

หัวข้อวิทยานิพนธ์	บทบาทของยีน <i>yakA</i> และ <i>rttA</i> ต่อการเติบโต การเปลี่ยนแปลงรูปร่าง และการตอบสนองต่อความเครียดของเชื้อ <i>Penicillium marneffei</i>		
ผู้เขียน	นางสาวสุมานันท์ สุวรรณคร		
ปริญญา	ปรัชญาดุษฎีบัณฑิต (ชุดชีววิทยา)		
คณะกรรมการที่ปรึกษา	ศ. ดร. นงนุช วนิชย์ชนะกุล	อาจารย์ที่ปรึกษาหลัก	
	ผศ. ดร. สิริดา ยังนิม	อาจารย์ที่ปรึกษาร่วม	
	ผศ. ดร. มนติชา ป้องป้อม	อาจารย์ที่ปรึกษาร่วม	

บทคัดย่อ

เพนนิซิเลียม มาร์เนฟฟิโล เป็นเชื้อรากสูงปั้นอยู่กับอุณหภูมิ ซึ่งพบการก่อโรคได้สูงในผู้ที่มีภูมิคุ้มกันบกพร่อง ทั้งผู้ที่อาศัยภายในเขตເອເຊຍตະວັນອອກເນີຍໄດ້ຫວູ້ຜູ້ທີ່ເດີນທາງມາທ່ອງເທິ່ງຍັງເທືນ ເຊື້ອນີ້ເຈົ້າຢູ່ປະກາດຢູ່ປະກາດທີ່ອຸ່ນຫຼາຍ 25°C ໂດຍມີການສ່ວນສປອຣເປັນສາຍໂຫຼ່ເກີດທີ່ປ່າຍແສ້ນໃໝ່ທີ່ກໍາທຳ ທັນນາທີ່ຊູ່ສປອຣກາຍໄດ້ສ່ວນທີ່ເໝາະສົມ ແຕ່ຈະເປີ່ຍການເຈົ້າຢູ່ປະກາດທີ່ອຸ່ນຫຼາຍ 37°C ຢ່ວູ້ກາຍໃນເນື້ອເຍື່ອທີ່ມີການຕິດເຊື້ອ ໂດຍເຊື້ອມີການແບ່ງຕົວແບນ binary fission ການສຶກຍາກ່ອນໜ້ານີ້ໄດ້ນຳວິທີ *Agrobacterium*-mediated transformation (AMT) ມາໃຊ້ ສ່ວນເຊື້ອກາຍພັນຫຼຸ້ທີ່ມີຄວາມບກພຽງຈາກປົກທາງດ້ານຮູ່ປະກາດ ແລະການສ່ວນໂຄນິເດີຍ ດັ່ງນັ້ນໃນການສຶກຍາກ້າງ ນີ້ໄດ້ຄັດເລືອກເຊື້ອກາຍພັນຫຼຸ້ທີ່ໄດ້ຈາກວິທີ AMT ນີ້ ຂໍ້ສາຍພັນຫຼຸ້ I231 ແລະ I133 ຜົ່ງມີຄວາມຜົດປົກທີ່ອຸ່ນຫຼາຍ *yakA* ແລະ *rttA* ຕາມລຳດັບນາມທຳການສຶກຍາຄຸນລັກຍະນະຕ່າງໆ

ເຊື້ອທີ່ມີການກາຍພັນຫຼຸ້ອຸ່ນຫຼາຍ *yakA* ມີການສ່ວນໂຄນິເດີຍນ້ອຍທີ່ອຸ່ນຫຼາຍ 25°C ເມື່ອເຖິງກັນເຊື້ອ wild type ແລະເຊື້ອທີ່ມີການໄສ່ຍືນກັນດືນ ນອກຈາກນີ້ຄວາມຜົດປົກທີ່ອຸ່ນຫຼາຍ *yakA* ທີ່ເກີດຈາກກາຍພັນຫຼຸ້ນີ້ມີຜົດໄທມີກາງອກຂອງໂຄນິເດີຍພື້ນໜີແລະຮັບການຄວາມສມນູຮັນຂອງພັນໜີເຊລດ് ເຊື້ອກາຍພັນຫຼຸ້ນີ້ມີກາງກະຈາຍຕ້າວອງໄກຕິນທີ່ຜົດປົກໄປເມື່ອເພາະເຄື່ອງເພາະທີ່ 25°C ແຕ່ໄມ່ພົບລັກຍະນະຜົດປົກທີ່ 37°C ເປັນທີ່ນ່າສັນໃຈວ່າ ເມື່ອນົມເຊື້ອທີ່ທັງສອງອຸ່ນຫຼາຍນີ້ ເຊື້ອກາຍພັນຫຼຸ້ນີ້ມີຮະດັບອອກໄກຕິນພື້ນໜີອີກ ຜົ່ງສັນພັນນີ້ກັບການເພີ່ມຂຶ້ນຂອງຮະດັບການແສດກອອກຂອງຍືນ *chsB* ແລະ *chsG* ທີ່ຮະດັບ transcription ໂດຍ

ยืนเหล่านี้กำหนดการสร้าง chitin synthase B และ G นอกจากนี้ ระดับการแสดงออกของยีน *yakA* ระดับ transcription เพิ่มมากขึ้นในระยะ post-log phase และสภาวะกระตุ้นด้วยความร้อนที่ อุณหภูมิ 39°C อย่างไรก็ตาม ยีน *yakA* ของเชื้อเพนนิซิลเลียม มาร์เนฟฟิไอไม่มีบทบาทหลักสำหรับ ความรุนแรงในการก่อโรคและการเปลี่ยนรูปของเชื้อในการทดลองการติดเชื้อของตัวอ่อน *Galleria mellonella* ดังนั้นโดยสรุปแล้วพบว่ายีน *yakA* นั้นจำเป็นสำหรับรูปแบบการพัฒนาของเชื้อที่ปกติ ความสมบูรณ์ของผนังเซลล์ การสะสมของไคติน การแสดงออกของ *chs* ที่เหมาะสม และการ ตอบสนองต่อความร้อนในเชื้อเพนนิซิลเลียม มาร์เนฟฟิไอ

ในการศึกษานี้ได้มีการศึกษาบทบาทของยีน *rttA* ในเชื้อเพนนิซิลเลียม มาร์เนฟฟิไออีกด้วย ผลการศึกษาแสดงให้เห็นว่า เชื้อที่มีการกลายพันธุ์ของยีน *rttA* มีการสร้างโคนิดียน้อยลงที่อุณหภูมิ 25°C เมื่อเทียบกับเชื้อ wild type และเชื้อที่มีการใส่ยีนกลับคืน และพบว่ามีการออกของโคนิดีที่ ลดลงอีกด้วย เชื้อกลายพันธุ์นี้มีความไวอย่างมากต่อสารที่มีผลกระแทบทำให้เกิดการเปลี่ยนแปลงที่ สารพันธุกรรม นอกจากนี้ยังที่เกี่ยวข้องกับเมตาบอลิซึมของสาร์บอไไซเดรต รวมทั้งการตอบสนอง ของเชื้อกลายพันธุ์ต่อภาวะเครียดออกซิเดชัน มีการแสดงออกระดับ transcription ที่ลดลงในสภาวะ ที่ เป็นยีสต์ สำหรับการแสดงออกของ *rttA* เมื่อเพาะเลี้ยงที่ 37°C พบการแสดงออกที่เพิ่มขึ้นเมื่อ ตอบสนองต่อสารที่ทำให้เกิดความเสียหายต่อเดินเอ ในส่วนสำคัญได้พบว่า เชื้อกลายพันธุ์นี้มีความ รุนแรงในการก่อโรคลดลงใน *Galleria larva* เมื่อนำ *G. mellonella* ไปปั่นที่ 25°C หรือ 37°C หลังจากการติดเชื้อ โดยเปรียบเทียบกับเชื้อ wild type และเชื้อที่มีการใส่ยีนกลับคืน จึงสรุปได้ว่า *rttA* gene นั้นมีบทบาทที่สำคัญในการสร้างรูปร่าง เมตาบอลิซึมของสาร์บอไไซเดรต การตอบสนอง ต่อความเครียด และความรุนแรงในการก่อโรคของเชื้อเพนนิซิลเลียม มาร์เนฟฟิไอ บ่งชี้ว่ายีนนี้น่าจะ เป็นเป้าหมายสำหรับการพัฒนายาต้านเชื้อร่าต่อไป

Thesis Title	Role of <i>yakA</i> and <i>rttA</i> Genes in Growth, Morphogenesis and Stress Response of <i>Penicillium marneffei</i>
Author	Miss Sumanun Suwunnakorn
Degree	Doctor of Philosophy (Microbiology)
Advisory Committee	Prof. Dr. Nongnuch Vanittanakom Advisor Asst. Prof. Dr. Sirida Youngchim Co-adv Asst. Prof. Dr. Monsicha Pongpom Co-adv

ABSTRACT

Penicillium marneffei is a thermally dimorphic fungus that is a highly significant pathogen of immunocompromised persons living in or having traveled in Southeast Asia. At 25°C, *P. marneffei* grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37°C or found within infected tissue, *P. marneffei* grows as a yeast form that divides by binary fission. Previously, an *Agrobacterium*-mediated transformation system was used to randomly mutagenize *P. marneffei*, resulting in the isolation of mutants defective in normal patterns of morphogenesis and conidiogenesis. The interrupted genes were identified as *yakA* (strain I231) and *rttA* (strain I133). In the current study, we investigated the role of *yakA* and *rttA* genes in the growth, morphogenesis, and stress response in *P. marneffei*.

The *yakA* mutant produced less conidia than the wild type and the genetically complemented mutant strain at 25°C. In addition, disruption of *yakA* gene resulted in early conidial germination and perturbation of cell wall integrity. The *yakA* mutant exhibited abnormal chitin distribution while growing at 25°C, but not at 37°C. The *yakA* mutant also responded to cell wall weakening by increasing chitin levels. Interestingly, at both temperatures, the *yakA* mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, *chsB* and *chsG*. Moreover, the expression of *yakA* was induced during post-log-phase growth as well as by heat shock of 39°C. However, the *P. marneffei* *yakA* gene does not play critical roles in virulence and *in vivo* phase transition in a *Galleria mellonella* larvae infection model. Thus, *yakA* is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate *chs* expression, and heat stress response in *P. marneffei*.

The role of the *rttA* gene in *P. marneffei* was also investigated in this study. The results showed that the *rttA* mutant produced less conidia than the wild type and the complemented mutant strain at 25°C. Slow conidial germination was observed in the mutant. The *rttA* mutant cells were hypersensitive to genotoxic agents. In addition, the genes associated with carbohydrate metabolism and oxidative stress were down-regulated in the yeast phase of the *rttA* mutant. Moreover, we also found that the expression of *rttA* was induced in response to DNA-damaging agents at 37°C. Importantly, the *rttA* mutant was less pathogenic in a *Galleria* larvae infection model than the wild type and complemented strains when the larvae were incubated at either 25 or 37°C. In conclusion, *rttA* gene plays important roles in morphogenesis,

carbohydrate metabolism, stress response and pathogenesis in *P. marneffei*, suggesting that it may serve as a potential target for development of antifungal compounds.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved