APPENDIX A

REAGENT

1. Polyvinyl alcohol-lacto-glycerol (PVLG) mountant (Brundrett et al., 1996)

Polyvinyl alcohol	8.33	g
Distilled water	50	ml
Lactic acid	50	ml
Glycerine	5	ml

2. Melzer's reagent (Brundrett et al., 1996)

Iodine	C)	1.5	g	2
Potassium iodine	(STE	5	g	
Distilled water	Sall	100	ml	

3. Reagents for roots clearing and staining reagents (Brundrett et al., 1996)

10% KOH (w/v) (exothermic reaction)

50% Glycerol-water (v/v) for destaining and storage of roots

0.05% w/v trypan blue in lactoglycerol (1:1:1 lactic acid, glycerol and water) Dissolve trypan blue in water before adding equal volumes of lactic acid and glycerol.

Jniversity

d

reserve

4. Modified Hoagland's nutrient solution (modified from Gambrog and Wetter, Chiang Mai U

S.

1975)

Solution A		
H ₃ BO ₃	280	mg
MnSO ₄ .H ₂ O	340	mg
CuSO ₄ .5H ₂ O	10	mg
ZnSO ₄ .7H ₂ O	22	mg
(NH ₄)Mo ₇ O ₂₄ .4H ₂ O	10	mg

g h

Adjust volume to 100 ml and keep in 4 °C.

Solution B

Concentrate H_2SO_4 0.5 ml Adjust volume to 100 ml and keep in 4 °C.

Solution C

 Na2EDTA
 3.36
 g

 FeSO4.7H2O
 2.79
 g

Adjust volume to 400 ml and heat at 70 °C until the solution turn into yellow color. Adjust volume to 500 ml and keep the solution in 4 °C.

Hoagland's stock solution (10x)

Ca(NO ₃) ₂	4.7	g	
MgSO4. 7H ₂ O	2.6	g	
KNO3	3.3	g	
NH4H2PO4	0.6	g	
Solution A	5	ml	2
Solution B	0.5	ml	e.

Adjust volume to 500 ml and keep the solution in 4 °C.

1x Hoagland's nutrient solution

10x Hoagland's stock solution	100	ml
Solution C	5	ml
Adjust volume to 1,000 ml (prepare before	use).	onversity

APPENDIX B

MEDIA

1. Minimal (M) medium (Bécard and Fortin 1988)

MgSO ₄ .7H ₂ O	731	mg
KNO ₃	80	mg
KCl	65	mg
KH ₂ PO ₄	4.8	mg
Ca(NO ₃) ₂ .4H ₂ O	288	mg
NaFeEDTA	8	mg
КІ	0.75	mg
MnCl ₂ .4H ₂ O	6	mg
ZnSO ₄ .7H ₂ O	2.65	mg
H ₃ BO ₃	1.5	mg
CuSO ₄ .5H ₂ O	0.13	mg
Na ₂ MoO ₄ .2H ₂ O	0.0024	mg
Sucrose	10,000	mg
Glycine	3	mg
Thiamine hydrochioride	0.1988	mg
Pyridoxine hydrochloride	0.1	mg
Nicotinic acid	0.5	mg
Myo inositol	s ₅₀ rea	mg e c
Bacto Agar	10,000	mg

2. Modified Strullu Romand (MSR) medium (Declerck *et al.*, 1998, modified from Strullu and Romand, 1986)

	MgSO ₄ .7H ₂ O	739	mg
	KNO ₃	76	mg
	KCl	65	mg
	KH ₂ PO ₄	4.1	mg
	Ca(NO ₃) ₂ .4H ₂ O	359	mg
	NaFeEDTA	8	mg
	MnSO ₄ .4H ₂ O	2.45	mg
	ZnSO ₄ .7H ₂ O	0.29	mg
	H ₃ BO ₃	1.86	mg
	CuSO ₄ .5H ₂ O	0.24	mg
	Na ₂ MoO ₄ .2H ₂ O	0.0024	mg
	(NH4)6M07O24.4H2O	0.035	mg
	Sucrose	10,000	mg
	Thiamine hydrochioride		mg
	Pyridoxine hydrochloride	0.9	mg
	Nicotinic acid	130	mg
	Calcium panthotenate	0.9	mg
	Cyanocobalamine	0.4	mg
	Biotin	$0.9 imes 10^{-3}$	mg
	Bacto Agar	10,000	mg
	Adjust the volume into 1,000 ml with	h distilled wate	r University
3. Lur	ia-Bertani (LB) medium	res	erved
	Tryptone	10	g
	Yeast extract	5	g
	NaCl	5	g

15

g

Agar

4. Super Optimal Broth (SOB medium)

Tryptone	20	g
Yeast extract	5	g
NaCl	0.5	g

- Add 950 ml de-ionized water

- Add 10 ml 250 mM KCl
- Add 20 ml 1M MgSO₄
- Adjust pH to 7.0 with 5N NaOH
- Adjust volume to 1 liter with de-ionized water

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Name:	Ms. Amornrat Chaiyasen
Date of Birth:	March 16 th , 1985
Place of Birth	Chiang Rai Province, Thailand
Education:	ามยนต์
2001 - 2003	High school at Wattanothai Payap School, Muang,
2	Chiang Mai, Thailand.
2004 - 2007	Bachelor of Science (Microbiology) with Secound Class
100	Honors in Biology. Special project: Propagation of
-393-	endomycorrhizal spore and effects of endomycorrhiza
	and Piriformospora indica on Coix lacryma-jobi L. and
181	Tagetes patula L., Department of Biology, Faculty of
NE.	Science, Chiang Mai University.
Scholarships:	MALERSIT
2007	Industrial and Research Projects for Undergraduate
S S S.	Students (IRPUS), The Thailand Research Fund.
2008-present	The Royal Golden Jubilee Ph D. Program- Industry
Copyright	The Thailand Research Fund
Allri	ghts reserved
2011–2013	The Higher Education Commission, Thailand under the
	National Research University: A1 program (research
	assistant).
2012-2014	Thailand Research Fund for Research Team Association
	Grant: RTA5580007 (research assistant).

Experience:

August - December 2010	Training and study AM fung	gal commur	nity analysis	via
	terminal restriction fragment l	length poly	morphism	
	(T-RFLP) at Department of	Biology,	University	of
	York, UK.			

Speaker and staff in	workshop on Use of Mycorrhiza t
Increase Organic F	ant Production at Department of
Biology, Faculty of S	eience, Chiang Mai University.
Biology, Faculty of S	eience, Chiang Mai Universit

July - November 2013 Training and study AM fungal *in vitro* production and onfarm inoculum production at USDA, Agricultural Research Service, Eastern Regional Research Center, Pennsylvania, USA.

Publications:

1. Kumla J., Suwannarach N., **Jaiyasen A.**, Bussaban B. and Lumyong S. 2013. Development of an edible wild strain of Thai oyster mushroom for economic mushroom production. Chiang Mai Journal of Science 40:161–172.

2. Chaiyasen A, Young JPW, Teaumroong N, Gavinlertvatana P, Lumyong S. 2014. Characterization of arbuscular mycorrhizal fungus communities of *Aquilaria crassna and Tectona grandis* roots and soils in Thailand plantations. PLOS ONE 9(11): e112591.

3. Douds DD, **Chaiyasen A**, Vasquez LR, Wertheim FS. 2014. On-farm production of arbuscular mycorrhizal fungus inoculum in compost and vermiculite mixtures: results of on-farm demonstrations and impact of compost microbiological quality. Journal of the National Association County Agricultural Agents. http://www.nacaa.com/journal/index.php?jid=444.

Poster presentation:

1. **Chaiyasen A**, Lumyong S. 2009. Diversity of Arbuscular Mycorrhizal Fungi in Rhizosphere Soil of *Tectona grandis* (Teak) and *Aquilaria* spp. (Agarwood). RGJ Seminar Series LXII Biodiversity, Utilization and Global warming solution. Department of Biology, Faculty of Science, Chiang Mai University, Thailand.

2. Chaiyasen A, Lumyong S. 2010. Diversity of Arbuscular Mycorrhizal Fungi in Rhizosphere Soil of *Tectona grandis* Linn. (Teak) and *Aquilaria crassna* Pierre. (Agarwood). International Symposium on Fungal Biodiversity and Resources. Wang Come Hotel, Chiang Rai, Thailand.

3. Chaiyasen A, Young JPW, Lumyong S. 2011. Arbuscular Mycorrhizal Fungi Comparative Community Analysis in Rhizosphere soil and root of *Tectona grandis* Linn. and *Aquilaria crassna* Pierre. via Terminal-Restriction Fragment Length Polymorphism. RGJ-Ph.D. Congress XII "Discovery and Diversity". Jomtien Palm Beach Hotel and Resort, Pattaya, Thailand.

4. **Chaiyasen A**, Lumyong S. 2012. Diversity of Arbuscular Mycorrhiza Fungi in Rhizosphere Soils of Teak (*Tectona grandis* L.) and Agar wood (*Aquilaria crassna* Pierre.). 1st Phayao Research. University of Payao, Payao, Thailand.

5. Chaiyasen A, Young JPW, Gavinlertvatana P, Lumyong S. 2012. Community Analysis and Effects of Arbuscular Mycorrhizal Fungi on *Tectona grandis* Linn. and *Aquilaria crassna* Pierre. RGJ-Ph.D. Congress XIII. Jomtien Palm Beach Resort, Pattaya, Chonburi, Thailand.

