Thesis Title Optimization of Ferulic Acid Release from Biomass by Chemical

Method and Microbial Degradation

Author Ms. Pimpilai Fusawat

Degree Master of Science (Biotechnology)

Advisor Assoc. Prof. Dr. Nuansri Rakariyatham

Abstract

Ferulic acid is a phenolic acid existing in plant cell walls and it has many physiological functions including antioxidant, antimicrobial, anticancer and antiinflammatory activities. The ferulic acid can be released by chemical and enzymatic hydrolysis. In this study, ferulic acid was obtained from lignocellulosic biomass by autoclave assisted alkaline hydrolysis (AAA) and the amount of ferulic acid released from the lignocellulosic biomasses (corn husks and corn cobs) by AAA was compared with microwave assisted alkaline hydrolysis (MAA). The phenolic analysis of lignocellulosic biomass hydrolysate by HPLC showed that when lignocellulosic biomass was hydrolyzed by 0.5 M NaOH for 15 min in the autoclave, the corn husks and corn cobs released high amounts of ferulic acid. The effects of different concentrations of NaOH (0.25, 0.5, 1.0, 1.5 and 2.5 M) and hydrolysis times (5, 15, 30, 45, 60, 75 and 90 min) to release ferulic acid using AAA and MAA were investigated. The results showed that 0.5M NaOH for 60 min in AAA was the optimal hydrolysis condition for releasing of ferulic acid from corn husks (20.4818±0.1304 mg/g sample) and corn cobs (17.0914±0.0132 mg/g sample). While hydrolysis by 1.5 M NaOH for 15 min and 2.5 M NaOH for 15 min in microwave could release high amounts of ferulic acid from corn husks (31.2629±1.1056 mg/g sample) and corn cobs (14.7173±0.0092 mg/g sample), respectively.

The potential of the seven fungal strains and two bacterial strains cultured on agar plates containing ethyl ferulate, carboxymethyl cellulose (CMC) and xylan were

investigated for their ability to produce ferulic acid esterase, cellulase and xylanase, respectively. The results showed that *Aspergillus flavus* cultured in ethyl ferulate, *Aspergillus niger* cultured in CMC, and *Trichoderma reesei* cultured in xylan, revealed the largest clear zones of 1.02, 1.50 and 3.05 cm., respectively. The ferulic acid esterase, cellulase and xylanase activities of these microorganisms cultured in liquid medium containing ethyl ferulate, CMC and xylan were also assayed. The results showed that *A. flavus* cultured in ethyl ferulate presented the highest ferulic acid esterase activity (3412.1889±211.7932 U/gds, 5.0686± 0.5433 U/mg protein) and *T. reesei* cultured in CMC exhibited the highest cellulase activity (25.3526±0.5200 U/gds, 3.2383±0.0971 U/mg protein), while the greatest xylanase activity was obtained from *A. niger* (87.2468±1.4815 U/gds, 0.9967±0.0042 U/mg protein) cultured in xylan. In addition, each microorganism was cultured in a liquid medium consisting of corn husks to test their ability in enzyme production. The greatest ferulic acid esterase activities were acquired from *A. flavus*, *A. niger* and *Penicillium chrysogenum* and these microorganisms could also produce cellulase and xylanase activities.

The production levels of ferulic acid esterase, cellulase and xylanase from P. chrysogenum cultured in liquid medium containing pretreated corn husks were assayed. The results presented that the optimal condition for the ferulic acid esterase production was found at 25 °C, pH 6.0 for 168 h in 2% (w/v) pretreated corn husks. The activities of ferulic acid esterase, cellulase and xylanase produced at these conditions were 1.4983 ± 0.0387 U/ml, 0.4971 ± 0.0196 U/ml and 0.2341 ± 0.0080 U/ml, respectively. While the maximum value of ferulic acid $(2.3063\pm0.0374$ mg/g sample) released by the P. chrysogenum enzyme was obtained at 18 h in pretreated corn husks.

Copyright[©] by Chiang Mai University All rights reserved หัวข้อวิทยานิพนธ์ การหาสภาวะที่เหมาะสมในการปลดปล่อยกรดเฟอรูลิกจากชีวมวล

โดยวิธีทางเคมีและการย่อยสลายโดยจุลินทรีย์

ผู้เขียน นางสาวพิมพิไล ฟูสวัสดิ์

ปริญญา วิทยาศาสตรมหาบัณฑิต (เทคโน โลยีชีวภาพ)

อาจารย์ที่ปรึกษา รศ.ตร. นวลศรี รักอริยะธรรม

บทคัดย่อ

กรดเฟอรูลิกเป็นกรดฟีนอลิกที่อยู่ในผนังเซลล์พืช มีบทบาททางสรีรวิทยาในการเป็นสาร ต้านอนุมูลอิสระ, สารต้านจุลชีพ, สารต้านมะเร็งและสารต้านการอักเสบ การสลายชีวมวลลิกโน เซลลู โลสเพื่อปลดปล่อยกรคเฟอรูลิกสามารถทำได้ด้วยวิธีทางเคมีและการย่อยด้วยเอนไซม์ ซึ่งใน การศึกษานี้กรคเฟอรูลิกจากชีวมวลลิกโนเซลลูโลสจะถูกย่อยค้วยค่างในหม้อนึ่งฆ่าเชื้อ และ ทำการศึกษาเปรียบเทียบปริมาณกรคเฟอรูลิกที่ปลดปล่อยออกมาจากชีวมวลลิกโนเซลลูโลส (เปลือก ข้าวโพคและซังข้าวโพค) โดยการย่อยค้วยค่างในหม้อนึ่งฆ่าเชื้อกับการย่อยค้วยค่างร่วมกับการใช้ ไมโครเวฟ ผลการวิเคราะห์ฟีนอลิกด้วยเครื่องลิควิดโครมาโทกราฟิสมรรถนะสูงของชีวมวลลิกโน เซลลูโลสซึ่งย่อยด้วยโซเดียมไฮครอกไซค์ 0.5 โมลาร์ เป็นเวลา 15 นาทีในหม้อนึ่งฆ่าเชื้อพบกรคเฟอ รูลิกถูกปลดปล่อยออกมาในปริมาณสูง และจากการศึกษาผลของความเข้มข้นของโซเดียมไฮครอก ใชด์ที่แตกต่างกัน (0.25, 0.5, 1.0, 1.5 และ 2.5 โมลาร์) และเวลาในการย่อยที่แตกต่างกัน (5, 15, 30, 45, 60, 75 และ 90 นาที) เพื่อปลดปล่อยกรดเฟอรูลิกในหม้อนึ่งฆ่าเชื้อและ ไมโครเวฟ พบว่าสภาวะที่ เหมาะสมในการปลดปล่อยกรคเฟอรูลิกให้ได้ปริมาณมากจากเปลือกข้าวโพค (20.4818±0.1304 ${
m mg/g}$ $_{
m sample}$) และซังข้าวโพค (17.0914 \pm 0.0132 ${
m mg/g}$ $_{
m sample}$) คือ ที่ความเข้มข้นของโซเคียมไฮครอกไซค์ เท่ากับ 0.5 โมลาร์ เป็นระยะเวลา 60 นาที ส่วนการย่อยด้วยค่างร่วมกับการใช้ไมโครเวฟ พบว่ากรค เฟอรูลิกสามารถปลดปล่อยออกมาในปริมาณสูงจากเปลือกข้าวโพค (31.2629±1.1056 mg/g _{sample}) และซังข้าวโพค (14.7173±0.0092 mg/g sample) เมื่อย่อยค้วยโซเคียมใฮครอกใซค์ 1.5 และ 2.5 โมลาร์ เป็นเวลา 15 นาที ตามลำดับ

สำหรับการตรวจสอบเชื้อรา 7 สายพันธุ์และแบคทีเรีย 2 สายพันธุ์ที่มีศักยภาพในการผลิต เอนไซม์เฟอรูลิกแอซิคเอสเทอเรส, เซลลูเลสและไซลาเนสโคยเพาะเลี้ยงบนอาหารวุ้นที่มีเอทิลเฟอรู เสต (ethyl ferulate), การ์บอกซีเมทิลเซลลูโลส (carboxymethyl cellulose, CMC) และไซแลน (xylan) เป็นแหล่งคาร์บอนตามลำคับ พบว่าเชื้อ Aspergillus flavus ที่เลี้ยงในเอทิลเฟอรูเลต Aspergillus niger ที่เลี้ยงใน CMC และ Trichoderma reesei ที่เลี้ยงในไซแลนมีขนาควงใสที่ใหญ่ที่สุดเท่ากับ 1.02, 1.50 และ 3.05 เซนติเมตรตามลำคับ และจากการตรวจสอบแอกติวิตีของเอนไซม์เฟอรูลิกแอซิดเอสเทอเรส เซลลูเลสและไซลาเนสจากเชื้อทั้ง 9 ชนิดในอาหารเหลวที่มีเอทิลเฟอรูเลต CMC และไซแลนเป็น องค์ประกอบ พบว่า A. flavus ที่เลี้ยงในเอทิลเฟอรูเลตให้แอคติวิตีของเอนไซม์เฟอรูลิกแอซิดเอสเทอเรสสสูงสุด (3412.1889±211.7932 U/gds, 5.0686±0.5433 U/mg protein), T. reesei ที่เลี้ยงในCMC ให้ แอกติวิตีของเอนไซม์เซลลูเลสสูงสุด (25.3526±0.5200 U/gds, 3.2383±0.0971 U/mg protein) ขณะที่ แอกติวิตีของเอนไซม์เซลลูเลสสูงสุด (87.2468±1.4815 U/gds, 0.9967±0.0042 U/mg protein) ได้ จากเชื้อ A. nigerที่เลี้ยงในไซแลน นอกจากนี้ได้ตรวจสอบศักยภาพในการผลิตเอนไซม์ดังกล่าวจาก เชื้อจุลินทรีย์แต่ละชนิดโดยเลี้ยงในอาหารเหลวที่มีเปลือกข้าวโพดเป็นองค์ประกอบ พบว่าแอกติวิตีของเอนไซม์เฟอรูลิกแอซิดเอสเทอเรสสูงสุด ได้จากเชื้อ A. flavus, A. niger และ Penicillium chrysogenum และเชื้อดังกล่าวยังสามารถผลิตเอนไซม์เซลลูเลสและไซลาเนสได้

เมื่อนำ P. chrysogenum มาผลิตเอน ไซม์เฟอรูลิกแอซิดเอสเทอเรส เซลลูเลสและ ไซลาเนสใน อาหารเหลวที่มีเปลือกข้าวโพดที่ผ่านการปรับสภาพแล้ว พบว่าสภาวะที่เหมาะสมในการผลิตเอนไซม์ เฟอรูลิกแอซิดเอสเทอเรส คืออุณหภูมิ 25 องศาเซลเซียส pH 6.0 ทำการหมักเป็นเวลา168 ชั่วโมง ใน 2% (น้ำหนัก/ปริมาตร) เปลือกข้าวโพดที่ผ่านการปรับสภาพแล้ว โดยให้ค่าแอคติวิตีของเอนไซม์เฟอรูลิกแอซิดเอสเทอเรส เซลลูเลสและ ไซลาเนส เท่ากับ 1.4983±0.0387 U/ml, 0.4971±0.0196 U/ml และ 0.2341±0.0080 U/ml ตามลำดับ ส่วนปริมาณของกรดเฟอรูลิกสูงสุด (2.3063±0.0374 mg/g_{sample}) ที่ถูก ปลดปล่อยโดยเอนไซม์จากเชื้อ P. chrysogenum พบเมื่อหมักเป็นเวลา 18 ชั่วโมงในอาหารที่มีเปลือกข้าวโพดที่ผ่านการปรับสภาพแล้ว

rights reserved