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CHAPTER 2  

BACKGROUND THEORIES 

This chapter contains details on the description of necessary principles that 

relate to the research i.e. crystal structures, x-ray interactions with atoms, x-ray 

absorption spectroscopy, x-ray absorption near edge structure calculation, extended x-

ray absorption fine structure equation and density functional theory.   

2.1 Crystal structures  

In crystallography, crystal structures can be primarily divided into 7 crystal 

systems which are cubic, tetragonal, orthorhombic, rhombohedral, hexagonal, 

monoclinic and triclinic. Further, these can be further classified into 32 point groups 

according to their crystallographic symmetry. However, only 21 point groups do not 

have a center of symmetry. Of these 21 point groups, 20 point groups correspond to 

materials which have the properties that an applied mechanical stress (on the materials) 

produces an electric field or on the other hand an electric field produces a mechanical 

stress. Such materials can be referred to as “piezoelectric” materials. In addition, these 

20 piezoelectric materials can be subdivided into 10 sub-materials that have 

spontaneous polarization or electrical polarity. These polar groups have the property that 

the change in temperature induces an electric field. Such materials are called 

“pyroelectric” materials. A subset of these pyroelectric can have their spontaneous 

polarization reversed or enhanced by the application of a high enough electric field. 

This subset of the pyroelectric is the “ferroelectric” materials. The classification of the 

crystal structures showing the division into piezoelectric, pyroelectric and ferroelectric 

can be shown in Figure 2.1. 
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Figure 2.1 The classification of crystal structures showing the division into 

piezoelectric, pyroelectric and ferroelectric materials (modified from [5]). 

There are many crystal structures associated with different physical properties 

of oxide compounds. For example, cubic, tetragonal, hexagonal and monoclinic 

structures for mechanical oxides, octahedron, rutile and anatase structures for optical 

oxides, and perovsike and ferrite structures for electrical oxides. Nevertheless, this 

thesis will focus only on electrical and magnetic oxide materials having mostly 

perovskite structure with a generic formula, i.e. ABO3. This perovskite structure has a 

primitive cubic structure with A-cation (alkali, alkaline earth and rare earth ion) in the 

middle of the cube, B-cation on the corner of the cube, and the O-anion (commonly 

oxygen) at the center of the cubic faces as shown in Figure 2.2. 
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Figure 2.2 Perovskite structure [6]. 

2.2 X-ray interactions with atoms 

The discovery of x-ray by W.C. Roentgen in 1895 (Nobel laureate in 1901) 

opened up new frontiers in the investigation of matter since x-ray has wavelengths 

approximating to atomic distances in materials. Further, being discovered by M.V. Laue 

in 1912 (Nobel laurate in 1914), x-ray absorbed in matter could generate the emission of 

electrons with characteristic energies. However, x-ray is electromagnetic radiation 

having wavelength ranges from about 0.1 Å to 100 Å corresponding to energy ranges 

from about 120 eV to 120 keV (which covers the binding energies of all electrons in 

most atoms). With these wavelength and energy regions, x-ray can be absorbed by most 

matters which result two important x-ray interactions i.e. x-ray absorption and x-ray 

scattering as the following. 

2.2.1 X-ray absorption 

In x-ray absorption process, the binding energy of bound electrons in the core 

shell (e.g. K, L and M shells) must be less than the energy of the incident x-ray. If the 

binding energy is greater than the incident x-ray energy, the bound electrons in the core 

shell will not be absorbed x-ray and will not be perturbed from their states. If the 

binding energy is less than the incident x-ray energy, the bound electrons in the core 

shell will be excited by the absorbed x-ray to higher empty energy state above the Fermi 
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energy, which gives rise to photoelectron ejected from the atom as shown in Figure 

2.3(a). After that, there appears empty energy state in the core shell, and electron in the 

higher energy shell steps down to fill the core hole shell which emits fluorescence x-ray. 

The energy of fluorescence x-ray is equal to the difference of electron energies between 

the unoccupied higher state and the occupied core state as shown in Figure 2.3(b). 

Additionally, other electrons in higher energy shell may be excited by fluorescence x-

ray, and ejected from the atom. This phenomenon is called auger electron emission as 

shown in Figure 2.3(c). 

 

                              (a)                                                             (b) 

 

                                                              (c) 

Figure 2.3 Schematic diagram of (a) x-ray absorption, (b) fluorescence x-ray emission 

and (c) auger electron emission when incident x-ray is applied on electrons in an atom. 

2.2.2 X-ray scattering 

There are two types of x-ray scattering i.e. elastic scattering (Rayleigh scattering / 

coherent scattering) and inelastic scattering (Compton scattering / incoherent 

scattering). In Rayleigh scattering, x-ray is scattered by bound electrons but electrons 
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are neither excited nor ionized. The x-ray loses negligible fraction of energies. The 

wavelength of incident x-ray is almost equal to that of scattered x-ray. In Compton 

scattering, x-ray is scattered by bound electrons and electrons are excited but not 

ionized. The x-ray loses some parts of energies. It is possible that the final x-ray have a 

different energy from the initial x-ray without the emission of electrons. The 

wavelength of incident x-ray is less than that of scattered x-ray. The schematic diagram 

for both mentioned x-ray scatterings is shown in Figure 2.4. 

                                               

(a) 

                                               

 (b) 

Figure 2.4 Schematic diagram of (a) Rayleigh scattering and (b) Compton scattering 

when incident x-ray is applied on electrons in an atom. 

The strength of an x-ray interaction such as absorption and scattering can be 

quantified in terms of the total cross section σtot, which has units of area, and generally 

is a function of energy. The special unit of area, “barn” (10−24 m2), is used because 

barns are a convenient size of nuclear, where nuclear dimensions are only a few 

femtometers. 
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Typically, the total photon cross section σtot comprises the contributions of several 

processes i.e. photon absorption (photoelectron) σp.e., coherent scattering (Rayleigh 

scattering) σcoh, incoherent scattering (Compton scattering) σincoh, nuclear absorption 

(photonuclear, usually followed by emission of a neutron or other particle) σnuc, pair 

production (electron field) Ke, pair production (nuclear field) Kn is a function of photon 

energy as shown in Figure 2.5. 

 

Figure 2.5 The total photon cross section as a function of photon energy in carbon and 

lead, showing the contributions of different processes at different energies [7]. 

From Figure 2.5, the total photon cross section comprises the contributions of the 

photon absorption, coherent scattering, and incoherent scattering, but the photoelectron 

cross section is dominant in the x-ray energy ranges (from about 1 keV to 1 MeV). 

Therefore, the total photon cross section is approximately identical to the absorption 

coefficient μ that can be obtained from x-ray absorption spectroscopy. 

2.3 X-ray absorption spectroscopy 

X-ray absorption spectroscopy (XAS) is a powerful experimental technique for 

determining local structure surrounding an absorbing atom in both ordered and 

disordered materials such as crystals, amorphous, glasses, films, membranes, liquids, 

solutions and molecular gases, which used in a wide variety of disciplines such as 

physics, chemistry, biology, medicine, engineering, environmental science, material 

science, and geology. This technique is a measure of the probability that photon is 

absorbed by the sample as a function of its energy. From x-ray absorption process, x-ray 

n 
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absorption spectrum can be detected in three modes i.e. transmission mode, 

fluorescence mode and electron yield mode. In transmission mode, x-ray absorption 

spectrum is obtained from the ratio of x-ray intensities before and after x-ray is passed 

the sample. Since x-ray is electromagnetic wave, being absorbed by the homogeneous 

material, the absorption coefficient   is described by the Lambert-Beer’s law [8] i.e. 

0

xI I e  ,                   (2.1) 

where I0 is the incident x-ray intensity and I is the transmit x-ray intensity after the x-

ray propagated the distance of x  inside the sample. In fluorescence mode, is obtained 

from the ratio of the incident x-ray intensity I0 and the fluorescence x-ray intensity If 

that are emitted after x-ray absorption event. Generally, the absorption coefficient   

smoothly decreases as the x-ray energy increases (approximately varies as 1/E3) i.e. the 

x-ray become more penetrating in the sample. The characteristic feature of the 

absorption coefficient is the x-ray absorption edges i.e. the minimum photon energy that 

is large enough to excite a bound electron into the continuum for each sub-shell 

(binding energy). In the x-ray absorption edge region, the absorption coefficient sharply 

increases. The emitted electron is called photoelectron. If the incident photon has higher 

energy, the photoelectron’s wave can propagated and scattered on neighboring atoms 

around absorbing atom. To probe local structure around absorbing atom with accuracy, 

x-ray should be absorbed by electron in core shell (e.g. K, L and M shells), which 

having the large interval of binding energies and the long range of photon energies to 

determine absorbing atom local structure without the x-ray absorption edges 

overlapping (see example for tungsten atom in Table 2.1). 
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Table 2.1 Electron binding energies of tungsten atom (Z = 74) [9]. 

N L J 
Number of 

electrons 
X-ray label Energy (eV) 

1 0 
1

2

 
2           K -69,525 

2 0 
1

2

 
2           LI -12,100 

 1 
1

2

 
2           LII -11,544 

 1 
3

2

 
4           LIII -10,207 

3 0 
1

2

 
2           MI -2,819 

 1 
1

2

 
2           MII -2,575 

 1 
3

2

 
4           MIII -2,281 

 2 
3

2

 
4           MIV -1,872 

 2 
5

2

 
6           MV -1,809 

4 0 
1

2

 
2           NI -595 

 1 
1

2

 
2           NII -492 

 1 
3

2

 
4           NIII -425 

 2 
3

2

 
4           NIV -259 

 2 
5

2

 
6           NV -245 

 3 5

2

, 7

2

 14           NVI,VII -35 

5 0 
1

2

 
2           OI -77 

 1 
1

2

 
2           OII -47 

 1 
3

2

 
4           OIII -36 

 2 3

2

, 5

2

 4           OIV,V -6 

 

Traditionally, x-ray absorption spectrum can be divided into two regions 

according to photon energies as shown in Figure 2.6. The low energy region covers 

photon energy up to about 40 eV above the x-ray absorption edge is called the x-ray 

absorption near-edge structure (XANES). In this photon energy region, the core electron 

is excited to the unoccupied state, so that the shape of the absorption edge depends on 

the density of states just above the Fermi level. Therefore, the oxidation state and 

geometry of an absorbing atom affect XANES spectrum. Additionally, this low energy 

range shows characteristic features for different oxidation state of the absorbing atom. 

The absorption edge in the XANES usually shifts to higher energy with the oxidation 
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state of the absorbing atom increasing. This is due to that the radial distribution of 

valence electrons charge could screen the nuclear charge in the nucleus. As a 

consequence, the core electrons get less screened and stronger attracted to the nucleus 

so it does cost larger energy to bring these core electrons to an excited state. 

 

Figure 2.6 X-ray absorption spectroscopy (XAS) of Cu presenting the L-edge and K-

edge regions. The inset shows an amplified view of the x-ray absorption near-edge 

structure (XANES) and the extended x-ray absorption fine structure (EXAFS) of the K-

edge region [10]. 

The high energy region covering photon energy up to about 1000 eV above above 

the x-ray absorption edge is called the extended x-ray absorption fine structure 

(EXAFS). In this energy range, the photon energy is far above the ionization threshold 

and the photoelectron can be considered as an outgoing spherical wave as shown in 

Figure 2.7. The neighboring atoms around absorbing atom are scattered this 

photoelectron wave, and there exists interference between the outgoing wave and the 

scattering waves if they meet at a same place. This leads to the final XAS spectrum 

which is indeed the superposition of the outgoing and the scattered waves. For 

constructive interference, the signal is enhanced leading to a maximum in the EXAFS 

oscillation. For destructive interference, the signal is suppressed leading to a minimum 
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in the EXAFS oscillation. EXAFS can then be used in the investigation of neighboring 

atoms around absorbing atom. 

 

Figure 2.7 Schematic diagram of the outgoing and the backscattering photoelectron 

wave leading to the EXAFS oscillations. E is the absorbed photon energy and E0 is the 

core level binding energy [11]. 

2.3.1 XANES theory 

The x-ray absorption spectroscopy is intrinsically quantum mechanical 

phenomenon. The absorption coefficient   measured by x-ray absorption spectroscopy 

experimental relates to the transition rate of photoelectron from initial core state | i  to 

final state | f   above Fermi energy. The transition rate is determined within single 

electron and dipole approximation by Fermi’s golden rule [12] as 

2ˆ| | | | ( ),f i

f

f r i E E                         (2.2) 

where ˆ r   is the dipole operator for the incident electromagnetic wave on atoms and 

electrons. Therefore, the absorption coefficient   is non-zero only above the Fermi 

energy i.e. only for incident photon energies that are large enough to promote the core 

electron into an unfilled state.   

The Hamiltonian of core state is 2

0 (1/ 2)H V    . The Hamiltonian of excited 

state is 0 ( )chH H V E    including a core potential chV
 

and a complex energy 

dependent quasi-particle self-energy ( )E . The single electron Green’s function can 
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then be written as 1/ ( )G E H i   , where   is the intrinsic broadening due to 

the final core hole lifetime. The sum over final states and the energy conserving delta 

function together can be compactly written in term of Green’s function ( 1/ ) ImG 

 
| ( ) |f i

f

f E E f     . The absorption function ( )E  is rewritten 

ˆ ˆ( ) ( 1/ ) Im | ( , ; ) | .E i r G r r E r i                          (2.3) 

The Green’s function defined above is the full single electron propagator in the 

presence of the scattering potential. G can be expressed in a series by the Dyson 

equation 

0 0 0 0 0 0 ...,G G G tG G tG tG                    (2.4) 

where 
0

01/ ( )G E H i    is the free electron propagator, describes the propagation 

of an electron from one angular momentum state in one atom to another atom and 

another angular momentum state and t is the atomic scattering matrix, describes the 

scattering from each site. The successive terms are the successive orders of scattering 

contributing to the dipole matrix element. The second term contains the description of 

all single scattering events wherein an electron propagates to the scatterer, scatters from 

it, and propagates back to the first atom. The third term describes all events involving 

the scattering from two atoms before propagating back to the first atom. The higher 

order terms have similar interpretations. All propagations starting at the central atom, 

that atom which absorbed the photon and emitted a photoelectron, are calculated. 

0

,

0

...,c c i c c i i j j c

i i j

G G G t G G t G t G
 

                     (2.5) 

allpossible
paths

cG G G                                (2.6) 

where
 cG  is the free electron propagator between the central atom and some 

neighboring atom and 0

,i jG  is the propagator between the atom i and j. the sum are over 

all possible scattering geometries of each order of scattering. The terms excluded from 

the sums are those for the propagation of an electron from some atom back to itself. The 

superscript   denotes some scattering path. All possible scattering geometries   
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within some cluster of neighboring atoms around the absorbing atom are calculated.  

The full multiple scattering fine structure can be extracted from 
,f fL LG  given as 

.

1
( ) Im exp(2 ) ( , )

2 1fl L L

mf

E i G E
l

  

 
    

                  (2.7) 

( ) ( ) ( ) ( ) ( ),central central f fR R R R l l l l m m            

where fl  is the final state angular momentum, 0R  is the central atom, 
fl  is the central 

atom phase shift for angular momentum fl . The Dirac delta function restrict this trace 

to the central atom and to the angular momentum of the photoelectron final state fl . 

The absorption function ( )E  contains both the embedded atom background 

0( )E  and the absorption fine structure ( )E  i.e. 

0( ) ( )(1 ( )).E E E                     (2.8) 

The embedded atom background 0( )E  is computed by directly evaluating the integral 

in Eq. (2.2) using the initial core state and the final state of the embedded atom i.e. the 

neutral atom within the muffin tin potential. The full multiple scattering absorption 

function FMS  is computed from 0  and Eq. (2.7). 

2.3.2 EXAFS equation 

As previously mentioned, the absorption fine structure ( )E  can be rewritten by 

the quantity 

0

0

( ) ( )
( ) ,

( )

E E
E

E

 








                 (2.9) 

where )(0 E  is the absorption edge jump. As previously mentioned, the scattering of 

the outgoing photoelectron wave from the neighboring atoms affects the amplitude of 

the photoelectron, which eventually results in the oscillation of the linear absorption 

coefficient with changing x-ray energy. From this qualitative picture an expression to 

calculate the EXAFS can be deduced. Conventionally, the EXAFS oscillations are often 

defined with respect to the photoelectron wave number k 
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02

2
( ),

m
k E E                 (2.10) 

where 0E  is the binding energy of the core electron that is excited and E   is the 

energy of the absorbed photon. 

The outgoing photoelectron can be described by a spherical wave with amplitude 

which is proportional to exp( ) /ikr r , where k is wavenumber of photoelectron. The 

neighboring atoms scatter the incoming spherical wave into the outgoing spherical wave 

and this wave is proportional to the amplitude of the incident wave and the 

backscattering amplitude ( )F k , which depends on the type of backscattering atom. The 

amplitude of the backscattered wave at the origin is proportional to 
2( )exp( 2 ) /F k i kr r . 

The photoelectron is not moving in a constant potential, a phase shift ( )k  has to 

be added to this expression to account for the interaction of the electron with the 

varying potential of the absorber atom and of the backscatter atom. It must be 

distinguished between the phase shift of the absorbing atom ( )a k  and the 

backscattering atom ( )b k . ( )k  is the sum of both phase shifts, but the phase shift of 

the absorber atom ( )a k  has to be counted twice in this sum, hence, 

( ) 2 ( ) ( )a bk k l k      , where 1l   for K-edges according to the dipole selection 

rules. Thus, ( )j k  is given by 

(2 ( )) (2 ( ))

2
( ) ( ) ,

2

j j j ji kr k i kr k

j j

j

e e
k F k

r

 


  


                       (2.11) 

or 

2

sin(2 ( ))
( ) ( ) .

j j

j j

j

kr k
k F k

r





                (2.12) 

In condensed matter, the absorber atom has in general more than one next nearest 

neighbour and, therefore, Equation 2.12 must be summed over the scattering 

contribution of all neighbours. Atoms at the same radial distance and of the same 

element contribute to the same components of the EXAFS signal. This group of atoms 
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is called a (coordination) shell. The coordination number of each shell is jN  and the 

sum in ( )k  runs over all shells j. 

The distance between the absorber and the backscatterers in each shell might not 

be identical due to structural disorder and moreover the atoms vibrate due to thermal 

excitations which also influences the distance between the absorber atom and the 

backscatterer. Thus, the contributions from atoms in one shell will not be exactly in 

phase. If the disorder is small and has a Gaussian distribution around the average 

distance R, the dephasing can be taken into account for by a factor 2 2exp( 2 )jk   and 

2 2

0[ ( )]j j jr u u       is the mean square average of the difference of displacements 

0( )ju u  of the backscatterer j and the absorber along the equilibrium bond direction 

jr . The term is often referred to as EXAFS Debye-Waller factor but it should be 

noticed that this factor is not equivalent to the Debye-Waller factor in x-ray diffraction 

2 2

XRD ( )j jr u     , which is the mean square displacement. Usually the EXAFS 

Debye-Waller factor is smaller as compared to the XRD Debye-Waller factor as only 

the vibrations relative to the absorbing atom are taken into account for and for example 

long wavelength phonons will not contribute to the EXAFS Debye-Waller factor, since 

the two atoms (absorber and backscatterer) are too close to each other and the 

contribution to the difference 0( )ju u  is negligible. 

The last effect is the lifetime 0  of the excited photoelectron states, which 

depends on the time it takes until the core hole is filled by another electron and on the 

lifetime of the photoelectron itself. Within the lifetime of the photoelectron state (e.g., 

15

0 2 10   s for a Cu 1s electron) the outgoing and the backscattered wave are 

coherent and thus both waves can interfere. This means that the number of shells 

contributing to the spectrum is limited by the fact that the outgoing and the 

backscattered wave must be coherent and, therefore, the finite lifetime of the 

photoelectron state damps the oscillations due to backscattering from neighbouring 

atoms at higher distances. Usually it is expected that shells, which are further apart than 

10 Å from the absorber, are not visible in the spectrum. The damping factor equals 

exp( 2 / ( ))jr k  and ( )k  is called the mean free path. The mean free path depends 
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only little on the element. So finally, the following expression is obtained to describe 

the EXAFS oscillations ( )k  

2 2 2

0

2

( ) exp( 2 / ( )) exp( 2 )
( ) sin(2 ( )).

j j j j

j j

j j

N S F k r k k
k kr k

kr

 
 

 
         (2.13) 

The amplitude reduction term (or passive electron reduction factor) 
2

0S  accounts 

for the relaxation of all other electrons in the absorber atom due to the creation of the 

core hole. Although 
2

0S  is weakly energy dependent, it is usually approximated by a 

constant. The amplitude reduction term differs for different elements and the values 

range from 0.6 < 
2

0S  < 1.0. 

Parameters in Eq. 2.13 include jN , the number of equivalent routes in the jth 

scattering path; jr , the haft mean distance of the jth scattering path; 
2

0S , an average 

amplitude reduction factor where its value is the percent weight of the main excitation 

channel with respect to all possible excitation channels (its value is usually in the range 

0.6-1.0); )(kF j , the backscattering amplitude of the neighbor atoms in jth scattering 

path; and )(kj , the electronic phase shift due to the atomic potentials. The exponential 

term )2exp( 22

jk   takes into account of fluctuations of distances due to a structural 

and/or thermal disorder, under the assumption of small displacements and Gaussian 

distributions of distances. The exponential term exp( 2 / ( ))jr k  takes into account of 

finite elastic mean free paths of photoelectrons )(k . 

The scattering properties of the neighboring atom i.e. the backscattering amplitude 

)(kF j , the phase shift of the absorbing atom and its backscatter )(kj , and the elastic 

mean free paths of photoelectrons )(k  can be calculated from single and multiple 

scattering theories, which depends on the type of backscatter. The important parameters 

are distance to the neighboring atom (Rj), coordination number of neighboring atom 

)( jN  and mean-square disorder of neighbor distance )( 2

j  which can be determined. 

The scattering amplitude )(kF j  and phase-shift )(kj  depend on atomic number, so 

that XAS is therefore sensitive to atomic number Z of neighboring atom. These 
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scattering properties can be accurately calculated and used in the EXAFS modeling. The 

sum over paths in the EXAFS equation includes many scattering paths of absorbing 

atoms, and can also include multiple-scattering paths, in which the photoelectron 

scatters from more than one atom before returning to the central atom (e.g. see Figure 

2.8). From sum over paths in the EXAFS equation, the predicted important parameters 

will be accepted when the EXAFS from modeling matches with that of the experiment. 

 

(a) single scattering path         (b) double scattering path          (c) triple scattering path 

Figure 2.8 Schematic diagrams of the different scattering paths when the scattering 

angle at the absorbing atom is 180°. 

One of the most convenient ways to analyze EXAFS results is to use the Fourier 

transform on the data, and express the transformed results in r-space. This is as the 

Fourier transformations plays an essential role in the analysis in interpreting EXAFS 

data to obtain the system local structure. Specifically, the peaks (with high magnitude) 

of the Fourier transform of the EXAFS spectrum can be related to the atomic distances 

in the material investigated. Therefore the principles of Fourier transformations 

necessary to understand and perform the analysis of EXAFS data are discussed. The 

Fourier transform χ(r) of the fine structure χ(k) in the EXAFS analysis is defined by: 

max

min

21
( ) ( ) ( ) ,

2

k

n i kr

k

r k k w k e dk 


                (2.14) 

where w(k) is the window function gradually increases from zero at the beginning of the 

data range (∆k) and gradually decreases to zero at the end of the data range. The k range 

used in the transformation is given by kmin and kmax. As can be seen, the fine structure 

χ(k) is weighted by a factor kn prior to the transformation and n usually equals 1, 2 or 3, 

since the oscillations are usually decayed with higher wave numbers k. Therefore, the 

weighting factor is used to compensate for any effect which diminishes the amplitude 

with increasing k such as the 1/k dependence of the fine structure and the characteristic 

behavior of the backscattering amplitude function. The weighting factor n should be 

chosen such that the amplitude of knχ(k) is maintained over the k-range of the data used 
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in the transformation. Since the noise usually increases at higher wave numbers k, it has 

to be taken into account that a larger weighting factor n also amplifies the noise 

contributions especially at high k-values compared to those of the low k-values, and 

therefore it might be necessary to choose a small weighting factor when analyzing data 

with a low signal-to-noise ratio. The Fourier transform of EXAFS oscillation from 

modeling and experiment can also be compared in r-space to extract the local structure 

information. 

Usually, the above mentioned parameters are varied for optimization (to fit the 

results to those of the experiments). Generally, these parameters are not necessarily 

independent of each other for different scattering paths, and the number of parameters 

grows rapidly with the number of scattering paths included in the fit. The number of 

parameters Nidp that can be reliably determined in a fit is limited by the data range Δk 

and ΔR according to the Nyquist theorem [13], 

idp

2
.

k R
N



 
     (2.15) 

In the equation, Nidp gives an estimate of the maximum number of independent 

parameters. If many different paths have to be taken into account to simulate the 

measured EXAFS spectrum, the number of parameters to be refined in the fit can easily 

exceed the number of independent parameters. In addition, the statistical parameter to 

determine the fit quality is the R-factor i.e. 
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Typically, R-factors below 0.02 indicate a good fit [14]. 

2.4 Density functional theory 

The density functional theory is a phenomenally successful approach to finding 

quantum solution to the fundamental equation that describes the quantum behavior of 

materials. Schrödinger's equation is defined by 
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where 
2

2

12

N

i

im 

   is the kinetic energy of each electron, 
1

( )
N

i

i

V r


  is the interaction 

energy between electron and nuclei, and

 1

1N N

i j i ijr 

  is the interaction energy between pair 

of electrons.   is the many-electron wave function, which is the function of each of 

spatial coordinates of each of N electrons 
1( ,..., )Nr r  , and E is the ground state 

energy of electrons. Although Schrödinger's equation solving can be viewed as the 

fundamental problem of quantum mechanics, the electron wave function in particular 

set of coordinates cannot be directly observed. The quantity that can be measured is the 

probability that N electrons are in particular set of coordinates 
1,..., Nr r , which relate to 

the density of electrons at a particular position in space. The density of electrons ( )n r  

can be written in the summation over all the probability that an electron with individual 

electron wave function ( )i r  is located at position r as 
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Schrödinger's equation solving of the ground state energy is the unique functional 

of the electron density. Hohenberg-Kohn equation can be given as    
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where 
2

2

12

N

i

im 

   is the kinetic energy of electron, ( ) ( )v r n r dr  is the interaction 

energy between electron and nuclei, and

 

2 ( ) ( )

2

e n r n r
drdr

r r




  is the interaction energy 

between pairs of electrons. The electron density can be expressed that involves solving 

a set of equations which each equation only involves a single-electron. The Kohn-Sham 

equation can be given as 
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The solution of Kohn-Sham equation is single-electron wave function ( )i r , where 

( )V r  is potential defines the intraction between an electron and nuclei, ( )HV r  is Hartree 

potential defines the coulomb repulsion between pairs of electrons has the form 
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( )xcV r  is potential defines exchange and correlation contributions to single-electron 

equations has the form 
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