CONTENTS

Page
iii
v
ix
xix
xxi
xxiv
xxvi
xxvii
xviii
1
6
6
7
9
13
13
13
18
18
10
19
•

	Page
2.3.3 Improve structure and stability of soil by	
glomalin production	20
2.3.4 Protect plant pathogen infection	22
2.4 Inoculum production of arbuscular mycorrhiza	22
2.4.1 Substrate-based production systems	23
2.4.2 Substrate-free cultivation systems	24
2.4.3 <i>In vitro</i> production systems	24
2.5 Botanical description and important of studied host plants	
and interaction with AM fungi	26
2.5.1 Aquilaria crassna Pierre ex H. Lecomte	26
2.5.2 Tectona grandis Linn.f.	28
2.5.3 Interaction between AM fungi and studied host plants	29
Chapter 3 Diversity of arbuscular mycorrhizal fungi and glomalin in rhizosphere soils of <i>Tectona grandis</i> and <i>Aquilaria crassna</i>	31
3.1 Introduction	31
3.2 Materials and methods	33
3.2.1 Study sites and sampling	33
3.2.2 Determination of root length colonization	37
3.2.3 AM fungal spore assessment	37
3.2.4 Soil analysis	38
3.2.5 Statistical analysis	38
3.3 Results	39
3.3.1 Soil chemical analysis	39
3.3.2 Soil glomalin analysis	40
3.3.3 AM fungal spore diversity and morphological	
colonization	41
3.4 Discussion	46
3.4.1 AM fungi and soil chemical factors	46

	Page
3.4.2 Glomalin-relate soil protein and soil organic carbon	47
3.4.3 AM fungal spore diversity and colonization	48
Chapter 4 Community analysis of AM fungi in rhizosphere soils and	
roots of A. crassna and T. grandis	50
4.1 Introduction	50
4.2 Materials and methods	51
4.2.1 Study sites and sampling	51
4.2.2 Soil analyses	52
4.2.3 Molecular analysis	52
4.2.4 Screening and DNA sequence analysis	53
4.2.5 Phylogenetic analysis	53
4.2.6 Statistical analysis	54
4.3 Results	54
4.3.1 Soil analyses and correlation with TRFs	54
4.3.2 AM fungal community of root and soil samples from	
A. crassna and T. grandis	56
4.3.3 Occurrence of AM fungi in soils and roots of both plants	59
4.3.4 Sequence and phylogenetic analysis	61
4.4 Discussion	65
Chantan 5 Calastian of AM funci for growth anhancement of	
Chapter 5 Selection of AM fungi for growth enhancement of	
A. crassna and T. grandis	68
5.1 Introduction	68
5.2 Materials and methods	69
5.2.1 Plant growth experiment	69
5.2.1.1 AM fungal inoculation with hardening	
stage plantlets	69

	Page
5.2.1.1.1 Inoculum production	69
5.2.1.1.2 AM fungal inoculation	70
5.2.1.2 <i>In vitro</i> inoculation with rooting stage	
T. grandis plantlets	71
5.2.1.2.1 Inoculum production	71
5.2.1.2.2 <i>In vitro</i> dual culture with	
T. grandis plantlets	71
5.2.2 Statistical analysis	72
5.3 Results	72
5.3.1 Plant growth experiment with hardening stage plantlets	72
5.3.2 Plant growth experiment with rooting stage	
T. grandis plantlets	76
5.4 Discussion	79
Chapter 6 Propagation of AM fungal spore for large scale production	81
6.1 Introduction	81
6.2 Materials and methods	82
6.2.1 Substrate-based production systems	82
6.2.1.1 Experiment I Selection of suitable diluents	
and host plants using pot culture (pot culture)	83
6.2.1.2 Experiment II On-farm inoculum production	
using leaf litter compost	84
6.2.2 Experiment on in vitro axenic culture	85
6.2.2.1 Determination of the best medium suitable	
for AM fungi	85
6.2.2.2 Dual culture propagation	86

	Page
6.2.3 Data collection and statistical analysis	86
6.3 Results	87
6.3.1 Substrate-based production systems	87
6.3.1.1 Pot culture	87
6.3.1.2 On-farm inoculum production	89
6.3.2 Experiment on in vitro production system	90
6.4 Discussion	95
6.4.1 Substrate-based production systems	95
6.4.2 <i>In vitro</i> production system	97
Chapter 7 Investigation of selected AM fungal colonization in	
target plant roots	100
7.1 Introduction	100
7.2 Materials and methods	101
7.2.1 Source of AM fungal spores and colonized roots	101
7.2.2 DNA extraction from roots and spores	101
7.2.3 Nested PCR and conditions	102
7.2.4 Denaturing gradient gel electrophoresis analysis	103
7.2.5 Restriction fragment length polymorphism analysis	103
7.3 Results	104
7.3.2 Denaturing gradient gel electrophoresis analysis	104
7.3.3 Restriction fragment length polymorphism analysis	106
7.4 Discussion	108

	Page
Chapter 8 General discussion and conclusion	110
8.1 Distribution of AM fungi and glomalin in rhizosphere	
soils of A. crassna and T. grandis	110
8.2 Community analysis of AM fungi in rhizisphere	
soils and roots of A. crassna and T. grandis	111
8.3 Selection of AM fungi for growth enhancement of	
A. crassna and T. grandis	112
8.4 Propagation of AM fungal spore for large scale production	113
8.5 Investigation of selected AM fungal spore colonization in	
target plant roots	114
References	115
List of publications	140
Appendix	
Appendix A	141
Appendix B	143
Curriculum Vitae	146
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

	Page
Table 2.1 Classification of <i>Glomeromycota</i>	11
Table 2.2 Description of the group-specific primers used in PCR targeting	
the AM fungal rDNA gene	16
Table 3.1 Site chemical properties and agricultural management of study areas	36
Table 3.2 Root length colonization, spore density and distribution frequency	
of AM fungi in study sites	42
Table 3.3 Relative abundance of AMF spores found in rhizosphere soils of	
Aquilaria crassna and Tectona grandis at 8 different woodlots	43
Table 4.1 Chemical characteristic of soils in wet season (July 2010) which	
soils and roots were sampled	55
Table 4.2 Correlation matrix of soil factors and terminal restriction fragments	56
Table 4.3 Summary of two-way ANOVA for main and interaction effects of	
host plants, sites, and source of samples on AM fungal community	
diversity	58
Table 4.4 Clone sequences and TRFs derived from roots and rhizosphere soils	62
Table 5.1 Height of inoculated and uninoculated A. crassna and	
T. grandis plantlets after 4 months of inoculation	73
Table 5.2 Height and stem diameter of inoculated and uninoculated	
T. grandis plantlets after 4 months of inoculation	74
Table 5.3 Growth responses of inoculated and uninoculated <i>T. grandis</i>	
plantlets after 3 months of inoculation	78

LIST OF TABLES (CONTINUED)

	Page
Table 6.1 Chemical analyses of substrates used in the pot culture	
and on-farm production	85
Table 6.2 Summary of two-way analysis of variance for AM fungal	
spore numbers and root length colonization	87
Table 6.3 Main effects of AM fungus isolate, host plant, and culture	
materials on AM fungi	88
Table 6.4 Germination percentage and hyphal length of individual	
germinated spore on the minimal (M) medium and modified Strullu	
Roman medium (MSR)	92
Table 6.5 Number of new spores and hyphal characterization of each spore	
species in in vitro propagation	93

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

LIST OF FIGURES

	Page
Figure 1.1 Schematic presentation of the relationships between chapters of	
the thesis	5
Figure 2.1 AM fungal structures produced in host plant root	7
Figure 2.2 Diagrams of colonization types observed in the root material	8
Figure 2.3 Phylogeny of fungi based on SSU rRNA sequences	10
Figure 2.4 Taxonomic structure of the AM and related fungi (Glomeromycota)	10
Figure 2.5 Consensus classification of the Glomeromycota	12
Figure 2.6 Schematic drawing of the organization of the fungal ribosomal	
rRNA gene cluster	14
Figure 2.7 Diagram show outline of terminal-restriction fragment length	
polymorphism method	15
Figure 2.8 The role of root hairs and mycorrhizal fungus hyphae in acquiring	
poorly mobile nutrients	19
Figure 2.9 Overview of various mechanisms that are hyphal mediated and	
influence the formation or stabilization of soil	21
Figure 2.10 Production of AM fungal inoculum	26
Figure 2.11 Characterizaton of Aquilaria crassna	27
Figure 2.12 Characterizaton of <i>Tectona grandis</i>	29
Figure 3.1 Map of Thailand showing five provinces of study sites	34
Figure 3.2 Study sites in 8 study plots	35
Figure 3.3 Total inorganic N, available P (Bray II), and exchangeable K at	
the eight sampling sites.	39
Figure 3.4 Bradford reactive soil proteins and the ratio between the BRSPs	
and soil organic carbon (SOC) in the eight sampling sites	40

LIST OF FIGURES (CONTINUED)

	Page
Figure 3.5 AM fungal spores morphology in rhizosphere soils of <i>T. grandis</i>	
and A. crassna	44
Figure 3.6 Colonized roots of A. crassna and T. grandis	45
Figure 3.7 Principle component analysis (PCA) showing correlation between	
AM fungi, glomalin content and soil chemical factors	46
Figure 4.1 Effects of host plant and source of samples (root and soil) on mean	
number of terminal restriction fragments (TRFs) per sample using three	
restriction enzymes	57
Figure 4.2 Cluster analysis of terminal restriction fragment length polymorphism	
patterns from AM fungal communities	59
Figure 4.3 Occurrence of TRFs from roots and soils	60
Figure 4.4 The RFLP fringerprint of <i>T. grandis</i> rhizosphere using restriction	
enzymes: HinfI and Hsp92II	61
Figure 4.5 Neighbour-joining phylogenetic tree of partial small subunit	
rRNA gene	64
Figure 5.1 Culture bottles covering with aluminum foil incubated under	
florescence light	72
Figure 5.2 Effect of inoculation with AM fungi (Part I experiment) on	
height of T. grandis	75
Figure 5.3 Characterization of AM fungi in vitro inoculation	76
Figure 5.4 Effect of <i>in vitro</i> inoculation with AM fungi	77
Figure 6.1 Mean number of spores from different host plants and mean	
percentage root length colonization in the on-farm production	90
Figure 6.2 Germinated hyphae from surface sterile spore on culture medium	91
Figure 6.3 <i>In vitro</i> culture of AM fungal spores	94

LIST OF FIGURES (CONTINUED)

	Page
Figure 7.1 DGGE profiles of 18S rDNA fragments for reference AMF	
spores and replicate of inoculated T. grandis roots	104
Figure 7.2 DGGE profiles of 18S rDNA fragments for reference AMF	
spores and inoculated T. grandis roots	106
Figure 7.3 Restriction fragment length polymorphism profiles of 18S	
rDNA fragments restricted with HinfI and Hsp92II	107
9/200	
909 1909	
101 ND1/3/	
115/11/11/2/2/	
NY HAD A	
MALTERSI	
MAI UNIVERSITAS	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม	
Copyright [©] by Chiang Mai University	
Copyright [©] by Chiang Mai University All rights reserved	

LIST OF ABBREVIATIONS

μl microlitre μm micrometer

AMF arbuscular mycorrhizal fungi

bp base pair cm centimeter

DGGE denaturing gradient gel electrophoresis

DNA deoxyribonucleic acid

g gram

GRSP glomalin-related soil protein

kg kilogram
h hour
ha hectare

INVAM International Culture Collection of Arbuscular and Vesicular

Arbuscular Mycorrhizal Fungi

ITS internal transcribe spacer

L litre

LSU large subunit

ml millilitre

m meter

mm millimeter

nm nanometer

min minute
M molar

mM millimolar

PCR polymerase chain reaction

ppm part per million

Ri T-DNA Ri plasmid transferred deoxyribonucleic acid

RNA ribonucleic acid

ROC root organ culture

rpm round per minute

sec second

SSU small subunit

TRFs terminal restriction fragments

T-RFLP terminal-restriction fragment length polymorphism

U unit

v/v volume by volume

w/v weight by volume

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

°C degree Celsius % percent

ลิชสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- 1. วิทยานิพนธ์นี้ได้นำเสนอการวิเคราะห์ชุมชนทางอณูชีววิทยาของเชื้อราอาร์บัสคูลาร์ไมคอร์ ไรซาซึ่งสัมพันธ์กับรากและดินรอบรากที่เก็บจากพื้นที่ปลูกไม้ยืนต้นเขตป่าร้อนชื้นคือ กฤษณาและสัก ถือเป็นส่วนหนึ่งของวัตถุประสงค์ระยะยาวในการหากลยุทธ์ที่เหมาะสมใน การปลูกเชื้อราอาร์บัสคูลาร์ไมคอร์ไรซา เพื่อส่งเสริมการเจริญในสวนป่าและการปลูกป่า ทดแทนของพืชทั้งสองชนิด
- 2. เพื่อเพิ่มจำนวนสปอร์เชื้อราอาร์บัสคูลาร์ไมคอร์ไรซาในระดับสเกลใหญ่ การเพาะเลี้ยงใน กระถางด้วยวัสดุผสมและพืชอาศัยแตกต่างกัน และการผลิตหัวเชื้อแบบฟาร์มโดยใช้ปุ๋ยเศษ ซากใบไม้เป็นส่วนผสมของวัสดุปลูก ได้ถูกนำเสนอและประยุกต์ให้เข้ากับสภาพอากาศแบบ ร้อนชื้น

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1. This study provides the molecular community analysis of AM fungi associated with field-collected roots and rhizosphere soils of the tropical trees, *Aquilaria crassna* and *Tectona grandis* as part of a long term goal of optimizing AM fungus inoculation strategies to enhance plantation and reforestation efforts with these trees.
- 2. In order to propagate AM fungal spores for large scale production, the pot culture with different diluents and host plants, and the on-farm inoculum production using leaf litter compost as a substrate component were performed and applied for tropical climates.

ลิ**ปสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright[©] by Chiang Mai University All rights reserved