CONTENTS

Acknow	vledgement	c
Abstrac	et in Thai	d
Abstrac	et in English	f
List of '	Tables	1
List of I	Figures	n
Chapter	r 1 Introduction	1
Chapter	r 2 Literature Review	3
2.	.1 Mannan	3
2.	.2 Mannan degrading enzymes	6
	2.2.1 Source of β -mannanase	6
	2.2.2 β-Mannanase production conditions and properties	9
	2.2.3 Applications of β -mannanase	10
2.	.3 Enzyme purification	18
	2.3.1 Protein precipitation	18
	2.3.2 Dialysis	19
	2.3.3 Ion exchange chromatography	19
	2.3.4 Gel filtration chromatography	20
Chapter	r 3 Materials and Methods	25
3.	.1 Material and chemical reagents	25
	3.1.1 Media and chemical reagents	25
	3.1.2 Equipment	26
3.	.2 Methods	27
	3.2.1 Microbial strain and maintenance	27

CONTENTS (CONTINUED)

3.2.2	Copr	a meal preparation	27
3.2.3	Enzy	me production	27
	1)	Culture conditions and enzyme production experiment	27
	2)	Determination of β -mannanase activity	27
	3)	Determination of protein	28
	4)	Screening for appropriate nitrogen sources	28
	5)	Screening for the factors affected on β -mannanase	28
	0	production	
	6)	Effect of carbon source on β -mannanase production	29
	7)	Time course of β -mannanase production	29
	8)	Effect of growing temperatures on β -mannanase	33
	15	production	
	9)	Effect of initial pH on β -mannanase production	33
	10)	Bioreactor experiment	33
	11)	Storage stability of the β -mannanase	33
3.2.4	Enzy	me purification	34
8.11	1)	Purification of <i>B. subtilis</i> M7 β -mannanase	34
d O	2)	Polyacrylamide gel electrophoresis	34
3.2.5	Chara	acterization of purified β -mannanase	34
AI	1)	pH optimum and stability	34
	2)	Temperature optimum and stability	35
	3)	Substrate specificity	35
	4)	Effect of various metal ions and chemicals	35
	5)	Determination of kinetic parameters	35
	6)	Hydrolysis experiments	35

CONTENTS (CONTINUED)

Chapter 4	Results and Discussions	39
4.1	Enzyme production	39
	4.1.1 Enzyme production in various nitrogen sources	39
	4.1.2 Screening for the factors influenced on β-mannanase production	40
	4.1.3 Effect of carbon source on β -mannanase production	42
	4.1.4 Time course of β -mannanase production	44
	4.1.5 Effect of various temperatures on β -mannanase production	44
	4.1.6 Effect of pH on β -mannanase production	44
	4.1.7 Scale up β -mannanase production	46
	4.1.8 Effect of different additives on stability of β -mannanase	47
4.2	Enzyme purification	48
4.3	Characterization of purified β-mannanase	50
	4.3.1 Effects of pH and temperature on enzyme activity	50
	4.3.2 Substrate specificity	51
	4.3.3 Effect of various metal ions and reagents	52
	4.3.4 Kinetics of the β -mannanase reaction	52
	4.3.5 Analysis of hydrolysis product	54
Chapter 5	Conclusions rights reserved	56
Reference	S	58
Appendic	es	68
App	endix A Media	69
App	endix B Measurement activity enzyme	71
App	endix C Measurement protein	73

CONTENTS (CONTINUED)

Appendix D Electrophoresis

Curriculum Vitae

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 2.1	Typical structures, sources, applications of different subfamilies of	4
	mannan polysaccharides	
Table 2.2	β-Mannanase producing microorganisms	7
Table 2.3	Production conditions and characteristics of mannanases from	11
	different microorganisms	
Table 2.4	Ion exchange groups used in the purification of proteins	20
Table 2.5	Some traditional media for gel filtration of proteins	22
Table 3.1	The concentration of each variable at high and low level used in the	30
	Plackett and Burman design while copra meal is a carbon source	
Table 3.2	Treatments generated based on Plackett and Burman design while	30
	copra meal is a carbon source	
Table 3.3	The concentration of each variable at high and low level used in the	31
	Plackett and Burman design while locust bean gum is a carbon source	
Table 3.4	Treatments generated based on Plackett and Burman design while	31
	locust bean gum is a carbon source	
Table 3.5	The concentration of each variable at high and low level used in the	32
	Plackett and Burman design while konjac flour is a carbon source	
Table 3.6	Treatments generated based on Plackett and Burman design while	32
	konjac flour is a carbon source	
Table 4.1	The least square linear regression analysis of Plackett and Burman	41
	statistical design for screening of the important factors affecting on β -	
	mannanase production while copra meal is a carbon source	
Table 4.2	The least square linear regression analysis of Plackett and Burman	41
	statistical design for screening of the important factors affecting on β -	
	mannanase production while locust bean gum is a carbon source	

LIST OF TABLES (CONTINUED)

Page

Table 4.3 The least square linear regression analysis of Plackett and Burman	42
statistical design for screening of the important factors affecting on β -	
mannanase production while konjac mannan is a carbon source	
Table 4.4 Purification of β -mannanase from <i>B. subtilis</i> M7	49
Table 4.5 Substrate specificity of β -mannanase from <i>B. subtilis</i> M7	52
Table 4.6 Effect of cations and reagents on the activity of β -mannanase from	53
B. subtilis M7	
Table A.1 Formulation of resolving gel	76
Table A.2 Formulation of stacking gel	76
ALL ALL STATISTICS	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

Figure 3.1	Summary of experimental procedure for β -mannanase production	37
Figure 3.2	Summary of experimental procedure for purification and	38
	characterization of β-mannanase	
Figure 4.1	Effect of inorganic nitrogen source on β -mannanase production by	40
	B. subtilis M7 at 37°C with 180 rpm	
Figure 4.2	Effect of organic nitrogen source on β -mannanase production by	40
	B. subtilis M7 at 37°C with 180 rpm	
Figure 4.3	Effect carbon source of on β -mannanase production by <i>B. subtilis</i>	43
	M7. (a) copra meal, (b) locust bean gum and (c) konjac flour	
Figure 4.4	Time course of β -mannanase production of <i>B. subtilis</i> MR10 (\blacklozenge)	45
	and <i>B. subtilis</i> M7 (\blacktriangle) cultivated in the optimal medium with (a)	
	copra meal, (b) locust bean gum and (c) konjac flour as a sole	
	carbon source, viable cell (log CFU/ml);, β-mannanase	
	activity (U/ml)	
Figure 4.5	Effect of growth temperatures on β -mannanase production by	46
	B. subtilis M7 at 180 rpm	
Figure 4.6	Effect of initial pH on β -mannanase production by <i>B. subtilis</i> M7	46
	at 37°C with 180 rpm	
Figure 4.7	Time course of β -mannanase production of <i>B. subtilis</i> M7	47
	cultivated in the optimal medium at 37°C with different agitation	
	rates. ♦, 200 rpm; ▲, 400 rpm;, viable cell (log CFU/ml); —,	
	β-mannanase activity (U/ml)	
Figure 4.8	Storage stability of β -mannanase from <i>B. subtilis</i> M7 with	48
	different stabilizers at 4°C	
Figure 4.9	Elution profiles of β -mannanases from <i>B. subtilis</i> M7 on DEAE-	49
	Sephadex A-50 column chromatography pH 7.5	

LIST OF FIGURES (CONTINUED)

Figure 4.10 Elution profiles of β -mannanases from <i>B. subtilis</i> M7 on	49
Sephacryl S-100 gel filtration chromatography pH 7.5	
Figure 4.11 SDS-PAGE of purified β -mannanase from <i>B. subtilis</i> M7. Lane	50
M: molecular weight marker; Lane S: purified β -mannanase	
Figure 4.12 Effect of pH (a) and temperature (b) on the activity of	51
β-mannanase from <i>B. subtilis</i> M7	
Figure 4.13 pH stability at 4° C for 2.4 (a) and thermostability for 1 h (b) of	51
β-mannanase from <i>B. subtilis</i> M7	
Figure 4.14 Linweaver Burk plots of β -mannanase from <i>B. subtilis</i> M7	53
Figure 4.15 Thin layer chromatography of locust bean gum and copra meal	55
hydrolysates digested by the purified β -mannanase from	
B. subtilis M7 after 6 h incubation. Lane 1, 6 and 11 are standard	
mannose; Lane 2, 3, 4 and 5 are locust bean gum hydrolysis	
products from 0, 0.5, 1 and 6 h of reaction time, respectively;	
Lane 7, 8, 9 and 10 are copra meal hydrolysis products from 0,	
0.5, 1 and 6 h of reaction time, respectively	
Figure A.1 Calibration curve of standard mannose concentration versus the	72
absorbance at 540 nm	
Figure A.2 Standard curves for protein assay	73
All rights reserved	