CONTANTS

ACKNOWLEDGMENT	с
ABSTRACT (THAI)	d
ABSTRACT (ENGLISH)	f
LIST OF TABLES	j
LIST OF FIGURES	1
LIST OF ABBREVIATIONS	0
LIST OF SYMBOLS	р
CHAPTER 1	1
1.1 Overview	1
1.2 Purpose of the research	2
CHAPTER 2	3
2.1 Crystal structures	3
2.2 X-ray interactions with atoms	5
2.2.1 X-ray absorption	5
2.2.2 X-ray scattering	6
, 2.3 X-ray absorption spectroscopy	8
2.3.1 XANES theory	12
2.3.2 EXAFS equation	14
2.4 Density functional theory	19
CHAPTER 3	22
3.1 Research procedure	22
3.2 X-ray absorption spectrum measurement	23
3.3 Data processing with ATHENA	29
3.4 The absorption edge analysis with ATHENA	35
3.5 XANES analysis with ATHENA and FEFF	35
3.6 EXAFS analysis with ARTEMIS and FEFF	35
3.7 DFT calculation with ABINIT and QUANTUM ESPRESSO	37

CHAPTER 4	38
4.1 Mn-doped BLT	38
4.1.1 Crystal structure of Mn-doped BLT	39
4.1.2 Local structure of Mn-doped BLT	41
4.2 Mn-doped KNNL	45
4.2.1 Crystal structure of Mn-doped KNNL	46
4.2.2 Local structure of Mn-doped KNNL	47
4.3 Lead Zine Niobate	53
4.3.1 Crystal structure of PZN	54
4.3.2 Local structure of PZN	56
CHAPTER 5	72
5.1 Conclusion	72
5.2 Suggestions and future work	73
REFFERENCES	74
CURRICULUM VITAE	84

,

LIST OF TABLES

Table 2.1	Electron binding energies of tungsten atom $(Z = 74)$ [9].	10
Table 3.1	Double crystals and their corresponding photon energy ranges used in	ı
	the double crystal monochromator [20].	27
Table 3.2	The appropriate gases pressure filled in the ionization chambers for x-	•
	ray absorption spectroscopy measuring various absorption edges of	f
	absorbing atoms [20].	29
Table 4.1	Atomic coordinates and Wyckoff positions of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ in space	2
	group $Aba2$ [32], where the symbol g is occupation factor.	41
Table 4.2	Atomic coordinate and Wyckoff position of $A_2B_2O_7$ in space group)
	<i>Fd3m</i> [61].	56
Table 4.3	The fitting results of the normalized absorbance and the first derivative	9
	absorbance combinations of three possible Zn substitution models	,
	presenting the weight of the fit that gives smallest <i>R</i> -factor.	58
Table 4.4	The scattering paths list of the program FEFF calculation with Zn as the	9
	central atom. The symbol [+] in the scattering path denotes the absorbing	5
	atom.	60
Table 4.5	The atomic coordinate of neighboring atoms in the first scattering path	1
	including the first shell fitting.	62
Table 4.6	The atomic coordinate of neighboring atoms in the fourth, fifth, sixth	,
	seventh, tenth, and sixteenth scattering paths including the second and	1
	third shells fitting.	64
Table 4.7	The atomic coordinate of neighboring atoms in the nineteenth, twenty-	-
	first, thirty-fourth, and forty-second scattering paths including the fourth	,
	fifth, and sixth shells fitting.	66

j

- Table 4.8The structural parameters of $Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39}$ obtained from the
EXAFS analysis, where N is the coordination number, r is the average
distance and σ^2 is the mean square variations of the nearest
neighboring atom.68
- Table 4.9The reaction path from the precursors $Zn_3Nb_2O_8$, Nb_2O_5 , and PbO to
perovskite $PbZn_{1/3}Nb_{2/3}O_3$ phase and pyrochlore $Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39}$
phase.70

LIST OF FIGURES

Page

Figure 2.1	The classification of crystal structures showing the division into	
	piezoelectric, pyroelectric and ferroelectric materials (modified from	
	[5]).	4
Figure 2.2	Perovskite structure [6].	5
Figure 2.3	Schematic diagram of (a) x-ray absorption, (b) fluorescence x-ray	
	emission and (c) auger electron emission when incident x-ray is applied	
	on electrons in an atom.	6
Figure 2.4	Schematic diagram of (a) Rayleigh scattering and (b) Compton	
	scattering when incident x-ray is applied on electrons in an atom.	7
Figure 2.5	The total photon cross section as a function of photon energy in carbon	
	and lead, showing the contributions of different processes at different	
	energies [7].	8
Figure 2.6	X-ray absorption spectroscopy (XAS) of Cu presenting the L-edge and	
	K-edge regions. The inset shows an amplified view of the x-ray	
	absorption near-edge structure (XANES) and the extended x-ray	
6	absorption fine structure (EXAFS) of the K-edge region [10].	11
Figure 2.7	Schematic diagram of the outgoing and the backscattering photoelectron	
	wave leading to the EXAFS oscillations. E is the absorbed photon	
	energy and E_0 is the core level binding energy [11].	12
Figure 2.8	Schematic diagrams of the different scattering paths when the scattering	5
	angle at the absorbing atom is 180°.	18
Figure 3.1	The research procedure.	23
Figure 3.2	The wavelength of electromagnetic that generate from synchrotron	t
	radiation [17].	24
Figure 3.3	The brilliance of x-ray photon generate from several sources [18].	25
Figure 3.4	The typical set-up for measuring x-ray absorption spectroscopy in	L
	transmission and fluorescence modes [11].	25

1

Figure 3.5	The rotating double	crystals used to select t	he x-ray energy [20].
0	ω	2	

Figure 3.6 The ionization chamber [20].

Figure 3.7 On the top panel, absorption pre-edge subtraction, used as the normalization, can be defined by the following. First, a pre-edge line (with a simple polynomial assumption) is fitted to the spectrum below the absorption edge. After that, the absorption edge step is estimated, and the spectrum is normalized using this value. The resulting normalized spectrum is shown in the bottom panel.

26

28

- Figure 3.8 Comparison of the spline background function and the original $\mu(E)$ (top) and the post-edge background subtraction $\chi(E)$ converted to $\chi(k)$ (bottom). 33
- Figure 3.9 The EXAFS oscillations $k^2 \chi(k)$ with Hanning window function (top) and its Fourier transform $\chi(r)$ (bottom). 34
- Figure 4.1 The x-ray diffraction pattern of Mn-doped Bi_{3.25}La_{0.75}Ti₃O₁₂ ceramics with various MnO₂ dopants match with ICDS No. 150091 database, which indicates orthorhombic phase in space group *Aba2* [31].
 39
- Figure 4.2 The orthorhombic structure of $Bi_{3,25}La_{0,75}Ti_3O_{12}$ ceramic [32]. 40
- Figure 4.3The Mn-K-edge XANES spectra of Mn-doped BLT ceramics comparedwith MnO, Mn₂O₃ and MnO₂ standards [34].43
- Figure 4.4 The measured and calculated Mn *K*-edge XANES spectra with Mn^{4+} substituted on Ti⁴⁺ site in BLT [34]. 44
- Figure 4.5The comparison of Mn K-edge in Mn-doped BLT and Ti K-edge in BLTEXAFS Fourier transform in r-space [34].45
- Figure 4.6 The x-ray diffraction patterns of Mn-doped ((K_{0.5}Na_{0.5})_{0.935}Li_{0.065})NbO₃ ceramics with various MnO₂ dopants indicate the formation of tetragonal phase in space group *P4mm* [43].
 47
- Figure 4.7 The Mn-*K*-edge XANES spectra of Mn-doped KNNL ceramics compared with MnO, Mn₂O₃ and MnO₂ standards [43]. 49
- Figure 4.8 The measured and calculated Mn *K*-edge XANES spectra with with Mn^{3+} substituted on Nb⁵⁺ site in KNNL [43]. 50

- Figure 4.9 The relaxed octahedral structure of (a) $(K_{0.5}Na_{0.5})NbO_3$, (b) $((K_{0.5}Na_{0.5})_{0.935}Li_{0.065})NbO_3$ and (c) Mn-doped $((K_{0.5}Na_{0.5})_{0.935}Li_{0.065})NbO_3$ [47]. 52
- Figure 4.10 The Mn *K*-edge EXAFS Fourier transforms in *r*-space of Mn-doped KNNL with the different MnO₂ contents [47].
- Figure 4.11 The x-ray diffraction pattern indicates the formation of $Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39}$ phase in matching with JCPDS file number 34-0374, which is cubic pyrochlore structure with cell parameter a = 10.60Å in space group *Fd3m*. 55
- Figure 4.12 The structure of typical cubic pyrochlore $A_2B_2O_7$ with rings of BO_6 octahedral in green, A cations in orange and non-polyhadral oxygens in pink. 55
- Figure 4.13 Results of the measured and the simulated Zn *K*-edge XANES spectra with Zn substituted at different locations in Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39} (left-sided). The normalized absorbance (right-sided, top) and the first derivative absorbance (right-sided, bottom) are plotted from linear combination fitting using appropriate weight of three possible Zn substitution models in Table 4.3 [63].
- Figure 4.14 The first shell fitting to EXAFS oscillation of $Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39}$ in *k*-space (top) and *r*-space (bottom). 63
- Figure 4.15 The first, second and third shells fitting to EXAFS oscillation of $Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39}$ in k-space (left) and r-space (right).65
- Figure 4.16 The EXAFS oscillation and fitting result in *k*-space (top) and *r*-space (bottom) for Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39}. The fitting was performed in *k*-range from 2.0 to 12.9 Å⁻¹, and *R*-range from 0.8 to 6.0 Å [63].
- Figure 4.17 The total energy along reaction paths from the precursors $Zn_3Nb_2O_8$, Nb₂O₅, and PbO to perovskite PbZn_{1/3}Nb_{2/3}O₃ phase and to pyrochlore Pb_{1.83}Zn_{0.29}Nb_{1.71}O_{6.39} phase. Details of formations along reaction paths I, II, and III are presented in Table 4.9. The parameters E_{Per} and E_{Py} refer to formation energy or the energy barrier required and form perovskite phase and pyrochlore phase, respectively [63]. 70

LIST OF ABBREVIATIONS

BLT	Bismuth Lanthanum Titanate
KNNL	Potassium Sodium Lithium Niobate
PZT	Lead Zirconate Titanate
PZN	Lead Zinc Niobate
SLRI	Synchrotron Light Research Institute
PRT	Pressure Reduction Tube
XBPM	X-ray Beam Position Monitor
DCM	Double Crystal Monochromator
XAS	X-ray Absorption Spectroscopy
XANES	X-ray Absorption Near Edge Structure
EXAFS	Extended X-ray Absorption Fine Structure
MXAN	Minuit X-ray Absorption Near Edge Structure
DFT	Density Functional Theory
LDA	Local Density Approximation

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

$\sigma_{_{ m tot}}$	Total Photon Cross Section
$\sigma_{\text{p.e.}}$	Photoelectron Cross Section
$\sigma_{ m coh}$	Coherent (Rayleigh) Scattering Cross Section
$\sigma_{ m incoh}$	Incoherent (Compton) Scattering Cross Section
$\sigma_{ m nuc}$	Photonuclear Cross Section
K _e	Electron Field Production Cross Section
K _N	Nuclear Field Production Cross Section
I	Incident X-ray Intensity
I	Transmit X-ray Intensity
I_f	Fluorescence X-ray Intensity
E	Photon Energy
k	Photoelectron Wavenumber
$\mu_0(E)$	Embedded Atom Absorption Coefficient
$\mu(E)$	Absorption Coefficient
$\Delta \mu_0(E)$	Absorption Edge Step
$\chi(E)$	Absorption Fine Structure in k-space
$\chi(r)$	Absorption Fine Structure in <i>r</i> -space
S_{0}^{2}	Average Amplitude Reduction Factor
E_0	Average Energy Shift
$\lambda(k)$	Photoelectrons Mean Free Paths
$F_j(k)$	Backscattering Amplitude in the j^{th} Scattering Path
$\delta_j(k)$	Phase Shift in the <i>j</i> th Scattering Path
$\delta_a(k)$	Phase Shift of Absorbing Atom in the <i>j</i> th Scattering Path
$\delta_{b}(k)$	Phase Shift of Backscattering Atom in the j^{th} Scattering Path
N_{j}	Number of Equivalent Routes in the <i>j</i> th Scattering Path
R_{j}	Effective Path Length in the <i>j</i> th Scattering Path
ΔR_{j}	Change of Effective Path Length in the <i>j</i> th Scattering Path

$\sigma_{_j}^2$	Mean Square Disorder in the j^{th} Scattering Path
Ν	Number of Parameters
$N_{ m idp}$	Number of Independent Points
Mn _{Bi/La}	Mn Substituting on Bi/La Site
Mn _{K/Na/Li}	Mn Substituting on K/Na/Li Site
Mn _{Ti}	Mn Substituting on Ti Site
Mn _{Nb}	Mn Substituting on Nb Site
Mni	Mn Substituting on Interstitial
Zn _{Pb}	Zn Substituting on Pb Site
Zn _{Nb}	Zn Substituting on Nb Site
Zni	Zn Substituting on Interstitial
E _{Per}	Formation Energy of Perovskite Phase
E_{Py}	Formation Energy of Pyrochlore Phase

 All rights
 Image: Second s