1	DGGE profiles and dendrograms (UPGMA clustering) of	78
	bacterial 16S rDNA fragments amplified from sludge in	
	CD-UASB reactor co-digested with food waste under	
	different HRT	

		Page
Figure 5.2	DGGE profiles and dendrograms (UPGMA clustering) of bacterial 16S rDNA fragments amplified from sludge in	79
	CSTR co-digested with food waste under different HRT	
Figure 5.3	Cluster analysis of bacterial banding patterns at steady state	80
	from reactors co-digested with food waste under different HRT	
Figure 5.4	DGGE profile of bacterial 16S rDNA fragments amplified	84
	from sludge in CD-UASB reactor co-digested with food waste	
	at HRT 20 days	
Figure 5.5	DGGE profile of bacterial 16S rDNA fragments amplified from	85
	sludge in CSTR co-digested with food waste at HRT 20 days	
Figure 5.6	Phylogenetic tree of 16S rDNA bacterial sequences from sludge	90
	DNA in CD-UASB reactor co-digested with food waste at	
	HRT 20 days as determined by the neighbor-joining method	
Figure 5.7	Phylogenetic tree of 16S rDNA bacterial sequences from sludge	91
	DNA in CSTR co-digested with food waste at HRT 20 days as	
	determined by the neighbor-joining method.	
Figure 5.8	DGGE profiles of archaeal 16S rDNA fragments amplified from	94
	sludge in CD-UASB reactor co-digested with food waste under different HRT	
Figure 5.9	DGGE profiles of archaeal 16S rDNA fragments amplified from	95
	sludge in CSTR co-digested with food waste under different HRT	
Figure 5.10	DGGE profile of archaeal 16S rDNA fragments amplified from	96
	seed and sludge samples in CD-UASB and CSTR co-digested	
	with food waste	
Figure 5.11	DGGE profile of archaeal 16S rDNA fragments amplified from	98
	sludge in CD-UASB reactor co-digested with food waste at HRT 20 days	
Figure 5.12	DGGE profile of archaeal 16S rDNA fragments amplified from	99
	sludge in CSTR co-digested with food waste at HRT 20 days	

Page

102

Cluster analysis of bacterial banding pattern at steady state

from reactors co-digested with Napier grass or food waste

under different HRT

Figure 6.1

