CONTENTS

P	age
Acknowledgement	iv
Abstract in Thai	v
Abstract	vi
Abstract List of Tables	ix
List of Figures	xi
Chapter 1 Introduction	1
1.1 Principles, theory, rationale and/or hypotheses	1
1.2 Motivation	4
1.3 Research objectives and usefulness	4
Chapter 2 Background	5
2.1 Nanomaterials	5
2.2 Quantum effect ⁽³²⁾	6
2.3 Zinc oxide	8
2.4 Zinc oxide nanowires	10
2.5 Chemical vapor deposition technique	10
2.6 Growth mechanism of nanostructure	11
2.7 Growth mechanism of metal-oxide nanowire by thermal oxidation technique	12
2.8 Sensing property of ZnO nanowires	15
2.9 Sensitivity (S_g)	18
Chapter 3 Experimental procedure	20
3.1 Preparation of seeding layer	20

3.2 Synthesis of vertically aligned ZnO nanowires by chemical vapor deposi-	
tion	20
3.3 Characterization of morphology and crystal structure of vertically aligned	
ZnO nanowires	25
3.4 Fabrication and investigation of vertically aligned ZnO nanowires gas	
sensors using ethanol vapor	28
Chapter 4 Results and discussions	30
4.1 Characterization of vertically aligned ZnO nanowires	30
4.2 Fabrication and investigation of vertically aligned ZnO nanowires gas	
sensors using ethanol vapor	41
Chapter 5 Conclusions	44
5.1 Synthesis and characterization of vertically aligned ZnO nanowires	44
5.2 Fabrication and investigation of ethanol sensor device based on vertically	
aligned ZnO nanowires	46
5.3 Suggestion and future perspective	47
References	49
References Appendix A	57
Appendix B	61
Curriculum Vitae	64
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

			Page
Table	2.1	General properties of ZnO	9
Table	2.2	Facets of the lowest surface energy for various crystal structures	
		(Smith,1995)	14
Table	4.1	Average diameter of the vertically aligned ZnO nanowires	36
Table	4.2	Average diameter in different conditions of acetone flow rate	40
Table	4.3	Sensitivity at various operating temperatures	43
Table	4.4	Response and recovery time at various operating temperatures	43
Table	5.1	The optimal operating temperature of ZnO sensor with different	
		morphologies	47

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

LIST OF FIGURES

Page

Figure 1.1	Gas sensor devices based on metal-oxide semiconductors (RKI in-	
	struments, inc.)	1
Figure 1.2	Illustration tendency of sensitivity relative with diameter	2
Figure 1.3	Illustration of ZnO nanostructures (a) aligned ZnO nanowires ⁽⁵⁴⁾ ,	
	(b) ZnO nanowires ⁽⁵¹⁾ , (c) flower-like ZnO nanorod ⁽⁴³⁾ , (d) wire-	
	like $ZnO^{(33)}$, (e) cacti-like ZnO nanorod ⁽³⁶⁾ , and (f) ZnO nanorod ⁽⁷³⁾	3
Figure 2.1	Scale from micrometer to nanometer dimensions. (Encyclopaedia	
	Britannica, Inc.)	6
Figure 2.2	The density of states D(E) of various nanostructures (54)	8
Figure 2.3	Hexagonal zinc-oxide structures and Miller index planes (Gul Amin,	
	2012)	9
Figure 2.4	Chemical vapor deposition technique (Intech,2011)	11
Figure 2.5	Mechanism of vapor-solid phase	12
Figure 2.6	Mechanism of vapor-liquid-solid phase for (a) tip growth and (b)	
ลิส	base growth	12
Figure 2.7	Plot of resistance as a function of time	19
Figure 3.1	Illustration of seeding preparation	21
Figure 3.2	Schematic diagram of a typical tube-furnace CVD system	21
Figure 3.3	Schematic diagram of growth process at different growth temper-	
	atures.	23
Figure 3.4	Schematic diagram of growth process at various acetone flow rates.	24
Figure 3.5	Illustration of scanning electron microscopy located at Chiang Mai	
	university (http://micron.ucr.edu)	25
Figure 3.6	Schematic diagram of x-ray diffraction pattern	27

Figure 3.7	Illustration of overall set up experiment	29
Figure 3.8	Schematic diagram of ethanol sensing characteristic measurement	29
Figure 4.1	FE-SEM images at 400°C growth temperature at different magni-	
	tudes (a) x5,000 and (b) 18,000	31
Figure 4.2	FE-SEM images at 450°C growth temperature at different magni-	
	tudes (a) x5,000 and (b) 20,000	32
Figure 4.3	FE-SEM images at 500°C growth temperature at different magni-	
	tudes (a) x5,000 and (b) 20,000	33
Figure 4.4	FE-SEM images at 550°C growth temperature at different magni-	
	tudes (a) x5,000 and (b) 20,000	34
Figure 4.5	Growth frequency of ZnO nanowires at various temperatures	35
Figure 4.6	FE-SEM images with 5 sccm acetone flow rate at different magni-	
	tudes (a) 5,000 and (b) 20,000	37
Figure 4.7	FE-SEM images with 15 sccm acetone flow rate at different mag-	
	nitudes (a) 5,000 and (b) 20,000	38
Figure 4.8	FE-SEM images with 45 sccm acetone flow rate at different mag-	
	nitudes (a) 5,000 and (b) 20,000	39
Figure 4.9	Growth frequency of ZnO nanowires at various acetone flow rates	40
Figure 4.10	XRD result of ZnO nanowires at various growth temperatures	41
Figure 4.11	Average sensitivity at various operating temperature	42
Figure 5.1	The effect of supersaturation ratio to critical radius of Zn nuclei at	
Con	low supersaturation and high supersaturation	45
Figure 5.2	Illustration of hexagonol growth direction in (0002) and ($10\overline{1}1$)	46
Figure 5.3	Schematic CVD process diagram of our opinion	48