CONTENTS

Acknowledgement		
Abstract ir	n Thai	v
Abstract in English		
List of Tables		
List of Fig	ures	xiii
List of Ab	breviations	XV
Chapter 1	Introduction	1
1.1	Statement and significant of the problems	1
1.2	Literature reviews	3
	1.2.1 Incidence of malaria infection	3
	1.2.2 Life cycle of malaria parasite	4
	1.2.3 Anti-folate drugs used in malaria	7
	1.2.4 Iron chemistry and chelator	12
	1) Desferrioxamine (DFO)	13
	 Deferiprone (DFP) Deferasirox (DFX) 	14 15
	Copya) CM1 ^O by Chiang Mai University	15
	1.2.5 Green tea	16
1.3	Objectives of the study	18
Chapter 2	Materials and Methods	19
2.1	Chemicals and reagents	19
2.2	Materials	19
	2.2.1 Test compounds	19
	1) Antimalarial drugs	19

		2) Chelators	19
		3) 1-(<i>N</i> -Acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin	19
		-4-one, a hydroxypyridin-4-one (CM1)	
		4) Green tea extract (GTE)	20
	2.2.2	Parasite strains	20
		1) <i>P. falciparum</i> strain 3D7	20
		2) P. berghei strain ANKA expressing GFP	21
	2.2.3	Mice	21
2.3	Metho	ds	21
	2.3.1	In vitro P. falciparum culture	21
		1) Malaria culture medium preparation	21
		2) Red blood cells (RBC) preparation for malaria culture	22
		3) Culturing of asexual erythrocytic stages of <i>P. falciparum</i>	23
		in vitro culture in culture Petri dish	
		4) Sorbitol synchronization of <i>P. falciparum</i> -infected RBC	24
		5) Cryopreservation of <i>P. falciparum</i> blood stage parasites	25
		6) Thawing of glycerolyte-frozen parasites with NaCl	25
	2.3.2	In vitro drug-susceptibility testing of P. falciparum	26
		1) Single drug treatment	26
		2) Drug combination treatment	27
	2.3.3	Determination of erythrocytic stages of P. falciparum parasite	28
	ຄືປູ	by fluorescent flow cytometric assay	
	2.3.4	Measurement of LIP in P. falciparum-infected RBC	29
	2.3.5	Detection of ROS in P. falciparum-infected RBC	31
	2.3.6	Manipulation of rodent malaria parasite P. berghei in vivo	33
		1) Cryopreservation of <i>P. berghei</i> blood stage parasites	34
		2) Malarial infection of laboratory animal	34
	2.3.7	In vivo drug-susceptibility testing of P. berghei	34
		1) Single drug treatment	34
		2) Drug combination treatment	36
2.4	Statist	ical analysis	36

Х

CONTENTS (CONTINUED)

Chapter 3	Results	37
3.1 Flow cytometric analysis of <i>P. falciparum</i> parasite		
3.2	In vitro drug-susceptibility testing of P. falciparum	40
	3.2.1 Single drug treatment	40
	3.2.2 Drug combination treatment	43
3.3	Effect of iron chelators and GTE on intracellular LIP levels in	46
	P. falciparum-infected RBC	
3.4	Effect of chelators and GTE on intracellular ROS levels in	51
	P. falciparum-infected RBC	
3.5	In vivo drug-susceptibility testing of P. berghei	55
	3.5.1 Single drug treatment	55
	3.5.2 Drug combination treatment	58
Chapter 4	Discussion and Conclusion	60
References	AL UNIVERSI	64
Appendice	es	76
App	endix A ใกลิ์แหาวิทยาลัยเชียงใหม่	77
App	endix B	78
App	endix C	80
App	endix D rights reserved	83
Curriculur	n Vitae	95

LIST OF TABLES

Table 3-1	In vitro susceptibilities of P. falciparum and iron chelators	40
	and GTE	
Table 3-2	In vitro susceptibilities of P. falciparum and antimalarial drugs	41
Table S-1	Effect of DFO on growth of P. falciparum	83
Table S-2	Effect of DFP on growth of P. falciparum	83
Table S-3	Effect of CM1 on growth of P. falciparum	84
Table S-4	Effect of GTE on growth of P. falciparum	84
Table S-5	Effect of DFX on growth of P. falciparum	85
Table S-6	Effect of PYR on growth of P. falciparum	85
Table S-7	Effect of DHA on growth of <i>P. falciparum</i>	86
Table S-8	Effect of PYR combined with CM1 on growth of	87
	P. falciparum	
Table S-9	Effect of PYR combined with GTE on growth of	87
	P. falciparum	
Table S-10	Levels of LIP in P. falciparum-infected RBC	88
	treated with CM1 (0-200 µM)	
Table S-11	Levels of LIP in P. falciparum-infected RBC	88
	treated with DFP (0-200 μM)	
Table S-12	Levels of LIP in P. falciparum-infected RBC	88
1-	treated with GTE (0-200 µM)	
Table S-13	Levels of ROS in P. falciparum-infected RBC	89
	treated with CM1 (0-200 µM)	
Table S-14	Levels of ROS in P. falciparum-infected RBC	89
	treated with DFP (0-200 μ M)	
Table S-15	Levels of ROS in P. falciparum-infected RBC	89
	treated with GTE (0-200 μ M)	

LIST OF TABLES (CONTINUED)

Table S-16	Effect of PYR on P. berghei growth in infected mice	90
Table S-17	Effect of CM1 on P. berghei growth in infected mice	90
Table S-18	Effect of GTE on P. berghei growth in infected mice	90
Table S-19	Effect of PYR combined with CM1 on P. berghei	91
	growth in infected mice	
Table S-20	Effect of PYR combined with GTE on <i>P. berghei</i>	91
	growth in infected mice	
Table S-21	The percentage of parasite growth after treatment with CM1 for 2 h, in experiment of measurement of LIP in <i>P. falciparum</i> -infected RBC	92
Table S-21	The percentage of parasite growth after treatment with DFP for 2 h, in experiment of measurement of LIP in <i>P. falciparum</i> -infected RBC	92
Table S-21	The percentage of parasite growth after treatment with GTE for 2 h, in experiment of measurement of LIP in <i>P. falciparum</i> -infected RBC	92

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1-1	Life cycle of malaria parasite	6
Figure 1-2	Pathway of folate biosynthesis in <i>Plasmodium</i> spp.	8
Figure 1-3	Chemical structures of pyrimethamine, cycloguanil,	10
	proguanil,chlorproguanil	
Figure 1-4	Chemical structures of artemisinin and its derivatives	11
Figure 1-5	Chemical structures of DFO, DFP, DFX and CM1	13
Figure 1-6	Chemical structures of catechins in green tea (Camellia sinensis)	17
Figure 2-1	The principle of LIP	29
Figure 2-2	Principle of DCF assay	32
Figure 3-1	Analysis of SYBR Green I-fluorescence intensity by	38
	flow cytometry of P. falciparum-infected RBC	
Figure 3-2	Correlation of flow cytometric and microscopic medthods for	39
	determination of parasitemia	
Figure 3-3	Effect of iron chelators and GTE on growth of P. falciparum	41
Figure 3-4	Effect of antimalarial drugs PYR and DHA on growth of	42
Ę	P. falciparum	
Figure 3-5	Effect of PYR combined with CM1 on growth of	44
	P. falciparum by Chiang Mai University	
Figure 3-6	Effect of PYR combined with GTE on parasite growth of	45
	P. falciparum	
Figure 3-7	Discrimination of PRBC from NRBC by flow cytometry	46
	using SYTO 61 dye	
Figure 3-8	Measurement of intracellular LIP in P. falciparum-infected RBC	47
	using flow cytometry	

LIST OF FIGURES (CONTINUED)

Figure 3-9	Levels of LIP in P. falciparum-infected RBC treated	48
	with CM1 (0-200 µM) for 2 h	
Figure 3-10	Levels of LIP in P. falciparum-infected RBC treated	49
	with DFP (0-200 µM) for 2 h	
Figure 3-11	Levels of LIP in P. falciparum-infected RBC treated	50
	with GTE (0-200 µM EGCG equivalent) for 2 h	
Figure 3-12	Levels of ROS in P. falciparum-infected RBC treated	52
	with CM1 (0-200 µM) for 2 h	
Figure 3-13	Levels of ROS in P. falciparum-infected RBC treated	53
	with DFP (0-200 µM) for 2 h	
Figure 3-14	Levels of ROS in P. falciparum-infected RBC treated	54
	with GTE (0-200 µM EGCG equivalent) for 2 h	
Figure 3-15	Effect of PYR on <i>P. berghei</i> growth in infected mice	55
Figure 3-16	Effect of CM1 on P. berghei growth in infected mice	56
Figure 3-17	Effect of GTE on P. berghei growth in infected mice	57
Figure 3-18	Effect of PYR combined with CM1 on P. berghei growth in	58
	infected mice	
Figure 3-19	Effect of PYR combined with GTE on <i>P. berghei</i> growth in	59
(infected mice by Chiang Mai University	
Figure S-1	The percentage of parasite growth after treatment with CM1 for 2 h,	92
	in experiment of measurement of LIP in P. falciparum-infected RBC	
Figure S-2	The percentage of parasite growth after treatment with DFP for 2 h,	93
	in experiment of measurement of LIP in P. falciparum-infected RBC	
Figure S-3	The percentage of parasite growth after treatment with GTE for 2 h,	94
	in experiment of measurement of LIP in <i>P. falciparum</i> -infected RBC	

LIST OF ABBREVIATIONS

%	Percent
μl	Microlitre
μm	Micrometre
μΜ	Micromolar
°C	Degree Celsius
CA-AM	Calcein acetoxymethyl ester
СІ	Confidence interval
CM1	1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-
S.	one, hydroxypyridin-4-one derivative
CQ Q	Chloroquine
Cyc	Cycloguanil
DCF	Dichlorofluorescein
DCFH-DA	2',7'-Dichlorofluorescein diacetate
DFO	Desferrioxamine
DFP	Deferiprone, 1,2-dimethyl-3-hydroxypyrid-4-one, L1
DFX	Deferasirox, ICL670
DHA	Dihydroartemisinin
DHF	Dihydrofolate
DHFR	Dihydrofolate reductase enzyme
DHPS	Dihydropteroate synthase enzyme
a Copyright	Decilitre Chiang Mai University
DMSO	Dimethyl sulfoxide
ED ₅₀	Effective dose at 50%
EGCG	(-)-Epigallocatechin 3-gallate
Fe	Iron
FI	Fluorescent intensity
FITC	Fluorescein isothiocyanate
g	Gavity force
g	Gram

GFP	Green Fluorescent Protein
GTE	Green tea extract
h	Hour
i.p.	Intraperitoneal route
IC ₅₀	Inhibitory concentration at 50%
Ka	Association constant
kg	Kilogram
L	Litre
LIP	Labile iron pool
LPI	Labile plasma iron
м / 🔊	Molar
MDA	Malondialdehyde
mg	Milligram
min Sig-	Minute
ml	Millilitre
mm	Millimetre
mM	Millimolar
mW	Milliwatt
NaCl	Sodium chloride
nm	Nanometre
nM	Nanomolar
NRBC Jans	non-infected red blood cell
NTBICopyright	Non-transferrin-bound serum iron
P. berghei	Plasmodium berghei
P. falciparum	Plasmodium falciparum
P. knowlesi	Plasmodium knowlesi
P. malariae	Plasmodium malariae
P. ovale	Plasmodium ovale
P. vivax	Plasmodium vivax
P. yoelii	Plasmodium yoelii
PBMC	Peripheral blood mononuclear cells

PBS	Phosphate-buffered saline
PE	Phycoerythrin
pfdhfr	Plasmodium falciparum dihydrofolate reductase gene
pfdhps	Plasmodium falciparum dihydropteroate synthase gene
PRBC	Parasitized red blood cell, parasite-infected red blood cell
PYR	Pyrimethamine
RBC	Red blood cell
ROS	Reactive oxygen species
SDX	Sulfadoxine
sec	Second
THF	Tetrahydrofolate
v/v	Volume by volume
w/v	Weight by volume
w/w	Weight by weight
GHAI UNIVERSIT	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Convright [©] by Chippe Mai University	

Copyright[©] by Chiang Mai University All rights reserved