CONTENTS

Acknowledgement	iii
Abstract (English)	iv
Abstract ("Inv)	vi
Abstract ("Inv) List of Tables	xiii
List of Figures	XV
Abbreviation and Symbols	xix
Chapter 1 Introduction	1
1.1 Statement background	1
1.2 Food spoilage	2
1.3 Aspergillus	3
1.3.1 Classification and characterization of Aspergillus	3
section Flavi	
1.3.2 Morphology of Aspergillus producing aflatoxin	5
1.4 Aspergillus flavus	6
1.5 Mycotoxin by Chiang Mai University	7
1.5.1 Aflatoxin	9
1.5.2 Aflatoxins and their consequences to health	10
1.6 Fungal cell	11
1.6.1 Structure of fungal cell	11
1.6.2 Ergosterol	12
1.7 Spice	15
1.7.1 Spices in history	15
1.7.2 Origin and major areas of cultivation of herbal spices	15

1.7.3 Emerging global spices and flavoring	18
1.7.4 Form, functions and applications of spices	19
1.7.4.1 Fresh spices	19
1.7.4.2 Dried spices	19
1.7.4.3 Spice extractives	20
1.8 Essential oils from some spices	22
1.9 Functions of spices	24
1.9.1 Primary function of spices	24
1.9.1.1 Coloring	24
1.9.1.2 Flavor, taste, aroma, and texture	25
1.9.2 Secondary functions of spices	26
1.10 Spices as antimicrobials	28
1.11 Spice labeling, standards, regulations and quality	30
specification	
1.12 Anethum graveolens L.	31
1.12.1 Scientific classification	31
1.12.2 History and origin	31
1.12.3 Botanical characteristic of plant	32
1.12.4 Composition of essential oil	33
1.12.5 Benefits	33
1.13 Zanthoxylum piperitum	34
1.13.1 Scientific classification	34
1.13.2 Botanical of plant	34
1.13.3 Composition of essential oil	35
1.13.4 Benefits	36
1.14 Research objectives	36
Chapter 2 Materials and Method	37
2.1 Chemicals	37

	2.2	Instrument	37
	2.3	Plant materials and microorganism	38
		2.3.1 Seed spice	38
		2.3.2 Aspergillus flavus	39
	2.4	Extraction of essential oils	39
	2.5	Essential oil analysis	40
	2.6	Antifungal activity of essential oils against A. flavus	41
		2.6.1 Antifungal activity of essential oils on agar plate	41
		2.6.2 Antifungal activity of essential oils in liquid culture	41
		2.6.3 Light microscope examination of essential oil-treated	42
		A. flavus	
		2.6.4 Effect of essential oil on ergosterol content in plasma	43
		membrane of A. flavus	
		2.6.5 Efficacy of essential oil as antifungal coat in dry chili.	43
	2.7	Statistical analyses	44
Char	oter 3	Results	45
	3.1	Yield of the essential oils	45
	3.2	Chemical composition of the essential oils	45
	~	3.2.1 Chemical composition of Anethum graveolens L.	46
	ล	da essential oil 1918 18 18 18 18 19 11	
	C	3.2.2 Chemical composition of Zanthoxylum piperitum	48
	Δ	essential oil	
	3.3	Antifungal activity of the essential oils on mycelial growth	53
		3.3.1 Antifungal activity of A. graveolens L. oil on mycelial	53
		growth	
		3.3.2 Antifungal activity of Z. piperitum oil on mycelial	55
		growth	
	3.4	Antifungal activity of essential oils in liquid culture	58
		3.4.1 Antifungal activity of A. graveolens L. oil on mycelial mass	58

	3.4.2 Antifungal activity of Z. piperitum oil on mycelial mass	58
3.5	Light microscope examination of the effect of the essential	62
	oil on A. flavus morphology	
	3.5.1 The effect of A. graveolens L. and Z. piperitum oil on	62
	morphology of A. flavus	
3.6	Effect of essential oil on ergosterol content in plasma	63
	membrane of A. flavus	
	3.6.1 Effect of ergosterol content in plasma membrane from	63
	A. graveolens L. and Z. piperitum oil	
3.7	Efficacy of essential oils as antifungal coat in dry chili	64
	3.7.1 The effect of A. graveolens L. and Z. piperitum oil on	64
	dry chili model	
		66
Chapter 4	Discussion	
Chapter 5	Conclusion	72
Chapter 5		
Reference	s MAI UNIVERSIT	74
	AI UNIVERS	, .
Appendix	U I I A	88
0		0.0
Арр	endix A Preparation of the chemical reagents	88
C	A.1 Fungal media preparation	88
A	A.2 Preparation of Tween 20 solution for pour plate dilution	88
	series	
	A.3 Preparation fungal spore suspensions solution	88
	A. 4 Reagent preparation for extraction ergosterol assay	89
App	endix B Fungal counting	90
	B.1 Standard plate count	90
	B.2 Direct microscope method	93
App	endix C Another Zanthoxylum species found in Thailand	95

Appendix D Table of law data	97
Appendix E Mass spectra and the structures of main components	103
of the essential oils	
E.1 The major component of Anethum graveolens L.	103
essential oil	
E.2 The major component of Zanthoxylum piperitum	107
essential oil	
Publication essential oil	110
Vita	114
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University	

All rights reserved

LIST OF TABLES

Table 1.1	Morphological differentiation of A. flavus and	5
	A. parasiticus	
Table 1.2	Geographic occurrences of mycotoxins	7
Table 1.3	Origin of principal mycotoxins occurring in common	8
	foods and feeds	
Table 1.4	Genes and corresponding enzymes of ergosterol	14
	biosynthesis, in order of occurrence in the biosynthetic	
	pathway	
Table 1.5	Origin and major areas of cultivation of herbal spices	16
Table 1.6	Emerging global spices and flavoring	18
Table 1.7	A summary of advantages and disadvantages of	21
	different spice forms	
Table 1.8	Example of characterized essential oil components in	22
	some popular spices	
Table 1.9	Coloring components of selected spices	24
Table 1.10	Typical sensory characteristics of spices	25
Table 1.11	Medicinal properties of herbal spice	26
Table 1.12	Plant source and major components of some essential	28
	oils and tested antioxidant and antimicrobial	
	properties	
Table 3.1	Chemical composition of A. graveolens L. essential oil	47
	identified by GC-MS analysis	
Table 3.2	Chemical composition of Z. piperitum essential oil	49
	identified by GC-MS analysis	

Table 3.3	Mean diameter of A. flavus colony grown in agar medium	54
	supplemented with five different concentrations of the	
	essential oil from A. graveolens L.	
Table 3.4	Mean diameter of A. <i>flavus</i> colony grown in agar	56
	medium supplemented with the essential oil from	
	Z. piperitum at eight different concentrations	
Table 3.5	Mean wet and dry mycelial weight of 9-day old of	59
	A. flavus in PDB liquid medium supplemented with	
	the essential oil from A. graveolens oil at five different	
	concentrations	
Table 3.6	Mean dry mycelium weight (g) of 9-day old A. flavus	60
	in liquid medium supplemented with the essential oil	
	from Z. piperitum at eight different concentrations	
Table D.1	Diameter (cm) of A. <i>flavus</i> colony grown	97
	in agar medium supplemented with the essential oil	
	from A. graveolens L. at five different concentrations	
Table D.2	Diameter (cm) of A. flavus colony grown	99
	in agar medium supplemented with the essential oil	
	from Z. piperitum at eight different concentrations	
Table D.3	Effect of concentrations of A. graveolens L.	102
	at 0.25 μ L/mL and Z. <i>piperitum</i> at 1 μ L/mL	
	on ergosterol content in plasma membrane of A. flavus	
	in PDB for 4 days	
Table D.4	Efficacy of essential oil in the conservation of bird	102
	chilli, a model product after 9 days of incubation	

LIST OF FIGURES

Figure 1.1	Varieties of chili	3
Figure 1.2	Characteristic conidiophores of Aspergillus	4
Figure 1.3	The DNA target region regulating aflatoxins production	4
Figure 1.4	Scanning electron microscopy pictures of (A)	5
	A. parasiticus and (B) A. flavus spores, where spore	
	ornamentation differences are clearly seen; and of (C)	
	A. parasiticus conidial head	
Figure 1.5	The colony diameters on Czapek's Agar (A),	6
	on Malt Extract Agar (B) in 14 days 25°C, aspergillum	
	X530 (C) and conidia X1820 (D) under light microscy,	
	conidia (SEM) X8655	
Figure 1.6	Structures of aflatoxins A) AFB1, B) AFB2, C) AFG1,	9
	D) G2, E) AFM1 and F) AFM2	
Figure 1.7	Aflatoxin and disease pathways in humans	10
Figure 1.8	The structure of fungal cell	11
Figure 1.9	Biosynthesis pathways of sterols in plants, animals, and	13
8	fungi	
Figure 1.10	Ergosterol biosynthetic pathways	13
Figure 1.11	Characteristics of A. graveolens L. plant	32
Figure 1.12	Characteristics of Z. piperitum: Stem (A), Flowers	35
	(B), Fruits (C), Dry fruits (D)	
Figure 2.1	The seeds used in this study A) A. graveolens L. and B)	38
	Z. piperitum	
Figure 2.2	An aflatoxigenic fungi, A. flavus	39
Figure 2.3	Clevenger-type apparatus	39

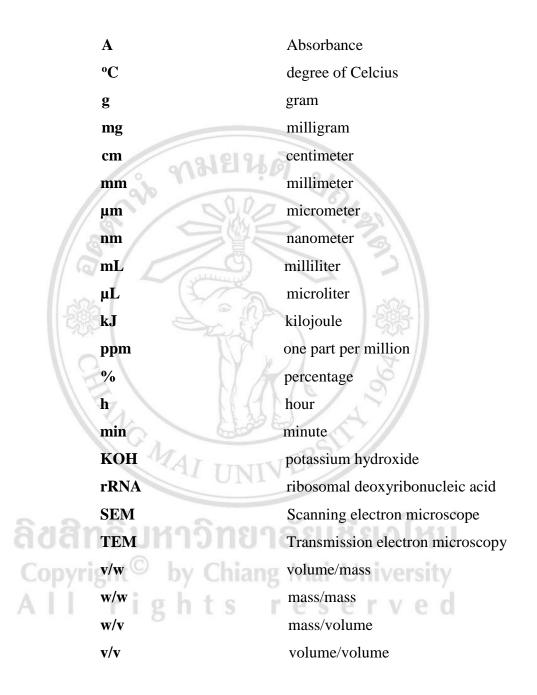

Figure 2.4	Gas chromatography (GC) 6890 Agilent Technology	40
Figure 2.5	Slide culture method	42
Figure 2.6	Dry chili model used in this study	44
Figure 3.1	The essential oils from A) A. graveolens L. and B)	45
	Z. piperitum	
Figure 3.2	The total ion chromatogram of A. graveolens L. oil	52
Figure 3.3	The total ion chromatogram of Z. piperitum oil	52
Figure 3.4	Effects of the different concentrations of A. graveolens	54
	oil on the colony growth of A. flavus in PDA medium	
Figure 3.5	A. flavus colony grown on PDA control medium (A)	55
	and PDA with 0.25 µL/mL (B), 0.5 µL/mL (C), 1.0	
	μ L/mL (D), 1.5 μ L/mL (E) and 2.0 μ L/mL (F) of	
	A. graveolens oil after incubation at 28±2 °C for 9 days	
Figure 3.6	Effects of the different concentrations of Z. piperitum	56
	essential oil on the colony diameter growth of A. flavus	
	in PDA medium	
Figure 3.7	A. flavus colony grown on PDA control medium (A)	57
	and PDA with 1.0 $\mu L/mL$ (B), 1.5 $\mu L/mL$ (C), 2.0 $\mu L/mL$	
	(D), 2.5 µL/mL (E), 3.0 µL/mL (F), 3.5 µL/mL (G), 4.0	
	μ L/mL (H) and 4.5 μ L/mL (I) of Z. piperitum oil after	
C	incubation at 28±2 °C for 9 days	
Figure 3.8	Dry weight of mycelial mass of A. flavus shaken	59
A	for 9 days in liquid medium supplemented with the	
	essential oil from A. graveolens L. at five different	
	concentrations	
Figure 3.9	Mycelial material of A. flavus in control (A), 0.25 µL/mL	60
	(B), 0.5 $\mu L/mL$ (C), 1.0 $\mu L/mL$ (D), 1.5 $\mu L/mL$ (E) and	
	2.0 µL/mL (F) of A. graveolens L. essential oils after	
	incubation at 28±2 °C for 9 day	

Figure 3.10	Dry weight of mycelial mass of A. flavus shaken	61
	for 9 days in liquid medium supplemented with the	
	essential oil from Z. piperitum at eight different	
	concentrations	
Figure 3.11	Mycelial material of A. flavus in control (A), 1.0 µL/mL	61
	(B), 1.5 μL/mL (C), 2.0 μL/mL (D), 2.5 μL/mL (E), 3.0	
	$\mu L/mL$ (F), 3.5 $\mu L/mL$ (G), 4.0 $\mu L/mL$ (H) and 4.5	
	µL/mL (I) of Z. piperitum essential oil after incubation at	
	28±2 °C for 9 days	
Figure 3.12	Morphology of A. flavus under 20X microscope	62
	on PDA without (A) and with the essential oils of	
	A. graveolens L. (B) and Z. piperitum (C) at 1 µL/mL	
Figure 3.13	Morphology of A. <i>flavus</i> under 40X microscope	63
	on PDA without (A) and with the essential oils (B,E)	
	of A. graveolens L. and Z. piperitum (C,F) at 1 µL/mL	
Figure 3.14	Effect of essential oils from A. graveolens L.	64
	and Z. piperitum on ergosterol content in plasma	
	membrane of A. <i>flavus</i> in PDB for 4 days	
Figure 3.15	Pour plates culture after 9 days of incubation of dried bird	65
C	chili non-coated (A), coated with 2.0 µL/mL (B), 4.0	
C	μ L/mL (C) A. graveolens L. oil and with 4.5 μ L/mL (D)	
A	and 9.0 µL/mL (E) Z. piperitum oil	
Figure B.1	Procedure of pour plate counting	92
Figure B.2	Petroff-Hausser counting chamber	93
Figure B.3	Spore numbers inside 4 zone squares of counting chamber	94
	in 2 time	
Figure C.1	Characteristics of Z. limonella Alston: Stem (A),	96
	Flowers (B), Leaves (C), Fruits (D), Dry fruits (E)	

Figure E.1.1	The mass spectrum and structure of (-)-limonene	103
Figure E.1.2	The mass spectrum and structure of dihydrocarvone	104
Figure E.1.3	The mass spectrum and structure of (+)-carvone	105
Figure E.1.4	The mass spectrum and structure of trans-Isodillapiole	106
Figure E.2.1	The mass spectrum and structure of (+)-sabinene	107
Figure E.2.2	The mass spectrum and structure of β -phellandrene	108
Figure E.2.3	The mass spectrum and structure of brevifolin	109

ABBREVIATIONS AND SYMBOLS

