

APPENDIX A

List of chemicals and materials used in the study

Chemicals

Sources

2',7'-Dichlorohyddrofluorescin diacetate	Sigma-Aldrich, USA
Calcein-AM	Invitrogen, USA
Desferal (DFX)	GPO, Thailand
Desferrioxamine (DFO)	Switzerland Novartis
Desferrioxamine (DFP)	GPO, Thailand
D-glucose (Dextrose)	Amresco Inc., USA
Diethyl ether	LAB-SCAN, Australia
Dihydrogen phosphate potassium (KH ₂ PO ₄)	Sigma-Aldrich, USA
Dimethyl sulfoxide (DMSO)	Fisher Scientific, UK
Disodium hydrogen phosphate (Na ₂ HPO ₄)	Sigma-Aldrich, USA
D-sorbitol	Amresco Inc., USA
Ethanol (Absolute)	E. Merck, Germany
Gentamicin sulfate 40 mg/ml, 2 ml	Atlantic Laboratories, Thailand
Giemsa's azur eosin methylene blue solution	E. Merck, Germany
Glycerol	Univar, USA
HEPE	Sigma-Aldrich, USA
Hypoxanthine	Sigma-Aldrich, USA
Methanol	E. Merck, Germany
Potassium chloride (KCl)	Sigma-Aldrich, USA
Sodium bicarbonate (NaHCO3)	E. Merck, Germany
Sodium chloride (NaCl)	Sigma-Aldrich, USA
SYBR Green I	Invitrogen, USA
SYTO-61	Invitrogen, USA
RPMI 1640 medium	GIBCO, USA

APPENDIX B

List of instruments and equipments used in the study

Instruments and equipments	Sources
1.5 ml Microcentrifuge tube	Biologix
10 ml Glass Serological Pipette	Pyrex
15 ml Round-bottom centrifuge tube	Corning
5 ml Glass Serological Pipette	Pyrex
5 ml Round-bottom tube	BD (Becton, Dickinson and
S. ZIN	Company)
$27 \text{ G} \times 1/2$ " needle	NIPRO
50 ml reservoir	SPL, Korea
50 ml round-bottom centrifuge tube	Corning
96 well-flat buttom	SPL, Korea
Autoclave	Tony autoclave SS-240
Automatic pipette	GILSON
Carbon dioxide incubator	Binder
Cell culture Petri dish (100×20 mm)	SPL
Cell culture Petri dish (60×15 mm)	SPL
Cellulose acetate membrane filter,	Sartorious AG, Germany
pore size 0.2 μm	
Cellulose acetate membrane filter,	Sartorious AG, Germany
pore size 0.45 μm	served
Centrifuge, refrigerated	Andreas Hettich, UK
Cyogenic vial	Corning
Disposable syringe 1 ml	NIPRO
Electronic multichannel pipette	Eppendorf
Flow cytometer (FACSCanto II)	BD (Becton, Dickinson and
	Company)

Freezer -20 °C Hot air oven Laminar Flow Liquid nitrogen tank Lithium heparin tubes

Microcetrifuge Micropipette Tip Microscope slide Microscope Pasteur pipette pH meter Pipette controller Plate shaker Storage cane for cryotube vial Water bath Vortex mixture

Sharp Heraeus Holten LaminAir Taylor-Wharton BD (Becton, Dickinson and Company) Gyrozen Corning Sail Brand Olympus Pyrex **Eutech Cybermetics** Nichiryo Infinigen Nalge Nunc International Labline Biosan

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

191812

APPENDIX C

Preparation of reagents and buffers

1. **Incomplete culture medium**

RPMI 1640 powder with L-glutamine without NHCO ₃	10.4 g
Hepes	5.94 g
Glucose	2 g
Gentamycin (80 mg/2 ml)	2 ml
Hypoxanthine	0.05 g
Dissolve in deionized water and adjust pH to 7.4. Filter the solution throug	h 0.2 μm
membrane filter. This solution mixture is stored at 4°C	
Complete culture medium	
Sterile 5% NaHCO ₃	4.2 ml
Pooled human serum (inactived at 56°C for 30 min)	10 ml
Incomplete culture medium add up to	100 ml
Gentamycin (80 mg/2 ml)	2 ml
Hypoxanthine	0.05 g
This solution mixture is stored at 4°C	
· · · · · · · · · · · · · · · · · · ·	

3.

2.

5% NaHCO3 NaHCO3pyright[©] by Chiang Mai University 5 g

Dissolve in deionized water (final volume 100 ml). Filter the solution through 0.2 µm membrane filter. This solution mixture is stored at 4°C

4. 5% Sorbitol

D-Sorbitol	5	g
D-Solution	5	g

Dissolve in deionized water (final volume 100 ml). Filter the solution through 0.2 μ m membrane filter. This solution mixture is stored at 4°C

5. Thawing solution (3.5% NaCl)

NaCl 3.5 g

Dissolve in deionized water (final volume 100 ml). Filter the solution through 0.2 μ m membrane filter. This solution mixture is stored at 4°C

6. Freezing solution for *P. falciprum*

Glycerol		31	28 ml
D-Sorbitol			3 ml
NaCl	A and	-383	0.65 g

Dissolve in deionized water (final volume 100 ml). Filter the solution through 0.2 μ m membrane filter. This solution mixture is stored at 4°C

7. Freezing solution for *P. berghei*

Glycerol

Dissolve in deionized water (final volume 100 ml). This solution mixture was stored at 4°C

30 ml

8. Phosphate-buffered Saline (PBS) for Giemsa staining, 6.7 mM (pH 7.1)

Convi	right	hv			Mai	Uni	versity	
Na ₂ HPO ₄	1611	- 16	4 o	16	1 1 164.8	011	versity	0.41 g
KH ₂ PO ₄ ·H ₂ O	- r i j	g n	t s	r	e s	e r	vea	0.65 g

Dissolve in deionized water (final volume 1 L)

9. Phosphate-buffered Saline (PBS) for cell culture, (pH 7.4) NaCl

NaCI	o g
KCl	0.2 g
Na ₂ HPO ₄	1.44 g
KH ₂ PO ₄	0.24 g

0~

Dissolve in deionized water (final volume 1 L)

10. Calcein-AM solution

Calcein-AM stock solution (1 mM) is prepared by dissolving 1 mg calcein-AM (MW = 994.9) with DMSO (1 ml). Working Calcein-AM solution (50 μ M) was freshly prepared by diluting the 1 mM calcein-AM solution with PBS.

11. DCFH-DA solution

DCFH-DA stock solution (1 mM) is prepared by dissolving 2.5 mg of DCFH-DA in methanol (5.0 ml) and store in the dark at -20°C.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX D

Supplementary contents

Concentration (µM)	% Parasite gro (mean±SEM	owth I)
0.00	100.0	110
3.99	97.2 ± ().4
6.49	93.6 ± 3	3.0
10.56	83.5 ± 5	5.2
17.17	30.8 ± 6	5.9
27.91	7.3 ± 1	1.4
45.39	6.7 ± 1	1.5
73.80	6.1 ± ().1
120.00	6.5 ± ().5

Table S-1 Effect of DFO on growth of P. falciparum

 Table S-2 Effect of DFP on growth of P. falciparum

Deferiprone	e (DFP)
Concentration (µM)	% Parasite growth (mean±SEM)
0.00 24.09 30.30 38.11 47.94 60.30 75.84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
95.40 120.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Concentration (µM)	% Parasite growth (mean±SEM)
0.00	100.0
15.22	96.9 ± 0.8
19.15	96.8 ± 1.6
24.09	93.1 ± 2.4
30.30	79.3 ± 2.3
38.11	40.7 ± 4.3
47.94	12.3 ± 1.5
60.30	10.1 ± 1.4
75.84	10.0 ± 1.6

 Table S-3 Effect of CM1 on growth of P. falciparum

 Table S-4 Effect of GTE on growth of P. falciparum

Green tea es	stract (GTE)
Concentration (EGCG equivalent, µM)	% Parasite growth (mean±SEM)
0.00	100.0
3.99	96.0 ± 1.6
6.49	97.9 ± 0.7
Copy 10.56 by Ch	96.6 ± 1.3
A 17.17 j g h t g	82.3 ± 2.2
27.91	18.8 ± 2.2
45.39	9.3 ± 0.7
73.80	7.4 ± 0.8
120.00	5.9 ± 1.1

Deferasi	rox (DFX)		
Concentration (µM)	% Para (mea	site g n±SI	growth EM)
0.00	1	00.0	
12.51	97.4	\pm	1.5
18.58	100.3	±	0.6
27.61	96.6	±	0.7
41.03	75.9	÷	0.9
60.96	10.4	4	0.1
90.59	9.4	±	0.1
134.60	8.6	±	0.3
200.00	8.2	±	0.5
S-6 Effect of PYR on growth of <i>P</i> . <i>fc</i>	lciparum		364 BB
S-6 Effect of PYR on growth of <i>P. fc</i> Pyrimetha	elciparum mine (PYR)		· 1967
S-6 Effect of PYR on growth of <i>P. fa</i> Pyrimetha Concentration (nM)	dciparum mine (PYR) % Para (mea	site ş n±SI	growth EM)
S-6 Effect of PYR on growth of <i>P. fo</i> Pyrimetha Concentration (nM) 0.00	llciparum mine (PYR) % Para (mea 1	site § n±SI 00.0	growth EM)
S-6 Effect of PYR on growth of <i>P. fa</i> Pyrimetha Concentration (nM) 0.00 4.98	elciparum mine (PYR) % Para (mea 1 98.0	site g n±SH 00.0 ±	growth EM)
S-6 Effect of PYR on growth of <i>P. fo</i> Pyrimetha Concentration (nM) 0.00 4.98 8.44	elciparum mine (PYR) % Para (mea 1 98.0 102.2	site § n±SI 00.0 ± ±	growth EM) 0.7 1.2
S-6 Effect of PYR on growth of <i>P. fc</i> Pyrimetha Concentration (nM) 0.00 4.98 8.44 14.30	elciparum mine (PYR) % Para (mea 1 98.0 102.2 102.9	site g n±SI 00.0 ± ± ±	growth EM) 0.7 1.2 0.7
S-6 Effect of PYR on growth of <i>P. fa</i> Pyrimetha Concentration (nM) 0.00 4.98 8.44 14.30 24.24 41.08	elciparum mine (PYR) % Para (mea 1 98.0 102.2 102.9 96.9 44.2	site g n±SI 00.0 ± ± ± ± ±	growth EM) 0.7 1.2 0.7 2.1 3.0
S-6 Effect of PYR on growth of <i>P. fc</i> Pyrimetha Concentration (nM) 0.00 4.98 8.44 14.30 24.24 41.08 69.62	Alciparum mine (PYR) % Para (mea 1 98.0 102.2 102.9 96.9 44.2 21.3	site § n±SI 00.0 ± ± ± ± ± ±	growth EM) 0.7 1.2 0.7 2.1 3.0 1.4
S-6 Effect of PYR on growth of <i>P. fa</i> Pyrimetha Concentration (nM) 0.00 4.98 8.44 14.30 24.24 41.08 69.62 118.00	elciparum mine (PYR) % Para (mea 1 98.0 102.2 102.9 96.9 44.2 21.3 10.5	site g n±SI 00.0 ± ± ± ± ± ±	growth EM) 0.7 1.2 0.7 2.1 3.0 1.4 1.0

 Table S-5 Effect of DFX on growth of P. falciparum

Dihydroartemisinin (DHA)	
Concentration (nM)	% Parasite growth (mean±SEM)
0.00	100.00
0.30	97.79 ± 1.14
0.50	99.95 ± 1.09
0.82	94.56 ± 0.79
1.35	79.25 ± 2.04
2.23	44.80 ± 3.72
3.67	14.07 ± 1.34
6.06	9.76 ± 0.54 10.97 + 0.53
CHING MAI I	NIVERSIT
ì dânธิ์มหาวิเ Copyright [©] by Cl All right	<mark>ายาลัยเชียงใหม่</mark> hiang Mai University s reserved

 Table S-7 Effect of DHA on growth of P. falciparum

Concentration		% Parasite growth		
PYR (nM)	CM1 (µM)	(mean±SEM)		
-	-	100.0		
30	-	35.1 ±	3.3	
-	30	34.6 ±	2.6	
30	591812	35.4 ±	4.3	
30	10	38.9 ±	5.0	
30	20	52.8 ±	7.3	
30	35	44.0 ±	3.2	
30	50	10.7 ±	1.6	
30	100	10.7 ±	1.6	
30	200	10.5 ±	1.3	

Table S-8 Effect of PYR combined with CM1 on growth of P. falciparum

Table S-9 Effect of PYR combined with GTE on growth of *P. falciparum*

PYR + GTE (EGCG equivalent)			
Concentration		% Parasite growth	
PYR (nM)	GTE (µM)	(mean±SEM)	
adan	ธมหาวา	100.0	
30		52.5 ± 2.9	
Copyrig	ht_{20} C	64.0 ± 8.7	
30	5 h t	74.2 ± 2.5	
30	10	82.2 ± 2.7	
30	20	70.9 ± 5.0	
30	35	13.5 ± 2.7	
30	50	8.3 ± 0.5	
30	100	7.6 ± 0.9	
30	150	4.8 ± 0.9	

CM1		
Concentration (µM)	% Change of MFI (mean±SEM)	
0	100.0	
25	2.9 ± 4.5	
50	9.9 ± 3.2	
100 00818	19.6 ± 3.1	
200	27.4 ± 4.5	

Table S-10 Levels of LIP in *P. falciparum*-infected RBC treated with CM1 (0-200 µM)

Table S-11 Levels of LIP in P. falciparum-infected RBC treated with DFP (0-200 µM)

Concentration (µM)	% Change of MFI (mean±SEM)
0	100.0
25	2.0 ± 3.0
50	1.9 ± 4.5
100	0.8 ± 4.0
200	9.6 ± 3.9

Sell **Table S-12** Levels of LIP in *P. falciparum*-infected RBC treated with GTE (0-200 μM)

11

2

Copyright by Chiang Mai University		
Concentration (EGCG equivalent, µM)	% Change of MFI (mean±SEM)	
0	100.0	
25	16.4 ± 1.9	
50	21.4 ± 5.0	
100	26.0 ± 7.0	
200	26.6 ± 4.6	

CM1			
Concentration (µM)	% Change of MFI (mean±SEM)		
0	100.0		
25	97.7 ± 3.4		
50	101.4 ± 2.4		
100	96.1 ± 7.6		
200	98.7 ± 5.8		

Table S-13 Levels of ROS in P. falciparum-infected RBC treated with CM1 (0-200 µM)

Table S-14 Levels of ROS in P. falciparum-infected RBC treated with DFP (0-200 μ M)

1

DFP		
Concentration (µM)	% Change of MFI (mean±SEM)	
0	100.0	
25	103.1 ± 2.5	
50	99.4 ± 3.7	
100	95.7 ± 3.5	
200	96.3 ± 3.3	

Table S-15 Levels of ROS in *P. falciparum*-infected RBC treated with GTE (0-200 μ M)

11

0

Copyright [©] by Cereng Mai University			
Concentration (EGCG equivalent, µM)	% Change of MFI (mean±SEM)		
0	100.0		
25	68.8 ± 1.3		
50	59.9 ± 3.8		
100	56.5 ± 6.4		
200	54.9 ± 3.4		

MFI = Mean fluorescence intensity

PYR	PYR			
Concentration (mg/kg)	% Para (mea	site ş n±SI	growth EM)	
0.0	95.7	±	8.1	
0.1	100.0	±	8.2	
0.5	72.4	±	5.6	
1.0	34.0	±	9.0	
5.0	11.7	÷.	5.0	

Table S-16 Effect of PYR on P. berghei growth in infected mice

 Table S-17 Effect of CM1 on P. berghei growth in infected mice

Concentration (mg/kg)	% Parasite growth (mean±SEM)
0.0	100.0 ± 7.5
12.5	96.4 ± 1.4
25.0	93.7 ± 1.5
50.0	48.3 ± 0.1
100.0	26.7 ± 0.5

 Table S-18 Effect of GTE on P. berghei growth in infected mice

Copyright [©] by CGTEng Mai University			
Concentration (EGCG equivalent, mg/kg)	% Parasite growth (mean±SEM)		
0.0	100.0 ± 8.5		
12.5	158.4 ± 13.2		
25.0	134.3 ± 4.2		
50.0	118.1 ± 2.2		
100.0	114.3 ± 2.9		

Concentration (mg/kg)		% Parasite growth		
PYR	CM1	(mean±SEM)		
-	-	100.0 ± 17.5		
0.6	-	23.4 ± 9.0		
-	12.5	96.4 ± 1.4		
0.6	12.5	20.2 ± 5.6		
0.6	25.0	34.8 ± 1.9		
0.6	50.0	12.0 ± 5.7		
0.6	100.0	8.8 ± 3.1		
G				

Table S-19 Effect of PYR combined with CM1 on P. berghei growth in infected mice

Table S-20 Effect of PYR combined with GTE on P. berghei growth in infected mice

PYR + GTE (EGCG equivalent)				
Concentration (mg/kg)		% Para	site g	growth
PYR	CM1	(mea	n±SI	EM)
-		100.0	±	17.5
0.6	e -	23.4	±	9.0
ิลิสสิท	12.5	158.4	±	13.2
0.6	12.5	15.1	±	2.1
C 0.6 V 19	25.0 V	hiang 18.8	±١	n1.5ersity
0.6 0.6	50.0 100.0	19.4 17.6	ŧ	6.3 2.8

Figure S-1 The percentage of parasite growth after treatment with CM1 for 2 h, in experiment of measurement of LIP in *P. falciparum*-infected RBC. The percentage of parasite growth were calculated from parasitemia, determined using flow cytometry while LIP levels were being measured. Data was obtained from three independent experiments performed in triplicate and expressed as mean±SEM.

Table S-21 The percentage of parasite growth after treatment with CM1 for 2 h, in

 experiment of measurement of LIP in *P. falciparum*-infected RBC

MA

Copyright [©] by CCM1ng Mai University		
Concentration (µM)	% Parasite growth (mean±SEM)	
0	98.8 ± 1.2	
25	94.7 ± 0.2	
50	94.1 ± 0.5	
100	95.3 ± 0.6	
200	97.3 ± 1.4	

Figure S-2 The percentage of parasite growth after treatment with DFP for 2 h, in experiment of measurement of LIP in *P. falciparum*-infected RBC. The percentage of parasite growth were calculated from parasitemia, determined using flow cytometry while LIP levels were being measured. Data was obtained from three independent experiments performed in triplicate and expressed as mean±SEM.

Table S-22 The percentage of parasite growth after treatment with DFP for 2	h, in
experiment of measurement of LIP in P. falciparum-infected RBC	ĵ.

MAI

Copyright [©] by CDFP	ng Mai University
Concentration (µM)	% Parasite growth (mean±SEM)
0	99.4 ± 0.6
25	95.7 ± 2.9
50	96.3 ± 2.2
100	98.9 ± 2.6
200	97.2 ± 1.6

Figure S-3 The percentage of parasite growth after treatment with GTE for 2 h, in experiment of measurement of LIP in *P. falciparum*-infected RBC. The percentage of parasite growth were calculated from parasitemia, determined using flow cytometry while LIP levels were being measured. Data was obtained from three independent experiments performed in triplicate and expressed as mean±SEM.

Table S-23 The percentage of parasite growth after treatment with GTE for 2 h, in

 experiment of measurement of LIP in *P. falciparum*-infected RBC

Copyright [©] by Ccr	Eng Mai University
Concentration (EGCG equivalent, µM)	% Parasite growth (mean±SEM)
0	96.3 ± 1.9
25	100.2 ± 4.1
50	98.6 ± 3.1
100	97.8 ± 3.8
200	91.6 ± 4.7

CURRICULUM VITAE

Author's Name	Mr. Phitsinee Th	ipubon
Date/Year of Birth	August 15, 1986	
Place of Birth	Chiang Mai Prov	vince, Thailand
Education	2002	Certificate of junior high school,
	S 813	The Prince Royal's College,
	240 5	Chiang Mai, Thailand
	2005	Certificate of senior high school,
		The Prince Royal's College,
	1 - (3	Chiang Mai, Thailand
	2010	Bachelor of Science (Medical Technology),
		Faculty of Associated Medical Sciences,
18		Chiang Mai University, Thailand
Scholarship	2010 - 2012	Thailand Graduate Institute of Science and
		Technology (TGIST), National Science and
	MAI	Technology Development Agency (NSTDA),
		Thailand
Poster presentation	Srichairatanakoo	1 S, <u>Thipubol S</u> , Tipsuwan W, Uthaipibull C.

Stichairatanakool S, <u>Impubol S</u>, Tipsuwan W, Othaipibuli C. Inhibitory effect of novel iron chelator, 1-(*N*-acetyl-6aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and green tea extract on growth of *Plasmodium falciparum*. *Malaria J* 2014, **13**(Suppl 1): P84 PublicationThipubon P, Tipsuwan W, Uthaipibull C, Santitherakul S,
Srichiratanakool S. Inhibitory effect of novel iron chelator,
Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-
methylpyridin-4-one and green tea extract on erythrocyte-stage
Plasmodium berghei in mice. Asian Pac J Trop Biomed 2015.
5(11): (Manuscript accepted)

Experiences Research Assistant of research grant through Assc. Prof. Dr. Somdet Srichairatanakool :

3 MA

- ELISA-based analysis of levels of antibody against
 P. falciparum and *P. vivax* in dry blood spot (DBS) of the population in Thailand endemic areas (2013)
- Study of Nutritional value, biological and pharmacological activities of perilla (*Perilla frutescens* Linn. *Britt*) grain (2015)
- 3) ELISA-based analysis of serum human hepcidin (2015)
- 4) Assay of biochemical markers in the study animal and human serum samples (2015)

<mark>เริ่มหาวิทยาลัยเชียงใหม่</mark> ght[©] by Chiang Mai University rights reserved